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Abstract

Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-

invasively induce neural activity in the human brain. A single transcranial stimulus induces a 

time-varying electric field in the brain that may evoke action potentials in cortical neurons. 

The spatial relationship between the locally induced electric field and the stimulated neurons 

determines axonal depolarization. The induced electric field is influenced by the conductive 

properties of the tissue compartments and is strongest in the superficial parts of the targeted 

cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and 

inhibitory neurons. The propensity of individual axons to fire an action potential in response 

to TMS depends on their geometry, myelination and spatial relation to the imposed electric field 

and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic 

and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that 

the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. 
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The induced electric field may additionally excite bends of myelinated axons in the juxtacortical 

white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along 

the stimulated axons and causes secondary excitation of connected neuronal populations within 

local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation 

also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal 

activity in the targeted network. Both local and remote neural excitation depend critically on the 

functional state of the stimulated target area and network. TMS also causes substantial direct 

co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally 

in auditory and somatosensory networks, but also produces brain responses in other networks 

subserving multisensory integration, orienting or arousal. The complexity of the response to TMS 

warrants cautious interpretation of its physiological and behavioural consequences, and a deeper 

understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a 

scientific and therapeutic tool.
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1. Introduction

Since its introduction in 1985 by Barker and colleagues (Barker et al., 1985), the use of 

transcranial magnetic stimulation (TMS) has revolutionized human brain research, resulting 

in manifold neurophysiological and therapeutic applications. In contrast to transcranial 

electrical stimulation (TES), TMS does not directly apply electrical current via electrodes 

attached to the scalp, but through inductive electromagnetic stimulation. The TMS 

stimulator passes a short-lasting current through the coil, generating a strong time-varying 

electromagnetic field perpendicular to the transducing coil, which is placed tangentially on 

the head. The magnetic field is not attenuated by the tissue surrounding the brain (e.g., skin 

and bone) and induces a phasic electric field in the targeted tissue. This field can depolarize 

excitable structures within the brain, e.g. neurons. If the electric field induced by TMS is 

sufficiently strong to depolarize the membrane potential of a given neuron above a certain 

threshold, an action potential will be triggered. However, even TMS-induced subthreshold 

depolarization can have neuronal effects and affect ongoing endogenous activity. Inductive 

electromagnetic stimulation of a single neuron in the central nervous system is determined 

by the induced electric field and the morphology and electrophysiological properties of the 

stimulated neuron at the time of stimulation.

Despite of its widespread use, relatively little is known about how TMS engages the cortical 

target region and how target engagement propagates within the brain. Basic questions 

such as which parts of the gyrus, which cell types, and which neuronal compartments are 

preferentially excited by TMS are still subject to research. The relationship between the 

biophysical properties of cortical neuronal populations and the efficacy to produce action 

potentials with TMS in these populations is also still incompletely understood. The same is 

true for the mechanisms that determine the propagation of the direct TMS-induced neuronal 
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excitation within local cortical circuits and along neural projections to interconnected brain 

regions.

This consensus paper gives an account on what we currently know and what we still do 

not know about how TMS “engages” its target, the brain. We summarize the current level 

of understanding of how TMS targets neural structures in the stimulated area and how the 

regional induction of action potentials impacts on the cortical target area at the cellular and 

microcircuit level. We also discuss how regional neural excitation of the stimulated cortex 

influences neural function of remote brain areas. Plasticity-inducing effects of TMS are not 

covered. We first synthesize some general considerations about TMS and its underlying 

mechanisms in section 2. We then focus specifically on how TMS stimulates the primary 

motor cortex (M1) in section 3. We finally review key insights into the mechanism of action 

of TMS that have been gathered with TMS targeting other brain regions than the M1 in 

section 4.

2. General considerations

2.1. Physiological features and their mechanistic implications

The TMS-induced electric field directly interacts with axons in the targeted 
cortex.—The direct neural response to the TMS-induced electric field is complex, 

involving a mixture of neuronal populations (Aberra et al., 2020). Invasive recordings from 

rodent motor cortex as well as from the descending corticospinal tract in humans show that 

a single TMS pulse evokes a cascade of high-frequency synaptic activity in the stimulated 

motor cortex (see section 3.1.1 for detailed discussion) (Di Lazzaro and Rothwell, 2014; Li 

et al., 2017). Regional neuronal excitation outlasts the stimulus by several milliseconds and 

depends on the orientation of the induced electric field (Di Lazzaro and Rothwell, 2014; Li 

et al., 2017). This begs the question what is the primary neural target of the initial current 

pulse? Many studies have addressed this question using TMS of the hand representation of 

the M1 (M1-HAND), because TMS of M1-HAND can readily produce a motor response 

that can easily be recorded with surface electrodes from the responding muscles in the 

contralateral hand (Groppa et al., 2012a). These studies will be discussed in detail in the 

section on TMS of the M1 (section 3), but we summarize some fundamental features already 

here because of their general relevance.

TMS stimulates neurons in the brain through depolarization of myelinated 
axons.—By systematically varying the intensity and duration of the TMS pulse, one 

can derive a curve, which delineates a threshold function for evoking a motor evoked 

potential (MEP). This curve reflects the membrane excitability of the neural structures that 

are stimulated with TMS and can be mathematically described by its strength–duration 

(S-D) properties and the closely related neurophysiological concepts of chronaxie and 

rheobase (Geddes and Bourland, 1985). Rheobase describes the minimum current amplitude 

(of infinite duration) that leads to threshold depolarization, whereas chronaxie is the 

minimum time required for a current at double the strength of the rheobase to initiate an 

action potential. Chronaxie is equivalent to the S-D time constant. Measurements of the 

relationship between the minimal intensity and minimal duration of a TMS pulse to evoke 
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a MEP over M1-HAND show that TMS is likely to activate axons rather than neuronal cell 

bodies (Barker et al., 1991; D’Ostilio et al., 2016; Hannah and Rothwell, 2017; Peterchev 

et al., 2013). The cell soma has a much longer (membrane) time constant and a higher 

excitation threshold than the axon (Frank and Fuortes, 1956; Nowak and Bullier, 1998). 

Experimentally, this can be tested by using controllable TMS devices that can change the 

duration as well as the amplitude of the stimulus pulse (D’Ostilio et al., 2016; Halawa et 

al., 2019; Hannah and Rothwell, 2017). However, the range of available pulse durations in 

current controllable TMS devices is relatively small (30–150 μs) compared with the ranges 

usually employed when making measurements with a standard electrical pulse (up to 1000 

μs). In addition, a TMS pulse is never a perfect square wave and is always followed by 

a reverse phase, resulting in no net transfer of charge. The outcome is that the S-D time 

constant measured in this way is not equal to that measured with conventional square wave 

electrical pulses. Nevertheless, when the same magnetic stimulator is used to stimulate 

peripheral nerves and the motor cortex, the calculated time constants of both of them are 

similar (i.e., around 150–300 μs), suggesting that similar structures, namely large myelinated 

axons, are likely to be one of the prime targets of TMS in either case (Barker et al., 1991; 

Peterchev et al., 2013).

Which axonal structure is primarily stimulated by the induced electric field?—
Cable theory provides a theoretical framework to understand how the TMS-induced electric 

field polarizes and activates axons. Axons can be stimulated by electric field gradients 

along their length, if the gradients are strong enough to trigger an action potential. An 

electric field gradient along the axon can occur due to spatial changes in the induced 

electric field or due to changes in the axon geometry (Tranchina and Nicholson, 1986) 

The former mechanism polarizes the axon proportional to the first spatial derivative of the 

electric field, whereas the latter mechanism polarizes the axon proportional to the electric 

field magnitude at geometrical discontinuities (e.g. terminations, bifurcations, and bends). 

The first mechanism is less relevant for TMS, as the spatial gradient of the TMS-induced 

electric field is typically negligible at the scale of cortical neurons; thus, the electric field 

is often treated as quasi-uniform (Bikson et al., 2013). These activation mechanisms were 

demonstrated with magnetic stimulation of in vitro peripheral nerves, which found that long, 

straight axons are activated at the site of peak electric field gradient. Introducing bends or 

terminations (e.g. cut ends) shifted excitation to these locations, where the threshold was 

inversely proportional to the electric field magnitude (Maccabee et al., 1993). The situation 

in the brain is much more complex. This is illustrated in Fig. 1C and Fig. 2 for pyramidal 

cells occupying layer II/III. While there is consensus that the biophysical and geometric 

properties of the axons determine which axonal structures are effectively depolarized by the 

electrical current, debate still remains about the exact site of activation by TMS.

Based on these considerations, several candidate sites of excitation by TMS have been 

identified, including axon terminations, changes in diameter (e.g. soma–axon hillock), and 

bends (e.g. corticofugal axons curving into subcortical white matter) (Roth, 1994). Within 

cortical grey matter, realistic models of cortical neurons that include axonal arborization 

identified the terminals of axon collaterals, aligned to the local electric field direction, as 

the primary site of activation (Aberra et al., 2018; Salvador et al., 2011). According to these 
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models, the TMS-induced current depolarizes axon terminals when the current is running in 

parallel to the distal axon branch and is directed towards the axon terminal, as illustrated in 

Fig. 1C and Fig. 2BC (Aberra et al., 2018). Activation thresholds of these axon terminals 

were significantly reduced by the presence of myelination, which reduces the membrane 

capacitance and, consequently, the S-D time constant.

It has also been argued that the axon initial segment is primarily activated by TMS after 

somatic depolarization (Fig. 2C), because the diameter of the neuron abruptly changes 

at the transition from soma to axon hillock (Pashut et al., 2011). However, the results 

of these early modeling studies may have been due to implementation errors resulting in 

an artefactual current source in the soma (Aberra et al., 2020). Preferential activation of 

axon terminals, rather than initial segments, is also consistent with the finding that the 

threshold to evoke the earliest corticospinal wave (I1) by TMS is relatively insensitive 

to voluntary contraction, GABA-agonists, or the inhibitory paired-pulse paradigm, short 

interval intracortical inhibition (SICI) (Di Lazzaro and Rothwell, 2014). Since fluctuations 

in membrane potential from synaptic inputs attenuate significantly with distance from the 

soma, these observations suggest TMS-evoked action potentials are initiated in the distal 

axon.

TMS at low intensities for most coil configurations is known to directly activate axons 

in cortical grey matter (Di Lazzaro and Rothwell, 2014), but juxtacortical excitation of 

axonal bendings in subcortical white matter is another possible mechanism, which has been 

demonstrated in several models as well (Geeter et al., 2016; Gomez-Tames et al., 2020; 

Goodwin and Butson, 2015; Salvador et al., 2011). This may include juxtacortical bendings 

of cortico–cortical axons (e.g. U-fibers) or descending pyramidal axons (e.g. projecting 

to the pyramidal tract) in the superficial white matter underlying the gyral crown. The 

hypotheses that TMS primarily excites intracortical axon terminals or axonal bends in 

juxtracortical white matter are not mutually exclusive. Based on passive cable theory, one 

can estimate relative difference in coupling to the E-field, or with active models, one can 

predict threshold differences. However, it is difficult to predict exact differences in relative 

thresholds for excitation of intracortical axon terminals versus axonal bends in juxtacortical 

white matter. These axonal segments would constitute very different and heterogenous 

populations (white matter fibers vs. intracortical axon terminals) with potentially different 

electrophysiological properties.

In summary, there are several accounts of where the TMS-induced electric field primarily 

excites the intracortical axons. The notion that TMS primarily causes intracortical excitation 

of myelinated axons at their terminals is biophysically the most plausible account. 

Regardless of which of the various accounts is correct, they all predict that the efficacy 

of TMS to depolarize the axonal elements critically depends on the orientation of the axonal 

element relative to the direction of the induced electric field and the magnitude of the 

electric field. It is also possible that multiple mechanisms play a role in TMS excitation 

depending on the stimulation parameters, including intensity, direction, and pulse waveform.

Direction-specific effects play an important role for axonal depolarization.—
The directional sensitivity of stimulation sites is particularly evident when a figure-of-eight 
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coil and a “monophasic” pulse configuration (meaning a brief, high amplitude electric 

field phase in one direction followed by a longer, low amplitude phase in the opposite 

direction) is used for TMS. Direction-specific effects are clearly evident when stimulating 

the M1-HAND in the precentral gyrus with a figure-of-eight coil and a monophasic pulse 

configuration (see section 3.1 for detailed discussion). Generally, TMS is most effective 

at evoking a MEP if the dominant induced tissue current has a posterior-to-anterior (P-A) 

direction and has a perpendicular orientation relative to the wall of the central sulcus 

(Fig. 1). A TMS pulse inducing a P-A current in the precentral gyrus will evoke MEPs 

in hand muscles that have a lower threshold and shorter latency compared to a pulse of 

equal stimulus strength that induces an anterior-to-posterior (A-P) directed current (Mills 

et al., 1992). In accordance with the differences in MEP latency, epidural recordings of 

the descending corticospinal activity show that P-A oriented currents evoke preferentially 

early volleys, known as indirect waves (I-waves), including the I1-wave generated by 

monosynaptic inputs to corticospinal neurons, whereas A-P oriented currents in M1-HAND 

preferentially evoke later I-waves (Di Lazzaro and Rothwell, 2014; Sakai et al., 1997). 

