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ABSTRACT Mycolicibacterium smegmatis VKM Ac-1171 is a saprotrophic bacterium that
was isolated several decades ago and is deposited in microbial collections around the
world. We report here a draft genome sequence of the strain. Annotation of the ge-
nome revealed the presence of a complete set of genes related to the sterol catabolic
pathway.

M ycolicibacterium smegmatis VKM Ac-1171 (NCIMB 8548, CCM 2067) was originally
deposited in ATCC decades ago as Mycobacterium butyricum 362 and later rei-

dentified as Mycobacterium smegmatis (1). Recently, Mycobacterium smegmatis and
closely related fast-growing species have been reclassified as Mycolicibacterium based
on their phylogenomic differences from the “tuberculosis-like” clade (2, 3). The strain
has previously been used in various studies as a nonpathogenic model microorganism
(4–9), to validate the DNA isolation method (10), but its genome sequence was hith-
erto unreported. Here, we present a draft genome of M. smegmatis VKM Ac-1171.

The strain was obtained from the All-Russian Collection of Microorganisms VKM
(http://www.vkm.ru) and cultured aerobically at 37°C to early stationary phase in MYCB
broth (11) supplemented with 15 g/L Tween 80 and 15 g/L glycine.

Genomic DNA was extracted as described (12) with modifications. Briefly, cells from
10 mL broth were subjected to sequential treatment with lysozyme (20 min, 37°C),
SDS, proteinase K (1.0 h, 56°C), and RNase A (30 min, 37°C). Then, the DNA was purified
with phenol-chloroform.

The Illumina sequencing library construction was made by KAPA DNA library prepa-
ration kit for Illumina and KAPA dual-indexed adapter kit (Kapa Biosystems). Genome
sequencing was performed by Illumina HiSeq 2000 with HiSeq SBS kit v3. For adapter
and quality trimming, Trimmomatic 0.39 (13) with the settings ILLUMINACLIP:TruSeq3-
PE:2:30:10:2, LEADING:3, TRAILING:3, MINLEN:50, and a self-written program in Perl lan-
guage (https://github.com/BraginE/bioinfo) were applied. De novo genome assembly
was made with the Ray 2.3.1 program (14); the k-mer length was 31. Genome was
annotated with Prokaryotic Genome Annotation Pipeline (PGAP) (15). For average nu-
cleotide identity (ANI), the ANI calculator (16) was applied. Default parameters were
used for all software unless mentioned otherwise.

Sequencing resulted in 19,143,437 paired-end reads (2 � 100). The genome assem-
bly generated 96 contigs with 7,600,730-bp total length (genome coverage, 44�; N50

length, 199,025 bp; GC content, 67.5%).
Among M. smegmatis strains with known genome sequences, Ac-1171 showed the

highest similarity to M. smegmatis Nishi, whereas the ANI value between Ac-1171 and
M. smegmatis mc2 155 was lower (Table 1).

The size of the Ac-1171 genome is approximately 600,000 bp bigger than the
genomes of other M. smegmatis strains. The Ac-1171 genome contains 7,163 protein-
coding genes, 57 RNA-coding genes (2, 2, 2, 48 and 3 genes coding for 5S rRNA, 16S
rRNA, 23S rRNA, tRNA, and noncoding RNA, respectively), and 167 pseudogenes. The
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strain Ac-1171 possesses a complete set of key genes of steroid catabolism, thus sug-
gesting the ability for the full sterol degradation.

Modification of sterol catabolic pathways in some species of Mycolicibacterium,
such as M. neoaurum (17), M. fortuitum (18), and M. smegmatis mc2 155 (19), has
become the basis for production of pharmaceutical steroid precursors. The strain M.
smegmatis VKM Ac-1171 is promising for the engineering of novel microbial producers
for steroid biotechnology.

Data availability. The genome sequences have been deposited in NCBI GenBank
database under accession number JAMZOD000000000. The BioSample and BioProject
accession numbers are SAMN28113943 and PRJNA835822, respectively. The draft ge-
nome raw data are available in the Sequence Read Archive (SRA) under accession num-
ber SRR19122810.
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Strain GenBank accession no. Genome length (bp) ANI value
M. smegmatismc2 155 CP009494 6,988,269 98.94
M. smegmatis strain Rabinowitchi CP080272 7,061,747 99.01
M. smegmatis strain Nishi CP080273 7,010,278 99.09
M. smegmatis strain Jucho CP080274 6,895,172 98.95
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