Biophysical modeling suggests that reversing the current direction in the precentral gyrus 

from P–A to A–P leads to an anterior spatial shift in preferential direct activation of neural 

populations in the precentral crown, particularly the pyramidal cells in L2/3 and L5 and 

the large basket cell inhibitory interneurons (Aberra et al., 2020) (Fig. 1BC). This may 

induce differences in the time it takes for the action potentials generated at the site of 

primary stimulation in the top and lip regions of the precentral crown to transsynaptically 

excite those corticomotoneuronal pyramidal cells that are buried in the sulcal wall and make 

monosynaptic connections onto spinal alpha-motoneurons (i.e., corticomotoneuronal cells). 

Electrophysiological measurements suggest that direction-specific transsynaptic inputs to 

the corticomotoneuronal cells also have slightly different S-D time constants (D’Ostilio 

et al., 2016). Such direction-specific effects are also present when using biphasic pulse 

configurations, though to a lesser degree (Aberra et al., 2020; Lang et al., 2006).

The direction dependency of TMS-evoked axonal depolarization has general implications 

for the clinical and scientific use of TMS. Different TMS-induced current directions will 

result in preferential targeting of spatially distinct population of neurons, even when the 

location of the peak induced electric field is matched (Aberra et al., 2020). These differences 

in the primary site of neural excitation may result in differences at the neurophysiological 

and behavioral level. The direction-specific effects may be most prominent at stimulation 

intensities that are slightly above excitation threshold and may become less specific at 

higher intensities of stimulation, when the induced tissue current results in a less selective 

activation of neuronal elements in the targeted cortex.

In addition to the direction of the induced current, the shape and width of the TMS pulse 

may also affect which neuronal circuits that are activated by a TMS pulse, as shown 

using controllable TMS devices that allow some flexibility in terms of pulse width and 

shape. For example, manipulating the pulse-width may lead to a recruitment of distinct 

neuronal populations with different S-D constants (D’Ostilio et al., 2016) that are differently 

associated with cutaneous and proprioceptive afferent inputs as revealed by conditioning 

TMS protocols (Hannah and Rothwell, 2017). These effects also seem to interact with 

current direction, highlighting the intricate nature of the physiology of TMS.
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TMS effectively excites inhibitory interneurons in the stimulated brain area.
—Converging neurophysiological evidence for TMS-induced excitation of intracortical 

inhibitory circuits stems from paired-pulse TMS targeting the M1 (see section 3.5). A sub-

threshold conditioning TMS pulse inhibits the motor output evoked by a subsequent supra-

threshold test stimulus (Bestmann et al., 2004), resulting, for example, in short-interval 

intracortical inhibition (SICI) (Kujirai et al., 1993). Single-pulse TMS of the M1 can also 

reveal intracortical inhibition, producing a post-excitatory silent period in a pre-contracted 

target muscle (Wilson et al., 1993). The inhibitory intracortical circuits respond to TMS at 

stimulation intensities that are well below the threshold to evoke a MEP in relaxed hand 

muscles (Davey et al., 1994; Ziemann et al., 1996d). Cortical inhibitory interneurons release 

the neurotransmitter γ-aminobutyric acid (GABA) onto excitatory and other inhibitory 

neurons. It is commonly believed that the inhibitory effects of TMS are mediated by 

inhibitory interneurons through a GABA-ergic suppression of excitatory TMS effects, 

although “shunting inhibition” caused by an activity-driven increase in transmembrane 

conductance has been suggested as an alternative mechanism (Paulus and Rothwell, 2016). 

In paired-pulse TMS paradigms that use short inter-stimulus intervals, neural excitation of 

the first conditioning pulse may acutely increase membrane conductance in the dendritic 

tree of cortical pyramidal cells. This “leaky” membrane conductance may reduce the 

transsynaptic current flow from the dendritic tree to the soma induced by the second TMS 

pulse (Paulus and Rothwell, 2016).

TMS-induced neuronal stimulation propagates along axons and synapses.—
The action potentials induced directly by the TMS-induced electric field travel along the 

axons in the anterograde (orthodromic) and retrograde (antidromic) direction, inducing 

forward and backward information flow within the stimulated pathway (Fig. 2). An 

anterograde axonal propagation of excitation is likely to make a major contribution to the 

neurobiological network effects of TMS due to transsynaptic excitation along connected 

chains of neurons (Pashut et al., 2014; Rotem and Moses, 2006, 2008). Action potentials 

propagate transsynaptically, producing local excitation or inhibition of intracortical circuits 

directly within the targeted cortex as well as remote effects of interconnected cortical 

and subcortical areas. The best-known example is TMS of the M1 which gives rise to 

a somatotopically specific motor response, once stimulus intensity surpasses the cortical 

motor threshold (MT).

State dependency is an inherent feature of TMS.—Both local transsynaptic 

excitation of neural structures in the targeted cortex as well as the transsynaptic propagation 

of excitation to remote brain regions are modulated by state-dependent factors, including 

ongoing neuronal firing rate and intrinsic excitability. The motor response to TMS of M1 

is influenced by the “motor state” at the time of stimulation: Using identical stimulation 

settings, the MEP amplitude obtained at rest can be facilitated or suppressed by motor 

imagery involving the target muscle (Kasai et al., 1997; Sohn et al., 2003). Depending on 

the state of perceptual adaptation, an identical TMS pulse given to visual cortex can induce 

differential effects on spatially overlapping neuronal populations in the stimulated cortex 

and thus evoke different types of TMS-evoked phosphenes (Silvanto et al., 2007).
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Electroencephalographic (EEG) recordings of the TMS-evoked EEG potentials (TEPs) 

during non-rapid eye movement (NREM) sleep have also convincingly demonstrated that 

the brain state at the time of stimulation determines the brain’s response to TMS (Bergmann 

et al., 2012; Massimini et al., 2005). NREM sleep enhances the short-latency local response 

to TMS, but shows a marked attenuation of the propagation of excitation to remote cortical 

sites that can be observed during wakefulness (Massimini et al., 2005). Furthermore, MEPs 

and TEPs have higher amplitudes when the TMS pulse is given during up-states than during 

down-states of slow wave oscillations (Bergmann et al., 2012). These examples show that 

physiological and behavioral effects of TMS depend not only on the TMS settings (extrinsic 

factors) but also on the functional properties of the stimulated brain network (intrinsic 

factors). This explains the increasing interest in online “state markers” that can be used to 

inform TMS in order to increase the reliability and efficacy of TMS.

TMS excites multiple sites in the peripheral nervous system (Fig. 3).—The 

induced electric field does not only excite neuronal structures in the central nervous system. 

Peripheral co-stimulation of sensory and motor axons in the face or neck region and 

intracranial sensory and motor axons at the base of the skull may also be effectively excited 

by TMS (Schmid et al., 1995). TMS induces eddy current in the cerebrospinal fluid, which 

can lead to excitation of all motor (and probably also sensory) fibers of the facial nerve close 

to the foramen ovale (Schmid et al., 1992, 1995). Foraminal excitation of myelinated motor 

axons of the facial nerve occurs already at low stimulus intensities with threshold intensities 

ranging between 20 and 40% of maximal stimulator output, when using a standard round 

coil and a Magstim 200 device (Schmid et al., 1995). Foraminal motor responses of 

the facial nerve showed orientation dependency and were readily elicited at many lateral 

stimulation positions across the scalp, when the center of a round stimulation coil was 

positioned at electrode positions C3 (the approximate location of M1-HAND), P3 and T3 

of the international 10–20 system for EEG electrode placement (Schmid et al., 1995). The 

trigeminal nerve fibers can also be excited by TMS at their proximal segment distal to the 

root entry zone, but the threshold for stimulation is higher and the scalp position of TMS 

is more critical for effective stimulation (Schmid et al., 1995). Foraminal co-stimulation 

of cranial nerve fibers poses a methodological challenge in terms of experimental control, 

because this type of peripheral co-stimulation will occur at many lateral fronto-temporal 

cortical target sites and cannot be matched by peripheral electrical stimulation.

There are several other sources of somatosensory co-stimulation, including the excitation of 

mechanoreceptors due to TMS-induced vibration, and reafferent somatosensory stimulation 

caused by TMS-evoked muscle twitches (Fig. 3). The dura mater is another potential site 

of peripheral excitation. The parasagittal dura mater contains Ruffini-like mechanoreceptors 

as well as myelinated fast-conducting A-beta fibers (Lv et al., 2014). The former may be 

excited by mechanic vibrations, while the latter may be excited by the induced electric 

field. Future studies need to clarify whether peripheral somatosensory co-stimulation of the 

dura mater is relevant and how much it depends on coil position and orientation. There is 

circumstantial evidence in stroke patients that these inputs are unlikely to play a significant 

role. Using auditory masking and a foam layer between coil and scalp, Sarasso et al. (2020) 
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demonstrated that focal TMS of the lesioned cortex often failed to produce TEPs, while 

perilesional and contralesional TMS consistently elicited TEPs.

In addition to co-stimulation of peripheral somatosensory and motor fibers, TMS also 

produces a loud click in the coil case, which leads to auditory stimulation via air and bone 

conduction (Koponen et al., 2020). The vibration of the skull can be expected to be a critical 

confounding factor that may influence TMS-induced brain activation, because unnoticed 

cochlear fluid vibration has been reported to have prominent effects on brain activation 

caused by ultrasound in animals (Guo et al., 2018).

The multiple peripheral effects of TMS result in substantial “off-target” brain stimulation. 

Multisensory peripheral co-stimulation is inherent to TMS and needs to be taken into 

consideration when designing a TMS study because it may conflate or obscure the true 

transcranial effects of TMS on functional brain activity and render the causal interpretation 

of neurophysiological, behavioral or therapeutic effects ambiguous (Conde et al., 2019). 

Of note, the sensation of stimulation experienced by the subjects is significantly affected 

by the width the TMS pulse. This was observed in a study in which different TMS pulse 

width were tested and the pulse amplitude was adjusted according to the motor threshold, 

hence producing the same or similar cortical activation (Peterchev et al., 2017). This 

difference in subjective experience may result from a combination of direct scalp nerve/

muscle stimulation, coil vibration, and sound difference. In any case, the effects of TMS 

pulse width on subject’s sensory experience appear to follow a different relationship than the 

effects of pulse width on cortical stimulation (Peterchev et al., 2017).

Peripheral co-stimulation effects should be assessed and reported in detail. The magnitude of 

peripheral co-stimulation should be minimized, and its impact should be masked or matched 

by experimental control condition as much as possible (Belardinelli et al., 2019; Siebner 

et al., 2019). There are a few exceptions when this may not be necessary, for instance 

when measuring short-latency interaction in the brain with paired-pulse TMS at very short 

interstimulus intervals. However, even in these cases, the subject’s ability to anticipate the 

timing of TMS and peripheral co-stimulation may condition the brain response to TMS 

(Bonnesen et al., 2022).

2.2. Biophysical features and their mechanistic implications

TMS-induced neurostimulation is biased towards the superficial parts of 
hemispheric neocortex.—When targeting a cortical area located on the lateral surface 

of the hemisphere, cortical patches located in the gyral crown will always be exposed to a 

stronger electric field than cortical patches located in the wall of the gyrus or at the fundus 

of a cortical sulcus (Fig. 1). This is due to the limited depth penetration of TMS caused 

by a rapid decay of the induced electric field with increasing distance from the coil. When 

neglecting the impact of the head as a volume conductor, the electric field decay of circular 

coils is approximately inverse quadratic, similar to the electric field of a magnetic dipole, 

and the electric field decay of figure-8 coils is approximately inverse cubic (Deng et al., 

2013; Gomez et al., 2018; Heller and van Hulsteyn, 1992). The actual decay inside the head 

is even steeper as the electric field approaches zero in the brain center. It would be exactly 

zero if the head was a perfect sphere (Deng et al., 2013; Gomez et al., 2018; Heller and 
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van Hulsteyn, 1992). Depth penetration can be increased by increasing stimulus intensity or 

by using larger coils with an optimized configuration, but these modifications will always 

result in a substantially higher and less focal electric field in superficial cortical structures, 

precluding selective “deep” TMS (Deng et al., 2013, 2014; Gomez et al., 2018; Heller and 

van Hulsteyn, 1992). At best, even for very large and practically infeasible coils with a 

uniform magnetic field, the electric field decays linearly with depth, still reaching zero at the 

head center while also exposing the brain to an extremely non-focal stimulation (Deng et al., 

2014).

The limited depth penetration has important practical implications for the use of TMS. 

When using a stimulation intensity that is sufficient to effectively target the fundus region 

of a cortical gyrus, TMS will always result in a stronger concurrent stimulation of more 

superficial parts of the gyrus, such as the top and lip regions in the crown. A depth 

gradient in terms of effective stimulation also exists when stimulating cortical areas in 

the mesial wall. When targeting mesial cortical areas such as SMA or primary motor 

leg area, the superficial cortex close to the midline of the hemispheric convexity will 

be exposed to a stronger electrical field than the mesial cortical areas located in the 

interhemispheric fissure. Another implication is that TMS is unable to directly target deep 

structures of the cerebral hemispheres such as cingulate cortex, medial parts of the temporal 

lobes, cortex around the insular fissure, thalamus and basal ganglia. However, these deep 

brain structures may be effectively stimulated by a spread of excitation from effectively 

stimulated superficial cortical areas to the cingulate cortex via white-matter connections. 

Regarding depth penetration, a notable exception are local electric field maxima caused by 

non-uniformities in the heterogeneous tissues (Roth, 1994). These local field maxima might 

cause remote spots of effective axonal stimulation. A relevant example is remote stimulation 

of the spinal or cranial nerves as they pass through foramina in the vertebrae or the base of 

the skull, resulting in effective stimulation of the proximal nerve segments (Groppa et al., 

2012a; Ugawa et al., 1989) (see also section 2.1). It should be noted, though, that the electric 

field attenuates so rapidly in depth within the brain that perturbations of the field strength 

due to tissue inhomogeneities do not provide a substantial advantage in terms of depth of 

stimulation.

What constitutes the primary cellular target of TMS in terms of neuronal 
excitation?—The prevailing view is that TMS activates primarily myelinated cortical 

axons at their bends, bifurcations or terminations (Roth, 1994; Roth and Basser, 1990), with 

lowest thresholds likely occurring at terminations, as discussed in section 2.1. Dendrites 

are less responsive to the induced electric field, because of their higher chronaxie value 

(or S-D time constant) relative to axons (Stern et al., 2015). Myelinated axons exist both 

in grey and white matter, rendering both tissues excitable to TMS, provided a sufficiently 

strong local electric field. Out-projecting axons originating from pyramidal cells as well 

as incoming axonal projections, e.g. of cortico–cortical projection neurons, might also be 

neural target structures. Generally, thicker myelinated axons are more excitable than thin 

unmyelinated axonal fibers (Reilly, 1989) or the cell soma (Nowak and Bullier, 1998). As 

already mentioned in section 2.1, MEP-based measurements of S-D curves demonstrated 

that TMS of M1 excites neural structures with membrane time constant of 150–300 μs, 
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matching the membrane time constants of myelinated peripheral nerves (Barker et al., 1991; 

D’Ostilio et al., 2016; Peterchev et al., 2013).

The excitability of neural structures such as myelinated axons is influenced 
by their orientation relative to the electric field.—This notion was corroborated 

by in vitro studies combining inductive magnetic stimulation with electrophysiological 

recordings from nerve preparations, cell cultures or rodent brain slices (Pashut et al., 2014; 

Rotem and Moses, 2006, 2008). Axon bends are most easily excited when the axon is 

parallel to the induced field at one side of the bend while being perpendicular at the other 

side (Amassian et al., 1992; Maccabee et al., 1993; Maccabee et al., 1998). This suggests 

bends of myelinated axons in the juxtacortical white matter are susceptible to excitation 

by the TMS-induced electric field. This mechanism may be particularly relevant for axonal 

bends of cortico-cortical or cortico-subcortical projection neurons that originate from the 

gyral crown-lip region.

Other axonal segments can also form local spots that display low excitation 
threshold.—In addition to bends, axonal segments which display a change in diameter 

or myelination and axonal endings (i.e., axon terminals) may be preferentially activated 

by TMS (Maccabee et al., 1998; Nagarajan et al., 1997; Roth, 1994). The importance 

of axon terminals was emphasized in biophysical modeling studies that used cell models 

with realistic (Aberra et al., 2018; Rahman et al., 2013) and idealized axonal arborizations 

(Aberra et al., 2018; Rahman et al., 2013; Salvador et al., 2011).

The ability of TMS to excite distal elements of the axonal tree broadens the range of 

potential intracortical target sites: TMS may effectively stimulate medium or long-range 

cortico-cortical axons that project into the targeted area or short-range connections formed 

by local axon collaterals. Cortico-cortical axons are myelinated in cerebral white matter, but 

they become less myelinated and thinner as they branch out in grey matter and ultimately 

form axon terminals. They also tend to bend as they leave the white matter before ramifying 

within the cortex (terminal arborization). Similar considerations apply for intracortical axon 

collaterals of the local, outward-projecting pyramidal axons (Aberra et al., 2018). Axonal 

bends, branch points, and terminals, as well as fiber diameter non-uniformities, constitute 

potential sites of low excitation threshold in local axons and long axon collaterals that arise 

from out-projecting pyramidal axons and make synaptic contacts with local intracortical 

circuits (Ghosh and Porter, 1988; Yamashita and Arikuni, 2001). Due to axonal arborization, 

the axonal branches and terminals of pyramidal cells point in various directions (Figs. 1 

and 2). This has important implications. First, activation of pyramidal neurons can also be 

achieved with electric fields perpendicular to their main somato-dendritic axis (Figs. 1 and 

2). For the same reason, interneurons that have a more isotropic arborization can be activated 

at low thresholds as well. Finally, simulations with full neuron morphologies indicate that 

the region of neuronal excitation extends all the way to the top of the crown (see Figs. 5 and 

6 in Aberra et al., 2020).

Intracortical activation propagates in orthodromic and antidromic directions.
—The action potentials initiated directly by the TMS pulse propagate orthodromically 

to cause synaptic transmission at all downstream connections, including both outward 
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projections as well as local connections via the dense intracortical axon collaterals. 

Theoretical considerations suggest action potentials may fail to propagate through axonal 

branch points in an activity-dependent manner if there is a change in electrotonic load; 

however, orthodromic action potentials have been shown to propagate reliably throughout 

intracortical axon arbors for physiologically relevant firing rates (<200 Hz) in numerous 

experimental preparations and brain regions (Foust et al., 2010; Hamada et al., 2017; 

Radivojevic et al., 2017; Ritzau-Jost et al., 2021). Propagation failure at branch points 

in the antidromic direction due to impedance mismatch may be more likely, as axon 

diameters tend to taper in the distal direction; still, modeling and experimental evidence 

suggests that at low firing rates, antidromic conduction is also reliable. Activation of white 

matter tracts has been shown to cause antidromic action potentials that invade cortical cell 

bodies and generate complex cortical reverberations via the dense intracortical collaterals 

with deep brain stimulation of the hyperdirect axons from motor and premotor cortex to 

the subthalamic nucleus (Kumaravelu et al., 2018; Li et al., 2012; Li et al., 2007) and 

electrical stimulation of pyramidal tract axons (Ghosh and Porter, 1988; Kraskov et al., 

2020). Modeling evidence suggests that branch points with high diameter ratios of parent 

to daughter branch diameters would be most susceptible to antidromic propagation failure 

(Grill et al., 2008), which was observed for the axon of the largest pyramidal tract neuron 

(Betz cell) modeled by Salvador et al. (20 μm main axon: 6 μm collateral) (Salvador et al., 

2011). Therefore, the action potentials initiated by TMS are expected to propagate reliably 

throughout the cortical axon collaterals for stimulation frequencies relevant to TMS, but 

propagation failure may be possible in some morphologically unique cell types, such as the 

large L5 pyramidal cells in M1 (e.g. Betz cells). The initiation and propagation of action 

potentials in these axons may warrant further investigation. For example, it is unknown 

what role, if any, failure of antidromic propagation may play in the generation of oscillatory 

activity following single and repetitive TMS.

Myelinated axons of inhibitory interneurons also constitute targets for TMS.—
As pointed out in section 2.1, TMS of M1 produces inhibitory effects at stimulus intensities 

that are subthreshold for evoking a motor response, suggesting that inhibitory interneurons 

might be an important target for TMS. An important factor that determines the susceptibility 

of intracortical interneurons to TMS is the relative degree of axonal myelination. In the 

somatosensory cortex of mice, half of the myelin in layer II/III and a quarter of the 

myelin in layer IV belong to axons of inhibitory interneurons (Micheva et al., 2016; 

Stedehouder and Kushner, 2017). These studies demonstrated that myelinated inhibitory 

axons predominantly belonged to parvalbumin-positive basket cells (Micheva et al., 2016; 

Stedehouder and Kushner, 2017). Biophysical modeling of TMS-induced excitation showed 

neural excitation of inhibitory basket cells at their axon terminals in the precentral crown at a 

wide range of stimulus intensities (Aberra et al., 2020). While there was substantial overlap 

in threshold distributions, the modeled basket cells displayed slightly higher thresholds for 

direct activation relative to the modeled pyramidal cells, particularly in L5, which can be 

attributed to their smaller axon diameters (Aberra et al., 2018). There are no measurements 

of the S-D time constants of intracortical inhibitory neurons, which could lend insight into 

their direct activation by TMS relative to the excitatory pyramidal cells.
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At very low TMS intensities, inhibitory neurons may primarily be excited transsynaptically 

via low-threshold excitatory inputs. This notion is also supported by the results of a triple-

pulse TMS study, in which two sub-threshold conditioning pulses increased the inhibition 

of the motor output evoked by a supra-threshold test stimulus (Bestmann et al., 2004). 

Although inhibitory neurons possess smaller cell bodies and are less myelinated than 

pyramidal cells, inhibitory interneurons appear to have a lower threshold for eliciting action 

potentials (Kawaguchi and Kubota, 1997). This can be, at least partially, attributed to the 

fact that interneurons have a higher input resistance than pyramidal cells (Pashut et al., 2014; 

Pashut et al., 2011; Radman et al., 2009). The higher input resistance facilitates somatic 

depolarization by synaptic currents, which may lower the threshold for interneurons to fire 

an action potential in response to indirect, synaptic activation (Pashut et al., 2014; Pashut 

et al., 2011; Radman et al., 2009). Another explanatory factor may be the physiological 

properties of their synaptic inputs. For instance, the fast-spiking, parvalbumin-positive 

interneurons may generate action potentials at higher probability and with shorter latency 

than other cells in response to TMS because they receive frequent and strong excitatory 

inputs (Beierlein et al., 2003; Povysheva et al., 2006). Thus, concurrent TMS-induced 

excitation of axon terminals projecting from pyramidal cells onto an inhibitory interneuron 

would elicit synchronous synaptic inputs and raise the likelihood of action potential 

initiation at low stimulus intensities, as suggested from human TMS studies (Berger et al., 

2011; Ziemann et al., 1996d).

TMS may also directly activate the axons of inhibitory interneurons, which show 

considerable spatial dispersion and arborization in grey matter (Tanaka et al., 2011). 

The largely isotropic spatial dispersion of axon branches may explain why the inhibitory 

electrophysiological TMS effects that can be produced by stimulating motor cortex are 

relatively robust against changes in orientation of the induced tissue current (Ziemann et 

al., 1996d). It is also worth pointing out that the axons of different types of inhibitory 

interneurons differ considerably in their electrophysiological properties, which may lead to 

cell-type specific neural response profiles to TMS (Casale et al., 2015). Still, it remains 

unclear to what extent the acute inhibitory effects of TMS are mediated by direct or indirect 

activation of inhibitory interneurons, and it is possible that both mechanisms play a role.

An alternative account postulates that TMS primarily induces neuronal 
excitation at the axon hillock of pyramidal neurons (Tranchina and Nicholson, 
1986).—Pyramidal cells have a bipolar structure formed by the dendritic tree, soma and 

axon, being oriented perpendicular to the cortical surface. Tranchina and Nicholson used 

analytical analysis of basic cable theory and predicted peak polarization at the soma by 

uniform E-field due to impedance mismatch between the axon and dendrite (Tranchina 

and Nicholson, 1986). Some modeling work using compartmental neuron models found the 

soma is depolarized by a TMS pulse enough to trigger an action potential at the axon’s 

initial segment at threshold intensities (Pashut et al., 2011; Seo et al., 2016). According 

to this modeling work, the electric field hyperpolarizes the dendritic tree and depolarizes 

the soma and axon, if an electric field is directed from the dendritic tree towards the soma 

and runs in parallel to the somatodendritic axes of pyramidal cells. However, these studies 

used simplified model neurons with a single, straight main axon without including axonal 
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arborization or axon terminals. Additionally, the results of the compartmental modeling 

studies by Pashut et al. and Seo et al. may have been caused by artefactual current 

generation at the interface between soma and the axon initial segment interface due to 

implementation errors in the E-field to neuron coupling, discussed in detail in (Wang et al., 

2018).

The phenomenological cortical column cosine theory also predicts strongest activation by 

the E-field orientation parallel to cortical columns, i.e. parallel to the main somato-dendritic 

axis of pyramidal (Arabkheradmand et al., 2018; Fox et al., 2004; Krieg et al., 2015). Due 

to this “axis sensitivity”, the normal E-field perpendicular to the cortical surface determines 

neural excitation. Like the compartmental modeling studies by Pashut et al. and Seo et al., 

the cortical column cosine theory postulates that depolarization takes place at the axonal 

hillock of the soma, referred to as “somal sensitivity” (Fox et al., 2004). Accordingly, 

the cortical column cosine theory predicts that the lip region of the precentral crown is 

the preferential target site for TMS because the lip region is the most superficial part of 

the gyrus where the cortical columns are optimally aligned to the normal electrical field 

produced by TMS (Fig. 2c) (Fox et al., 2004). In contrast, the top of the crown should not be 

susceptible to TMS, because the normal component of the electrical field is perpendicular to 

the orientation of the cortical column (Fig. 2b).

At variance with the notion of soma sensitivity, biophysical models that included realistic 

axon morphologies found that axon terminals have the lowest threshold for activation by 

TMS (Aberra et al., 2018; Wu et al., 2016). Based on these compartmental modeling 

studies, direct depolarization of soma or axonal initial segment is unlikely. Due to the 

weak E-field coupling at this point and high somatic capacitance, direct depolarization 

of the soma or axon hillock was less than ~ 2–3 mV at threshold. Hence, all the other 

axonal discontinuities (branch points, bends, and terminations) were well above threshold 

before the soma or axonal hillock were effectively depolarized. A preferential excitation of 

axonal discontinuities by the TMS-induced electrical field has important implications for 

the primary target site of TMS. Because electric fields perpendicular to the cortical column 

can effectively excite the axonal arbor of pyramidal neurons and interneurons, the crown of 

the gyrus constitutes a primary target site for TMS in addition to the lip region (Fig. 2b). 

For further discussion of the possible mechanisms and implications of somatic vs. axonal 

excitation, refer to section 3.4.

Attempts to estimate the coupling of the electric field to the neural target 
structure need to consider the individual cortical folding pattern.—Whatever 

the primary neural target of TMS may be, the sensitivity of such a target will strongly 

depend on its position in the induced electric field distribution, such as whether the cortical 

target is located more superficially at the crown or lip region of a gyrus or deeper in the 

wall or fundus of a sulcus. With respect to the local electric field, an axonal terminal, 

bend, or hillock in a cortical column can be exposed to substantially different electric field 

magnitudes due to the decay of field strength with increasing distance from the coil. At 

the same time, the spatial relationship between the axonal target structure and the electric 

field will change dramatically, altering the biophysical impact of TMS on the same type of 

neuronal target structure. For example, downward projecting axons of L5 pyramidal cells 
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on opposite sides of the precentral gyrus have opposite orientations relative to the induced 

electric field, leading to depolarization of one population and hyperpolarization of the other 

for the same phase of the stimulus. Therefore, the exact determination of neuroanatomical 

“hot spots” in terms of TMS-induced neuronal activation at the microstructural level remains 

a challenge that can be addressed, in part, by coupled electric field and neuron models 

(Aberra et al., 2020) as well as imaging techniques, provided that they can resolve and are 

specific to direct activation of neural elements.

In summary, it is highly unlikely that TMS selectively excites exclusively a 
specific neuronal microstructure in the targeted cortex.—On the contrary, a 

multitude of neural target structures exist, e.g., terminals of myelinated axons of pyramidal 

cells or incoming projection neurons, myelinated axons of cortico-cortical or cortico-

subcortical axonal projections, local myelinated axons of inhibitory interneurons, and (less 

likely) axonal hillocks of pyramidal cells. This heterogeneity in part explains the multitude 

of physiological effects that can be elicited with TMS (see section 2.1). Depending on its 

location with respect to the hemispherical surface, each target structure has a distinct spatial 

relationship with the TMS-induced electric field which determines the regional susceptibility 

of any neuronal target structure to inductive magnetic stimulation.

2.3. Insights from neuropharmacology

Pharmacological manipulations have been instrumental in three ways to enhance our 

knowledge about what is being stimulated by TMS. These different lines of research 

combined TMS with MEP recordings, EEG or positron emission tomography (PET), 

respectively.

The first line of research addressed the question of how drugs acting 
on the central nervous system can change the motor response that is 
evoked by TMS targeting M1.—Voltage-gated sodium channel (VGSC) blocker such 

as carbamazepine, lamotrigine or phenytoin increase the corticomotor threshold (Chen 

et al., 1997; Mavroudakis et al., 1994; Ziemann et al., 1996b). Since VGSCs regulate 

axon excitability, these findings support the notion from biophysical modeling and 

neurophysiological experimentats that the TMS-induced electric field primarily excites 

axons rather than the soma of neurons at the axonal hillock (Basser and Roth, 1991; 

Maccabee et al., 1993). Furthermore, positive modulators of synaptic inhibition acting 

on the GABA type A (GABAA) receptor, such as benzodiazepines and barbiturates, 

decrease MEP amplitude at stimulus intensities clearly above corticomotor threshold 

(Boroojerdi et al., 2001; Inghilleri et al., 1996; Schönle et al., 1989). This strongly suggests 

that TMS excites corticospinal neurons transsynaptically, and that activity of inhibitory 

interneurons controls this route of excitation (Amassian et al., 1987; Di Lazzaro and 

Ziemann, 2013). Benzodiazepines may also enhance the inhibition of MEP amplitude in 

short-interval paired-pulse TMS protocols (Ilic et al., 2002; Ziemann et al., 1996a, 1996b). 

This conditioning effect on MEP amplitude provided evidence for the notion that TMS 

activates GABAA-ergic interneurons synapsing onto corticospinal neurons (Kujirai et al., 

1993), or onto the excitatory interneurons connecting to corticospinal neurons (Ilic et al., 

2002). Finally, a variety of drugs acting as agonists or antagonists in the dopaminergic, 
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noradrenergic, serotonergic and cholinergic neuromodulating neurotransmitter systems 

modify the magnitude of the motor evoked response as reflected by the mean MEP 

amplitude (for review Ziemann et al. (2015)). This body of data corroborates that 

single-pulse TMS excites corticospinal neurons indirectly through a transsynaptic route. 

In addition, it shows that activity of these neuromodulating neurotransmitter systems 

contributes to controlling this route of excitation (Di Lazzaro and Ziemann, 2013; Hasselmo, 

1995).

A second line of pharmacological TMS studies utilizes EEG to record with 
scalp electrodes how drugs shape the TEPs (Ilmoniemi and Kicic, 2010).—
Pharmacological TMS-EEG studies demonstrated that GABAA receptor agonists enhance 

the N45 response evoked by single-pulse TMS of left M1 in the non-stimulated right 

hemisphere (Premoli et al., 2014), while an alpha-5 GABAA receptor antagonist selectively 

decreases the N45 response without altering the local TEP at the site of stimulation 

(Darmani et al., 2016; Premoli et al., 2014). These findings corroborated the long-held 

notion that single-pulse TMS of human M1 activates distributed bi-hemispheric brain 

networks, including activation of GABAA-ergic inhibitory interneurons in the contralateral 

pericentral cortex (Bestmann et al., 2004; Ferbert et al., 1992). In addition to auditory co-

stimulation, TMS causes considerable somatosensory co-stimulation of peripheral receptors 

(e.g., vibration) and myelinated axons (see section 2.1). Axonal excitation may occur in 

distal axon segments passing through the scalp region where the local TMS-induced electric 

fields are maximal or in the proximal foraminal segment of the facial and trigeminal nerves 

due to eddy currents in the cerebrospinal fluid. Pharmacological modulation of cortical 

somatosensory processing may contribute to drug-induced changes in TEPs and should be 

considered as an alternative mechanism (Conde et al., 2019).

Other studies combined TMS with PET to probe lasting effects of repetitive 
TMS (rTMS) of the neocortex on dopamine related neurotransmission in the 
human striatum without involving a pharmacological manipulation.—Using the 

dopamine receptor ligand [11C] raclopride, PET revealed a topographically specific increase 

of dopamine secretion in the ipsilateral caudate nucleus after rTMS had been applied to 

frontal neocortex (Strafella et al., 2001). This study was the first to use a patterned “alpha-

burst” protocol, consisting of 10-pulse bursts at 10 Hz separated by an inter-burst interval 

of 10 s (Strafella et al., 2001). Compared to rTMS over a control site, participants showed 

reduced [11C] raclopride uptake in the dorsal caudate nucleus ipsilateral to rTMS of the 

dorsolateral prefrontal cortex (DLPFC) (Strafella et al., 2001), or in the putamen ipsilateral 

to rTMS of M1-HAND (Strafella et al., 2003). These findings are in good agreement with 

the known cortico-striatal connectivity of the DLPFC and M1-HAND, forming parallel 

segregated pathways (Draganski et al., 2008), and confirm that focal TMS can preferentially 

excite the cortico-striatal projections deriving from the cortical target area (Bestmann et 

al., 2004; Siebner et al., 2003). Using another dopamine receptor ligand [11C] FLB 457, 

PET revealed dopamine release in anterior cingulate cortex and the orbitofrontal cortex 

ipsilateral to 10 Hz rTMS of the DLPFC (Cho and Strafella, 2009), supporting the view of a 

significant influence of human frontal cortex on dopamine release in large-scale distributed 

cortico-cortical and cortico-subcortical networks. It should be noted though that these TMS-
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PET studies probed lasting effects of rTMS on endogenous dopamine release in the striatum. 

Therefore, they provide information about tonic changes in endogenous dopamine release 

after rTMS, but no insights into how a single TMS pulse or a short TMS train acutely affects 

striatal dopamine release.

These studies, combining TMS either with pharmacological manipulations or with 

pharmacological tracer imaging, have proven instrumental in understanding that TMS 

activates the human brain directly through axonal excitation as well as transsynaptically, 

and results in propagated activity in large-scale intra- and interhemispheric cortico-cortical 

and cortico-subcortical networks.

2.4. Insights from in vivo animal models and in vitro experiments

In vivo animal models in rodents and in vitro experiments on neuronal 
cultures have been used to elucidate the physiological responses elicited by 
TMS at a level of detail that cannot be achieved in studies on humans.—TMS 

studies in small animals and in vitro setups are best suited for demonstrating the direct 

effects of TMS on neuronal activity using either conventional electric or more sophisticated 

optical recordings of activity. The latter has the big advantage of not being confounded 

by an electrical stimulation artefact. Additionally, molecular and histological approaches 

can be used to follow stimulation-induced changes in transmitter release or gene- and 

protein-expression, which occur within minutes.

In terms of transferability to the situation in humans, a couple of limitations need to 

be considered: 1) When using small animals like rodents, the conventional TMS coils 

are relatively large with respect to the size of the brain, exciting relatively large tissue 

volumes compared to studies in humans, while also reducing the peak induced electric field 

strength due to the small head size (Alekseichuk et al., 2019). It very much depends on 

the type of coil, its positioning and the orientation of the induced electric field whether 

only parts of the brain or the whole brain and peripheral structures like the retina and 

face sensors and muscles are stimulated. Custom-made small coils (e.g., 8 mm) (Grehl 

et al., 2015; Zhang et al., 2017) allow more focal stimulation, but stimulation intensity 

is two orders of magnitude lower than required for suprathreshold stimulation. 2) It also 

needs to be borne in mind that there are substantial between-species differences in cortical 

and corticospinal macroscopic anatomy (e.g., gyrencephalic vs. lissencephalic neocortex). 

Rodents lack cortical gyrification, their cortex has a different cytoarchitecture, and they 

have no direct monosynaptic axonal projections from M1 to the motor neurons in the 

spinal cord. 3) Animal studies often use anesthetics because animals otherwise would not 

tolerate TMS. Depending on the kind of substance used, anesthesia may dampen neuronal 

excitability in general or affect primarily excitatory or inhibitory synaptic transmission, 

thereby possibly interfering with the TMS effects. Animals can be stepwise adapted to the 

TMS procedure, but the acute stress level often remains elusive. 4) Furthermore, standard 

physiological measures such as the motor threshold cannot be measured at all or with less 

precision in animals, in particular with reference to resting vs. active corticomotor threshold. 

5) Finally, differences in the auditory stimulation produced by the TMS clicking sound 

may be important as well. In small animals, the typical lack of hearing protection, thinner 
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skull, proximity of the cochlea to the coil, and different hearing thresholds and frequency 

limits may alter the brain responses to TMS compared to human studies. Thus, sham or 

other control TMS conditions are important not only in human studies, but also in animal 

experiments.

In vitro studies of magnetic stimulation of acute brain slices, organotypic cultures or 

cell cultures allow for a better controlled geometry of induced electric fields and the 

measurement of acute and discrete changes in cellular processes. However, the translational 

value of such studies is limited because of the different physiological conditions of in 
vitro preparations compared to the state of an awake human brain controlled by numerous 

modulatory systems. Despite of these inherent limitations, animal research is critical to 

resolve what is being stimulated with TMS at the single-cell and cell-circuit level.

In vitro and in vivo recordings have not only been used to study the biophysical response 

properties of single neurons to inductive magnetic stimulation (covered in section 2.2) 

but also to delineate which types of cortical neurons are activated by TMS and in which 

temporal order. By the aid of sophisticated custom-made recording systems, which suppress 

the stimulation artefact, it could be demonstrated that a single TMS pulse evokes a 

sequence of excitatory and inhibitory responses of neuronal activity with the shortest 

spike responses within 1–6 ms. By recording neural spiking activity in the neocortex of 

macaques, Mueller et al. (2014) showed that a single TMS pulse evoked a sequence of 

action potentials which can be interpreted as an initial response of an axon, followed by 

that of an inhibitory interneuron and finally by a pyramidal cell. In rat motor cortex, Li et 

al. (2017) demonstrated that the pattern of short-latency evoked spiking activity varies with 

the orientation of the induced electric field. While mediolateral (M−L) stimulation, even at 

high intensity (120% MT), scarcely evoked any spike, P-A stimulation evoked robust firing 

with peaks at 1.2–1.6 and 3.2–4.2 ms, reminiscent of the I-wave pattern in human M1. Both 

orientations of TMS produced MEPs, but lateral-to-medial (L-M) stimulation did not lead 

to early increases in cortical discharge. This pattern led the authors to conclude that L-M 

stimulation resulted in direct subcortical stimulation of corticospinal axons. Typically, this 

early response was followed by an excitatory volley peaking around 20 ms and thought 

to rely on recurrent activity via the basal ganglia loop and cerebellum, followed by an 

inhibitory phase of 100–200 ms, which is terminated by a rebound excitation (Li et al., 

2017). This inhibitory phase is likely mediated via activation of GABAB receptors (Murphy 

et al., 2016), see below). Similar sequences of excitatory and inhibitory volleys of activity 

evoked by a single TMS pulse have been reported for monkey motor cortex (Tischler et 

al., 2011) and cat visual cortex (Moliadze et al., 2003). A recent study performed single-

cell recordings in two rhesus monkeys (Romero et al., 2019): since a stimulation artifact 

precluded any recordings during the first 10 ms after the TMS pulse, that study did not probe 

the early direct response to TMS within the first 10 ms after TMS. Nonetheless, recordings 

revealed a range of effects of TMS on single-cell spiking activity (Romero et al., 2019). The 

most frequent cellular response to single-pulse TMS was a burst detectable at 10 and lasting 

up to 40 ms after the TMS pulse. Moreover, the effects of TMS on spiking activity were 

highly focal, as they were restricted to a cortical area measuring less than 2 mm in diameter.
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In addition to invasive electrophysiological measurements, a range of novel optical imaging 

technologies have become available that offer high functional specificity as well as spatial 

and temporal resolution while avoiding contamination by electromagnetic artifacts (Kozyrev 

et al., 2014). Optical imaging of acute changes in neuronal activity in cat visual cortex 

using voltage-sensitive dyes revealed that a single TMS pulse causes a brief period of 

focal activation followed by a suppression of neuronal activity that lasted several hundred 

milliseconds (Kozyrev et al., 2014). A five-pulse train of 10 Hz rTMS led to a cumulative 

increase in overall postsynaptic potential levels, indicating the induction of a gradually 

increasing excitatory state across large neuronal populations during and shortly after the 

rTMS train (Kozyrev et al., 2014). Results from another recent rodent in vivo TMS study 

with a (M-L) orientation of the induced electric field favored the activation of callosal 

axons and emphasized the involvement of inhibitory interneurons (Murphy et al., 2016). 

Two-photon calcium imaging of neurons in layers I, II/III and V revealed that a preceding 

TMS pulse inhibited sensory responses of layer V pyramidal cells via a di-synaptic pathway. 

The pathway involved glutamatergic input to layer I and II/III interneurons mediating 

GABA-ergic inhibition to the apical dendrites of the layer V pyramidal cells based on 

GABAB receptor activation. On the other hand, neither a direct (somatic) excitation of 

neurons by the TMS pulse was evident, nor an activation of thalamocortical inputs.

In vivo studies in animals have also disclosed short-lasting neuronal after-
effects following the administration of single TMS pulses or short TMS trains 
(bursts).—A seminal study by Allen et al. (2007) applied short TMS pulse trains to visual 

cortex of anesthetized cats and performed simultaneous measurements of tissue oxygen and 

neural activity. TMS trains gave rise to a marked increase in spontaneous neural activity, 

which was dose-dependent and lasted for about one minute. This increase in “resting” 

activity was paralleled by a prolonged suppression of evoked neural responses to visual 

stimulation for 5–10 minutes and reduced phase-locking of spiking activity to intrinsic theta 

oscillations (Allen et al., 2007; Pasley et al., 2009). The TMS-induced changes in neural 

activity were reliably reflected by the dynamic changes in tissue oxygenation – a finding, 

which is of relevance to functional neuroimaging of TMS effects in humans (Allen et al., 

2007). Follow-up studies revealed substantial trial-to-trial variability of the TMS-induced 

neural responses and linked this variability to the physiological state of the cortex at the 

time of TMS (Pasley et al., 2009) and reported a TMS-induced narrowing of the width of 

orientation tuning curves, indicating altered visual processing (Kim et al., 2015).

In vivo studies in animals have also verified the emergence of cortical 
plasticity following the repeated administration of TMS pulses.—Using a TMS-

setup suitable for inducing callosal activity with a mediolaterally oriented electric field, 

it has been shown that rTMS induces changes in neuronal activity markers primarily 

within cortical layers II/III (Benali et al., 2011; Mix et al., 2010). Using an intermittent 

theta-burst stimulation (iTBS) protocol (Huang et al., 2005), rTMS markedly reduced the 

expression of parvalbumin in the fast-spiking interneurons. This finding indicates reduced 

activity of this interneuron population resulting in cortical disinhibition (Benali et al., 2011). 

These after-effects on inhibitory interneurons are in good agreement with the acute single-

pulse effect of TMS on inhibitory neurons targeting dendrites of pyramidal cells when 
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an electric field of M−L orientation had been induced (Murphy et al., 2016). Changes in 

parvalbumin expression could be achieved with a stimulation intensity of between 23 and 

30% of maximal stimulator output (MO), indicating that activation of the long callosal 

axons with an induced electric field oriented parallel to the axons requires much lower 

stimulation intensity as for activating rat corticospinal projection cells with P-A orientation 

of the induced electric field (~80% MO) (Rotenberg et al., 2010). Signs of reduced cortical 

inhibition after high-frequency rTMS (10 Hz) were also obtained with optical imaging of cat 

visual cortex activity (Kozyrev et al., 2014). The short-latency inhibition induced by a single 

TMS pulse was markedly reduced after 10 Hz rTMS (Kozyrev et al., 2014) and plasticity 

of the cortical orientation map could be induced during this phase (Kozyrev et al., 2018) 

concordant with the hypothesis of disinhibition as a circuit mechanism to enable neuronal 

plasticity (Letzkus et al., 2015).

Subthreshold effects of TMS also need to be considered.—The question of what 

is stimulated by TMS also includes the functional impact of TMS-induced electric fields 

that are subthreshold to elicit action potentials. In principle, any “hot spot” of suprathreshold 

TMS is surrounded by brain regions of subthreshold stimulation level, but even in a “hot 

spot” only a portion of neurons might be effectively discharged while the local electric field 

may remain subthreshold for other neurons. Subthreshold de- or hyperpolarization of the 

neuronal cell membrane can affect synaptic responses and the orthodromic and antidromic 

propagation of action potentials, even if not directly eliciting action potentials. Although 

primarily demonstrated with repetitive stimulation (extremely low-intensity magnetic fields, 

usually about 50 Hz), magnetic fields of 1 mT, or even less, are able to change intracellular 

calcium levels and the activity of downstream molecular pathways (Carlezon et al., 2005; 

Grehl et al., 2015; Zhang et al., 2017).

2.5. Insights from functional brain imaging

Functional neuroimaging has been used intensively to capture the acute 
functional impact of TMS on human brain networks.—Online neuroimaging can 

detect acute effects produced by TMS in any cortical and subcortical region throughout 

the brain and with high spatial and temporal resolution (Bergmann et al., 2016; Bergmann 

et al., 2021; Siebner et al., 2009). This is relevant because the neural response to TMS 

can otherwise only be quantified directly over M1 through MEP recordings or at sensory 

areas by quantifying psychophysical responses (e.g., Paulus et al. (1999b) or phosphenes 

(Kammer et al., 2005a; Kammer et al., 2005b).

TMS-neuroimaging studies have consistently shown that TMS can modulate 
ongoing neural activity in distributed brain networks.—PET and functional 

magnetic resonance imaging (fMRI) provide whole-brain coverage at good spatial resolution 

(Bergmann et al., 2016; Siebner et al., 2009). A critical difference between online TMS-PET 

and online TMS-fMRI regards their temporal resolution. While PET has a poor temporal 

resolution, ranging from tens of seconds to minutes depending on the radioligand, temporal 

resolution of fMRI is in the range of a few seconds. This implies that single PET scans 

of regional cerebral blood flow (rCBF) or regional metabolic rate of glucose (rCMRglu) 

average the evoked activity of long trains of rTMS that lasts at least tens of seconds (Fox 
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et al., 1997; Paus et al., 1997, 1998; Siebner et al., 1998b). Hence, the resulting activation 

maps reflect an averaged read-out of TMS-induced regional brain activity, which might be 

influenced by acute neuromodulatory effects of TMS on brain activity that emerges during 

the rTMS train. In contrast, the better temporal resolution of TMS-fMRI enables the study 

of regional activation evoked by a single TMS pulse or a short TMS burst (Baudewig et al., 

2001; Bestmann et al., 2003, 2004; Bohning et al., 1998).

Parametric PET studies of rCBF and rCMRglc showed that rTMS trains not only lead to 

dose-dependent activity changes at the cortical stimulation site, but also in remote cortical 

regions known to form a functional network (Fox et al., 2006; Laird et al., 2008; Paus et al., 

1997, 1998; Siebner et al., 1998b). This work in human volunteers has been complemented 

by TMS-PET studies in the baboon (Salinas et al., 2016; Salinas et al., 2013). Similar results 

were observed by interleaving short high-frequency bursts of TMS with fMRI over different 

cortical sites including premotor and motor cortices (Baudewig et al., 2001; Bestmann 

et al., 2003, 2004; Bohning et al., 1998). Both local and network changes are generally 

dose-dependent and increase with increasing stimulation duration or intensity. For example, 

a short train of TMS over M1, even at intensities that are subthreshold for MEPs, may 

lead to remote activity changes in sensorimotor regions (Bestmann et al., 2003). Yet acute 

TMS effects may remain restricted to the targeted cortex, if TMS is applied at relatively low 

stimulus intensities (Siebner et al., 2001; Takano et al., 2004).

It is worth noting that a local increase in the BOLD response measured from structures 

situated directly under the stimulating coil is not always seen in TMS-fMRI studies 

(Bergmann et al., 2021). This may be attributed to suboptimal target engagement. For 

instance, stimulation intensity, number of pulses or coil positioning over the target site 

may have been insufficient to reliably engage the specific cortical region. The absence of 

a local increase in the BOLD signals may also reflect complex interactions between TMS-

evoked neuronal activity and the associated shifts in the excitation/inhibition balance and the 

metabolic and thereby neurovascular response. Technical aspects, such as a relatively low 

signal-to-noise (SNR) ratio may also play a role. These factors, alone and in combination, 

may complicate providing proof of local target engagement in concurrent TMS-fMRI 

studies. For a detailed discussion of these aspects, we refer to Bergmann et al. (2021).

Perhaps the most relevant contribution of TMS-neuroimaging studies has been the 

confirmation of the idea that TMS to a cortical site can also influence activity in subcortical 

brain regions (Bestmann et al., 2004; Blankenburg et al., 2008; Strafella et al., 2001; 

Strafella et al., 2003), as well as cortico-subcortical connectivity (Herz et al., 2014). Another 

important and consistent finding was that the influence of focal TMS on regional brain 

activity is modulated by the state of the targeted brain network (Bestmann et al., 2008; 

Blankenburg et al., 2010; Moisa et al., 2012; Ruff et al., 2008) and that this influence is 

modulated by the state of both the targeted area and network (Bestmann et al., 2008; Moisa 

et al., 2012).

TMS may also be combined with EEG recordings. EEG captures the cortical response 

to single TMS pulses with high temporal resolution. Online TMS-EEG studies have 

consistently shown that a single TMS pulse gives rise to a rapid propagation of activity 

Siebner et al. Page 22

Clin Neurophysiol. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across putatively interconnected regions, including areas in the hemisphere contralateral 

to TMS (Ilmoniemi et al., 1997; Massimini et al., 2007; Massimini et al., 2005). The 

cortical target of TMS may thus serve as an entry point to non-invasively alter activity 

in specific subcortical structures and in cortico-subcortical networks, with predictable 

behavioral (Herz et al., 2014; van Schouwenburg et al., 2012) and potentially therapeutic 

consequences. Combined TMS-EEG studies further showed that regional cortical reactivity 

of the stimulated cortex differs in terms of the prevailing oscillatory activity evoked by 

TMS (Fecchio et al., 2017; Rosanova et al., 2009). Collectively, TMS-EEG studies have 

established that TMS can activate large brain networks. This activation can be very rapid and 

can occur even with single-pulse TMS at subthreshold intensities.

Combined TMS-neuroimaging studies can pinpoint brain activity changes that 
are elicited by sensory effects of TMS.—In addition to its transcranial mode of 

action, TMS excites the brain through afferent neuronal channels activated by concurrent 

auditory and somatosensory stimulation (Bestmann et al., 2004; Siebner et al., 1999). TMS 

causes peripheral stimulation of the central nervous system through multiple channels, 

including peripheral receptors and peripheral myelinated axons. The sources of peripheral 

co-activation are covered in section 2.1 and illustrated in Fig. 3. These peripherally induced 

effects may also contribute significantly to the temporo-spatial propagation of cortical 

activation seen after a single TMS pulse with EEG (Conde et al., 2019) or after short high-

frequency TMS bursts with fMRI (Bestmann et al., 2004). While perhaps not surprising, 

visualizing the magnitude of these peripheral effects in terms of evoked brain activity 

may help to dissociate direct TMS-induced changes in brain activity from indirect activity 

changes related to sensory processing of TMS-induced inputs.

Due to its low temporal and spatial resolution, proton magnetic resonance spectroscopy 

(proton-MRS) has preferentially been used to capture regional metabolic changes after 

prolonged TMS (i.e., rTMS protocols) (Stagg, 2014). Yet, proton-MRS has also been 

used to gain insights into the metabolic underpinnings of TMS-derived metrics of cortical 

excitability (Harris et al., 2017). For instance, proton-MRS has been used to relate MEP-

based measures of cortical excitability to regional levels of glutamate and GABA in the 

motor cortex (Stagg et al., 2011).

Online TMS-neuroimaging studies corroborate the notion of “state 
dependency” (Fig. 4).—As pointed out at the end of section 2.1, the physiological 

consequences of TMS strongly depend on the functional state of the targeted cortical 

region at the time the TMS pulse is applied. For example, the size of local and remote 

activity changes in response to TMS may scale with the underlying state, for instance 

whether TMS over M1 is applied at rest or during voluntary movement (Bestmann et al., 

2008; Bestmann et al., 2010; Paulus and Rothwell, 2016). It has been argued that the 

transmembrane resistance of a neuron is lower in an activated state, which renders any 

magnetic or electric stimulation less effective. The network changes elicited by TMS may 

not just depend on the state of the local targeted cortical site, but also on the activation state 

of putatively interconnected regions that form part of a functional network (Blankenburg et 

al., 2008; Blankenburg et al., 2010; Moisa et al., 2012; Ruff et al., 2008; Ruff et al., 2006). 
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Together, the neuroimaging work has provided consistent evidence that TMS activates large 

brain networks, but differently so when being applied during different activation states of the 

targeted network components (Fig. 4) (Bortoletto et al., 2015).

2.6. Insights from dual-site TMS

Dual-site TMS provides a unique opportunity to test the causal 
neurophysiological interactions between interconnected brain areas.—Dual-

site TMS paradigms generally combine the delivery of a conditioning stimulus over a 

cortical area to activate putative pathways projecting onto M1-HAND with a test stimulus 

over M1 (Koch, 2020; Koch and Rothwell, 2009). The test stimulus is suprathreshold to 

evoke a MEP. The size of the test MEP probes any changes in corticospinal excitability 

that are produced by the neural input to M1-HAND evoked by the conditioning pulse. 

Depending on the intensity and the inter-stimulus interval (ISI) of the conditioning stimulus 

both facilitation and inhibition may be detected in ipsilateral and/or contralateral M1 

(Ferbert et al., 1992; Hanajima et al., 2001). Usually, the conditioning stimulus is applied 

before the test stimulus at ISIs that last up to tens of milliseconds. A notable exception is 

a dual-site TMS paradigm in which the test stimulus is given a few milliseconds before the 

conditioning stimulus to probe ultra-fast ipsilateral premotor-to-motor interactions (Groppa 

et al., 2012b). The dual-site TMS method has been widely used to study the physiology 

of cortico-cortical inputs to M1-HAND originating from interconnected areas such as 

contralateral M1-HAND (Ferbert et al., 1992), dorsal and ventral premotor cortex (PMd 

and PMv) (Baumer et al., 2006; Davare et al., 2009; Groppa et al., 2012b; Mochizuki et al., 

2004), posterior parietal cortex (Koch et al., 2007), supplementary motor area (Arai et al., 

2012) and somatosensory cortex (Brown et al., 2019). Dual-site TMS has also been used to 

study cerebellar-cortical interactions with the conditioning coil placed over the cerebellum 

and the test coil over contralateral M1-HAND (see section 4.6).

Most studies have attributed the conditioning effects of dual-site TMS to the 
excitation of a direct cortico-cortical pathway connecting the conditioned 
area and the stimulated M1.—This may, however, not always be the case. When 

considering that TMS of M1-HAND induces corticospinal descending volleys that leave 

the cortex several milliseconds after the TMS pulse has been applied, a conditioning pulse 

given several milliseconds before the test pulse has enough time to modulate the TMS 

effects in M1 via an indirect route that uses additional subcortical or cortical areas as 

relays. For instance, a polysynaptic pathway underlies cerebellar-cortical dual-site effects, 

because there is no monosynaptic connection between any cerebellar structure and M1-

HAND. Tractography derived from diffusion weighted MRI scans may provide some 

hints on the white matter pathways that are engaged by a dual-site TMS paradigm. If 

microstructural properties of a certain white matter tract scales with the measures of 

effective connectivity, as obtained by dual-site TMS, this may increase the confidence 

that the physiological interactions are mediated through these cortico-cortical or cortico-

subcortical tracts (Boorman et al., 2007; Fricke et al., 2019; Groppa et al., 2012c; Kloppel et 

al., 2008; Koch et al., 2011; Koch et al., 2010; Neubert et al., 2010; Wahl et al., 2007).
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The functional interactions revealed by dual-site TMS are context dependent 
(Fig. 4).—The cortico-cortical interaction may vary when tested in the context of a task-free 

state (i.e., rest) or during a specific motor or cognitive task (Koch et al., 2006; Neige 

et al., 2021). These task-dependent changes give an indication of how the excitability 

of the connection changes over time when the cortical networks become active during a 

specific task (Groppa et al., 2012c; Koch and Rothwell, 2009). For instance, dual-site TMS 

revealed that effective connectivity between the posterior parietal cortex, premotor cortex, 

and M1-HAND increase in a highly task-, condition- and time-dependent manner during the 

planning phase of different reaching-to-grasp actions (Koch et al., 2010).

Deep brain stimulation (DBS) has recently been combined with TMS of M1-
HAND to probe the conditioning effect of basal ganglia nuclei on M1-HAND.
—The conditioning stimulus was applied through the implanted electrodes of the DBS 

device and triggered the TMS pulse (Ni et al., 2018; Udupa et al., 2016). In patients with 

advanced Parkinson’s disease who were treated with DBS of the subthalamic nucleus (STN), 

the implanted electrode was used to produce conditioning stimulation of the STN (Udupa 

et al., 2016). The conditioning STN pulse facilitated the MEP amplitude when given at 

a conditioning-test interval of 3–5 ms (early facilitation) and 18–25 ms (late facilitation) 

(Udupa et al., 2016). A subcortical-cortical conditioning-test approach was also applied in 

patients with dystonia treated with bilateral DBS of the internal globus pallidum (GPi) (Ni 

et al., 2018). A conditioning GPi pulse facilitated MEP amplitudes when the GPi pulse 

was given 10 ms before the cortical test stimulus (Ni et al., 2018). The same conditioning 

GPi pulse reduced MEP amplitudes when given around 25 ms before the test pulse to M1-

HAND (Ni et al., 2018). Together, these DBS-TMS studies show that not only TMS-evoked 

inputs from the cortex and cerebellum, but also DBS-evoked inputs from the basal ganglia 

effectively shape the responsiveness of M1-HAND to TMS.

The timing-dependent, dual-site effects of TMS have been successfully used 
to induce spike-time dependent-like (Hebbian) plasticity with TMS.—Long-term 

potentiation (LTP)-like or long-term depression (LTD)-like effects in M1-HAND have been 

observed after dual-site paired associative stimulation (PAS) targeting M1-HAND bilaterally 

(Rizzo et al., 2009), PMv and M1-HAND (Buch et al., 2011), supplementary motor area and 

M1-HAND (Arai et al., 2011), posterior parietal cortex and M1-HAND (Koch et al., 2013), 

or ipsilateral basal ganglia nucleus and M1-HAND (Ni et al., 2018; Udupa et al., 2016).

Can the dual-site TMS approach be expanded to other cortical areas?—
Conventional dual-site approaches have primarily targeted pathways that project onto M1, 

using the MEP evoked with a test TMS pulse over M1-HAND as a convenient read-out. In 

principle, dual-site TMS can also be applied to areas outside M1. This requires different 

physiological read-outs to probe the functional impact of the conditioning pulse. The 

combination of dual-site TMS with EEG has been proposed for this purpose using the 

TEP as read-out (Picazio et al., 2014; Veniero et al., 2013). Yet inherent methodological 

problems limit the use of EEG as a read-out for dual-site TMS. First, short-latency cortico-

cortical interactions are difficult to trace due to the stimulation-induced artefact in the 

EEG. Second, it is problematic to infer directional causality from TEP recordings. The 
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origin of the MEP can be ascribed to a certain cortical area, the precentral motor cortex, 

which greatly simplifies the interpretation of dual-site TMS studies in terms of directional 

causality. The situation is different, when recording TEPs which are complex network 

read-outs, reflecting the total activity across all areas. Therefore, both the conditioning and 

the test TMS pulse will evoke cortical potentials, which will result in complex reciprocal 

spatiotemporal interactions: The neuronal activity generated by the two TMS pulses may 

“arrive” at different times in different brain area, and this may happen recurrently within 

the stimulated networks. The cortical activity evoked by the first “conditioning” TMS 

pulse may modulate the TEPs evoked by the second “test” TMS pulse, but the cortical 

activity evoked by the second “test” TMS pulse may also modulate the TEPs evoked by 

the first “conditioning” TMS pulse. These reciprocal spatiotemporal interactions are most 

likely non-linear and cannot be disambiguated by simple subtraction. Hence, in contrast to 

conditioning-test paradigms based on MEP measurements, an unambiguous dissociation of 

“conditioning” and “test” effects is not possible for TEP-based dual-site read-outs. Thirdly, 

the conditioning and test TMS pulses cause paired somatosensory and auditory cortical 

responses (Conde et al., 2019). These peripherally evoked potentials will interact with each 

other and with the TEPs, complicating the interpretation of dual-site TEP experiments even 

further. The methodological concerns regarding dual-site TEPs also apply to conditioning-

test TEP paradigms which examine paired-pulse TEPs evoked by single-site TMS targeting 

the same cortical area with a single transducing coil.

3. TMS targeting the primary motor cortex

The motor cortex rostral to the central sulcus, especially M1-HAND, has been the most 

popular cortical target for studies exploring the mechanisms of action of TMS (Fig. 1). 

Using the MEP of intrinsic hand muscles as functional read-out, these studies yielded 

fundamental insights into how TMS works. M1-HAND forms a characteristic knob-like 

structure which can be easily identified on structural MRI scans (Yousry et al., 1997). 

Due to its superficial location and its direct corticospinal projections to the cervical spinal 

motoneurons, the M1-HAND has been the preferential target site for TMS in the human M1 

(Fig. 5).

When Barker and colleagues introduced TMS in 1985, they also targeted the M1-HAND. 

In their letter to Lancet, they included a figure featuring a MEP recorded from a hand 

muscle to illustrate the ability of TMS to probe the function of corticospinal projections 

(Barker et al., 1985). Indeed, the fact that one can elicit a motor response from a 

hand muscle by stimulating the contralateral M1-HAND provides clear evidence for an 

antegrade, transsynaptic propagation of neural excitation from the cortical target area to 

connected neural structures along pre-existing neural pathways. It is the transsynaptic 

propagation of excitation through which local TMS of a cortical area can produce remote 

excitation of interconnected cortical and subcortical areas, and motor neurons in the spinal 

cord. The short latency of the MEP indicates that the TMS-induced cortico-to-motor 

excitation propagates via the fastest-conducting large-axon corticospinal fibers which make 

monosynaptic connections with the cervical motor neurons.
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Another important neurophysiological property of the MEP is that a slight pre-activation 

of the target muscle is sufficient to produce a consistent facilitation of the MEP compared 

to TMS with the target muscle at rest. This MEP facilitation is mediated by physiological 

changes at both spinal and cortical levels which renders the spread of local precentral 

excitation along the corticomotor pathways to the target muscle more efficient in a pre-

activated relative to a resting state (Di Lazzaro et al., 1998b; Mills et al., 1987; Ugawa et al., 

1995). This is probably the most compelling example of “state dependency” of TMS.

Although it is easy to record the MEP with surface electrodes, its underlying 

neurophysiology is complex. The MEP results from synchronized corticomotor excitation of 

fast conducting corticomotor neurons and propagation to the motor units of the target muscle 

(Siebner and Rothwell, 2003). Synchronization is not perfect and physiological properties of 

cell populations at the cortical, spinal and muscular level contribute to the MEP, resulting 

in substantial trial-to-trial variability of the MEP (for a detailed discussion see (Groppa 

et al., 2012a)). Phase cancellation causes a substantial decrease in MEP amplitude, even 

in healthy individuals, which can be largely eliminated by the triple stimulation technique 

(Magistris et al., 1998). Despite of the complexity of its underlying physiology, MEP-based 

neurophysiological studies have revealed important insights into how TMS acts on the M1.

3.1. Neurophysiological considerations

Some neurophysiological characteristics of TMS-evoked MEPs and their relevance in 

terms of the mechanism of action of TMS have shortly been mentioned in section 2.1 

acknowledging their general relevance. In this section, we cover the neurophysiological 

characteristics of TMS applied to M1 in detail and relate them to the micro- and 

macroanatomy of the precentral gyrus.

3.1.1. Transsynaptic induction of high-frequency volleys in corticospinal 
tract—When a slightly suprathreshold TMS pulse is given to the M1-HAND, multiple 

descending volleys can be recorded at short intervals from the corticospinal tract (Di 

Lazzaro and Rothwell, 2014) and multiple peaks of increased firing in the post-stimulus 

time histograms can be recorded from single motor units in contralateral hand muscles (Day 

et al., 1989). Hence, a single TMS pulse causes populations of fast-conducting neurons 

of the corticospinal tract to fire repetitively at very high frequency (~670 Hz). While the 

exact mechanisms that cause these multiple descending volleys in the corticospinal tract are 

still a topic of debate (see section 3.4 for a detailed discussion), their existence allow an 

important general conclusion about how TMS may work: It shows that a single TMS pulse 

can elicit a complex pattern of neuronal activity in the target network. The evoked activity 

patterns in the stimulated brain network are determined by the intrinsic neurophysiological 

and neuroanatomical properties of the stimulated cortex and interconnected brain regions.

Invasive recordings from electrodes implanted into the epidural space of the spinal cord 

also revealed that TMS evokes corticospinal descending volleys mainly via a transsynaptic 

mechanism (Di Lazzaro and Rothwell, 2014). At intensities slightly above corticomotor 

threshold, a monophasic TMS pulse, producing a P-A oriented current in the precentral 

gyrus, elicits only “indirect descending waves” (or “I-waves”). The term “I-wave” was 
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coined by Patton and Amassian (1954) because these later responses, unlike the initial 

response (D-wave), did not survive cortical ablation. The term “I-wave” thus emphasizes an 

intracortical, presumably transsynaptic activation of fast-conducting corticospinal neurons in 

the M1.

TMS may also give rise to an earlier volley, the so-called direct wave (or “D-wave”) which 

is produced by direct activation of corticospinal axons in the subcortical white matter (Di 

Lazzaro and Rothwell, 2014). However, such direct axonal excitation of the corticospinal 

neurons occurs only at higher intensities of TMS and preferentially if TMS induces lateral-

to-medial oriented currents in the precentral gyrus (Di Lazzaro and Rothwell, 2014). High-

intensity, bi-polar or monopolar TES can also be used to evoke a MEP in contralateral 

hand muscles (Caramia et al., 1989; Merton and Morton, 1980). The corticomotor latency 

of MEPs is a few milliseconds shorter for TES than for monophasic P-A TMS (Caramia et 

al., 1989; Day et al., 1989; Sakai et al., 1997). This difference in corticomotor MEP latency 

between P-A TMS and TES further corroborates the notion that TMS targets primarily 

the axons of excitatory cortical interneurons that are up-stream to the corticospinal output 

neurons, producing action potentials in the corticospinal axon indirectly via transsynaptic 

excitation (Di Lazzaro et al., 2004; Mills et al., 1992; Sakai et al., 1997; Werhahn et al., 

1994). The basic physiological mechanisms that underpin TMS-induced excitation of the 

corticospinal projections is covered in more detail in section 3.4.

In humans, the cortical circuits implicated in the generation of I-waves can be probed 

non-invasively with paired-pulse TMS targeting the motor hot spot in the precentral gyrus 

(Tokimura et al., 1996; Ziemann et al., 1998). A first suprathreshold pulse and a second 

subthreshold pulse, or two pulses with intensities just below MT are applied through the 

same coil at ISIs ranging from 0.5 to 5 ms. Paired-pulse TMS reveals distinct peaks of 

short-interval intracortical facilitation (SICF) at ISIs of approximately 1.4 and 2.8. and 4.2 

ms, corresponding to the I-wave periodicity revealed by epidural recordings (Tokimura et 

al., 1996; Ziemann et al., 1998). SICF is commonly probed with monophasic pulse pairs 

targeting the M1-HAND, but can also be evoked with biphasic pulse pairs (Kallioniemi et 

al., 2018) and has also been observed when TMS targeted the leg representation (Chen and 

Garg, 2000). Therefore, it can be concluded that SICF reflects the strength of excitatory 

intracortical synaptic interactions and is widely expressed in the precentral cortex (Hanajima 

et al., 2002; Ziemann, 2020; Ziemann and Rothwell, 2000).

Biphasic TMS pairs, triplets, or quadruplets separated by an ISI that corresponds to the 

individual trough between the first and second SICF peak facilitates MEP amplitude across 

a wide range of TMS intensities (Kesselheim et al., 2022). Short-latency facilitation at 

trough latency was weaker than SICF at the first SICF peak, but the relative difference 

in facilitation decreased with increasing stimulus intensity. These findings indicate that 

biphasic multi-pulse TMS engages two mechanisms to produce short-latency corticomotor 

facilitation: An intracortical mechanism that is related to I-wave periodicity and engages 

fast-conducting direct projections to spinal motoneurons, and a second corticospinal 

mechanism that does not rely on I-wave rhythmicity and may be mediated by slower 

conducting indirect pyramidal tract projections from M1-HAND to spinal interneurons.
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3.1.2. Directional sensitivity of precentral neuronal populations to TMS—
When using a figure-of-eight coil and a monophasic pulse configuration to stimulate the 

M1-HAND, MEP latency and amplitude depend on the current direction induced in the 

cortex (Day et al., 1989). When monophasic TMS produces a P-A current flow in M1-

HAND with respect to the local gyral axis, the threshold for inducing a MEP is lowest. 

Higher stimulus intensities are required to evoke MEPs when the current flow in the 

precentral gyrus has an A-P direction with respect to the local gyral axis, and MEP latencies 

are 1–3 ms longer for monophasic TMS inducing A-P currents in M1-HAND as opposed 

to P-A stimulation. Mills et al. (1992) turned the orientation of a figure-of eight coil in 

steps of 45 degrees over the hot spot of M1-HAND and recorded MEPs in a contralateral 

hand muscle using eight different coil orientations (Di Lazzaro et al., 2004; Mills et al., 

1992; Sakai et al., 1997; Werhahn et al., 1994). MEP amplitude differed substantially 

across the eight current directions. When keeping the stimulus intensity constant, the largest 

MEP responses were obtained when the induced current passed from posterolateral to 

anteromedial in M1-HAND, corresponding to a coil orientation of approximately 45 degrees 

with respect to the mid-sagittal line, or 90 degrees with respect to the local motor cortex 

axis (Di Lazzaro et al., 2004; Mills et al., 1992; Sakai et al., 1997; Werhahn et al., 1994). 

Together, these studies provided consistent evidence that a monophasic TMS pulse inducing 

a P-A current in M1−HAND will induce MEPs in the contralateral hand that have a lower 

threshold, shorter latencies, and higher amplitudes compared to a monophasic TMS pulse of 

equal stimulus strength that induces an A-P directed current.

The orientation-dependent differences in latency can be attributed to differences in 

preferential I-wave activation as revealed by epidural recordings of the descending 

corticospinal activity and single motor unit recordings (Di Lazzaro and Rothwell, 2014). 

The P-A oriented electrical current in the precentral crown evokes preferentially early 

I1-waves (i.e., monosynaptic inputs to corticospinal neurons), whereas the A-P oriented 

electrical current evokes preferentially later I-waves with longer corticospinal latencies (see 

also sections 2.1 and 3.4). Hence, A-P and P-A directed currents activate different neural 

populations which need less (P-A) or more (A-P) time to generate transsynaptic excitation of 

the fast-conducting corticospinal output neurons in M1-HAND. This directional specificity 

of monophasic TMS pulses is particularly prominent at relatively low stimulus intensities 

that are slightly above excitation threshold and tends to attenuate at higher intensities of 

stimulation, when many different neural elements are activated by TMS (Di Lazzaro and 

Rothwell, 2014).

Based on this work, it can be concluded that different neuronal populations or circuits 

are targeted in the precentral hand knob by TMS when using different coil orientations 

that produce differently oriented currents with respect to the local axis of the precentral 

gyrus (Halawa et al., 2019). This notion is further supported by paired-pulse TMS studies, 

showing that monophasic P-A and A-P stimulation produce differential effects on SICI as 

well as facilitation (Hanajima et al., 1998; Ziemann et al., 1996c). In general, the stronger 

the directional asymmetry of the TMS pulse, the stronger the difference in preferential 

stimulation of different neuronal populations (Sommer et al., 2006; Sommer et al., 2018). 

As discussed in section 2.1, biophysical modeling indicates that the site of preferential 

stimulation in the precentral crown-lip region can shift depending on the orientation of the 

Siebner et al. Page 29

Clin Neurophysiol. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



induced current (Aberra et al., 2020). According to this model, a TMS pulse that induces 

an A-P oriented current in the precentral crown leads to an anterior spatial shift of the sites 

of neural activation relative to a TMS pulse that induces a P-A oriented current, which 

would lead to longer MEP latencies (Aberra et al., 2020). The neural populations activated 

by A-P and P-A currents also appear to play different roles in motor control. They have 

been reported to behave differently in response to some rTMS plasticity protocols in healthy 

individuals (Hamada et al., 2014; Tings et al., 2005). However, their relative sensitivity to 

directional TMS is compromised in patients with spinal cord injury (Jo and Perez, 2019).

It should be noted that biphasic (full-sine wave) pulses also display orientation dependent 

effects when targeting the precentral motor hand knob, though to a lesser extent than 

monophasic pulses (Aberra et al., 2020; Lang et al., 2006). This is explained by the longer 

second phase of the biphasic TMS pulse (Corthout et al., 2001); when the induced current 

during this phase is directed in the P-A direction in the precentral gyrus, MEPs have a lower 

MT compared to the stimulation with a biphasic pulse in the opposite direction (Kammer et 

al., 2001; Sommer et al., 2006; Weyh et al., 2005).

3.1.3. Stimulation of cortical inhibitory interneurons—TMS of M1 also produces 

inhibitory effects that have a lower threshold than the one necessary to evoke a MEP 

(Classen and Benecke, 1995; Davey et al., 1994; Ziemann et al., 1996d). The TMS-induced 

excitation of GABA-ergic cortical interneurons is also discussed in section 2.1. Inhibitory 

effects of TMS are conventionally probed with paired-pulse protocols, such as SICI (Kujirai 

et al., 1993) or as a TMS-induced suppression of voluntary muscular activity, referred to 

as the cortical silent period (Inghilleri et al., 1993; Wilson et al., 1993). The inhibitory 

phenomena that can be probed with TMS of M1 are discussed in more detail in section 3.6 

further below.

A modeling study using morphologically realistic models of inhibitory basket cells in 

lamina 4 of precentral cortex estimated that their axon terminals may have a relatively 

low threshold for TMS activation (Aberra et al., 2020). They also modeled lamina I 

neurogliaform cells, which exhibited substantially higher thresholds, suggesting minimal 

direct activation of these cell types at low stimulation intensities. Aberra et al. also 

conducted preliminary simulations of other inhibitory interneuron types, including large, 

nested, and small basket cells in laminae 2–6, and found these cell types had similar or 

higher thresholds to the lamina 4 large basket cells. However, relatively little is known 

about the specific axonal properties of different inhibitory interneuronal cell types, and 

existing work suggests they vary in their ion channel properties and excitability (Casale 

et al., 2015). Further experimental characterization and model development capturing the 

diversity of interneuronal axons is necessary to determine the thresholds for direct activation 

of inhibitory cortical neurons.

Alternatively, it may be that most interneurons are activated transsynaptically via excitation 

of axon terminals that belong to the axonal arbor of excitatory pyramidal neurons, which 

were predicted to have the lowest activation thresholds (Aberra et al., 2020). It would be 

useful to know more about the differential excitation of inhibitory interneurons since their 

axon terminals are distributed in different cortical layers, determining the spatial distribution 
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of inhibition along the somato-dendritic axis of the pyramidal cells. Regardless of possible 

cell-type-specific differences in responsiveness to TMS, the important point is that the 

low threshold for activation of inhibitory interneurons means that TMS generally evokes a 

mixture of excitatory (glutamatergic) and inhibitory (GABA-ergic) effects in the targeted 

cortical area.

Although MEPs are sensitive to current direction, Ziemann et al (1996c) found no effect 

of current direction on SICI. They used two coils superimposed on each other so that 

they could maintain a P-A orientation of test pulse whilst rotating the direction of the 

conditioning pulse. Both the amount of SICI as well as its threshold were unaffected by 

conditioning coil rotation. The relative lack of orientation sensitivity would be consistent 

with the idea that the conditioning stimulus directly activated the axons of inhibitory 

interneurons, which show considerable spatial dispersion and arborization at the cell 

population level (Tanaka et al., 2011).

However, the situation may be more subtle (Di Lazzaro et al., 2017). For instance, an A-P 

oriented conditioning stimulus does not always suppress corticospinal volleys evoked by an 

A-P test pulse (Di Lazzaro et al., 2006). In addition, Hanajima et al (2008) found that SICI 

was reduced in patients with dystonia when evaluated with an A-P oriented conditioning 

stimulus but was normal using a P-A oriented pulse (Hanajima et al., 2008). Thus, it may 

be that inhibitory interneurons are also indirectly excited by TMS via a transsynaptic route, 

engaged by direction-specific excitation of axon terminals projecting on to interneurons. 

The relative weight of direct axonal excitation versus indirect transsynaptic excitation may 

differ across different types of intracortical interneurons and constitutes an important open 

question that should be addressed in future research.

3.2. Implications of anatomical features of precentral cortex

3.2.1. Precentral motor hand knob—The part of the M1 hosting the motor 

representation of hand muscles (M1-HAND) has a convex shape with an outwards curvature 

towards the parietal cortex. As pointed out in the previous sections, the characteristic 

curvature of the central sulcus renders the M1-HAND easily recognizable as knob-like 

structure on the cortical surface or axial slices or of structural MRI scans. Therefore, Yousry 

et al. coined the term precentral motor hand knob (Yousry et al., 1997). TMS will most 

efficiently evoke a MEP in the contralateral hand if the TMS pulse induces a P-A current 

in the pre-central gyrus that is oriented perpendicular to the central sulcus (see section 

3.1.2). Because of this direction sensitivity, the curvature of the M1-HAND needs to be 

considered when mapping the spatial corticomotor representation of hand muscles with 

TMS. In conventional TMS mapping studies, the coil orientation is kept constant across 

stimulation sites, ignoring the curved shape of the hand knob. This will therefore introduce 

considerable differences in the induced current direction in M1-HAND across stimulation 

sites, if the coil orientation is kept constant during the mapping procedure. A personalization 

of TMS mapping will be needed, if one wishes to ensure that the TMS-induced tissue 

current in the precentral hand knob always has the same (e.g., perpendicular) current 

orientation with respect to the surface of the precentral gyrus. Frameless neuronavigation 

enables site-specific adjustment of the coil position according to the local curvature of the 
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precentral gyrus. Informed by the individual structural MRI, the coil orientation at each 

precentral stimulation site can be individually adjusted to the regional curvature of the hand 

knob, producinga current orientation that is always perpendicular to the sulcal wall (Raffin et 

al., 2015). This individualized sulcus-aligned mapping procedure has been successfully used 

to demonstrate a center-surround organization of short-latency afferent inhibition-facilitation 

in human M1-HAND (Dubbioso et al., 2017) and to trace use-dependent representational 

plasticity within the M1-HAND (Raffin and Siebner, 2018).

3.2.2. The rostral and caudal part of M1-HAND—The human M1 is located in the 

anterior bank of the central sulcus, covering the caudal wall of the precentral gyrus (Geyer 

et al., 1996; Geyer et al., 2000). In non-human and human primates, the cytoarchitecture of 

M1 is characterized by a relatively low cell density, a poor lamination, the lack of granular 

cells in a functionally intact layer IV, and the presence of large pyramidal cells in area 4p 

(Betz giant cells) of layer V (Geyer et al., 2000). The fundus of the central sulcus marks 

the causal border of M1 relative to the primary somatosensory cortex (Fig. 5). While the 

posterior border of M1 is clearly demarcated, the anterior border of M1 is more gradual with 

the density of Betz pyramidal cells in layer V steadily declining along a posterior-to-anterior 

gradient (Geyer et al., 2000) (Fig. 5). Close to the parasagittal midline, the anterior border of 

the M1 reaches the crown of the precentral gyrus, whereas the anterior border recedes into 

the rostral bank of the central sulcus in more lateral parts of M1 on the hemispheric surface 

(Geyer et al., 1996). This implies that for the hand and face representations within M1, the 

superficial part of the precentral gyrus (i.e., the crown) which is closest to the TMS coil 

mostly belongs to the caudal part of the PMd with the M1-HAND extending to a variable 

degree into the posterior lip region of the precentral crown (Siebner, 2020).

The transition zone in which the rostral M1-HAND is gradually transformed into PMd may 

vary across healthy individuals and thus influence how the M1-HAND is stimulated by TMS 

(Fig. 5). This inter-individual variability of the transition between motor cortex and PMd 

in the crown of the precentral hand knob was disclosed in a recent study that employed 

biphasic TMS pulses and a two-dimensional sulcus-aligned TMS mapping procedure of 

the corticomotor representation of the contralateral intrinsic hand muscles (Dubbioso et 

al., 2021). Adjusting the target locations and induced current directions in the stimulated 

M1-HAND to the individual shape of the central gyrus, sulcus-aligned spatial TMS mapping 

revealed that the individual motor hotspot locations in the precentral gyrus varied along 

the rostro-caudal axis (Dubbioso et al., 2021). The more rostral the motor hotspot was 

located in the precentral crown, the longer was the corticomotor conduction time. “Hotspot 

rostrality” was more pronounced in individuals in whom MRI-based R1-mapping revealed 

a higher precentral myelin content. Together, these findings show a rostro-caudal spectrum 

of functional and structural properties in the precentral gyrus that are probably related 

to between-subject variations in the gradual rostro-caudal transition between M1-HAND 

and PMd in the precentral crown and link these variations to inter-individual differences 

in regional cortical myelin content as revealed by MRI-based R1-mapping (Dubbioso et 

al., 2021). These findings have important implications for functional TMS targeting of 

M1-HAND based on the individual motor hotspot. When applying TMS at individual 

motor hot spot location, one preferentially targets different motor and premotor neuronal 
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substrates in the precentral crown in different persons, at least when using a biphasic 

pulse configuration. This hotspot related difference in anatomical targeting of the precentral 

gyrus may constitute a relevant source for inter-individual variability in the physiological 

responses of the corticomotor system to interventional TMS protocols.

In most TMS studies targeting the M1-HAND, the M1-HAND is considered as a single 

homogenous area. Work in non-human primates showed that the M1-HAND can be divided 

into a rostral (old) and caudal (new) part based on the absence (old) or presence (new) 

of cortico-motoneuronal cells (Rathelot and Strick, 2009). The rostral and caudal M1 

form two parallel bands running in mediolateral direction along the anterior wall of the 

central sulcus (Rathelot and Strick, 2009). Retrograde anatomical tracing studies in rhesus 

monkeys revealed that only the caudal band of the M1 contains cortico-motoneuronal 

cells with descending axons that make direct synaptic contact with spinal motoneurons 

innervating shoulder, elbow and finger muscles (Rathelot and Strick, 2009). Accordingly, the 

caudal M1 has larger layer V pyramidal cells that make direct connections with the spinal 

motoneurons and has on average a lower threshold for eliciting movements with intracortical 

microstimulation (Stepniewska et al., 1993). Using intracortical electrical stimulation, a 

study in macaque monkeys confirmed that only the caudal (new) M1 contains pyramidal 

cells with fast monosynaptic corticospinal projections to the cervical spinal motoneurons 

(Witham et al., 2016). However, the study also showed that both, the rostral (old) and caudal 

(new) part of M1 host slowly conducting mono-synaptic corticospinal projections to the 

cervical motoneurons (Witham et al., 2016). Fig. 5 illustrates the potential implications of 

these neuroanatomical properties for TMS targeting of the precentral gyrus in the human 

brain, accounting for the fact thatthe human M1-HAND is not a homogenous area.

The homotopic representations of the rostral and caudal M1 are strongly and reciprocally 

interconnected (Stepniewska et al., 1993), but they differ with respect to their cortico-

cortical and thalamo-cortical connectivity patterns (Holsapple et al., 1991; Matelli et al., 

1989; Stepniewska et al., 1993, 1994). Regarding cortico-cortical connectivity, the caudal 

portion of M1 is connected primarily with somatosensory areas, while the rostral M1 

is strongly connected with both premotor and somatosensory areas (Matelli et al., 1989; 

Stepniewska et al., 1993). These differences has led to the proposal that the rostral part 

of the M1 represents the phylogenetic “Old” M1 which has corticospinal neurons that 

“influence motoneurons indirectly through their connections with spinal interneurons”, 

while the “New” M1 is located caudally in the central sulcus and has corticospinal cells that 

make direct connections with spinal motoneurons responsible for highly-skilled movements 

(Rathelot and Strick, 2009).

There is convincing evidence that this rostro-caudal segregation also exists in the human 

M1-HAND and has been labeled Brodmann area BA4a and BA4p (Geyer et al., 1996; Geyer 

et al., 2000). The posterior (caudal) band of M1-HAND lies in the depth of the central 

sulcus, covering its anterior wall (Geyer et al., 1996; Geyer et al., 2000). The anterior 

(rostral) band is located more superficially in the sulcal wall with a smooth transition into 

the caudal PMd (Geyer et al., 1996; Geyer et al., 2000). As mentioned above, the transition 

from rostral BA4a to caudal PMd (BA6) varies from person to person and rostral BA4a may 
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therefore extend into the posterior lip region of the precentral crown in some individuals 

(Fig. 5).

The rostro-caudal segregation of M1-HAND and its variable and smooth rostral border have 

important implications for the ability of TMS to stimulate M1-HAND. One may intuitively 

assume that focal TMS targeting the precentral gyrus causes a homogenous stimulation of 

the entire M1-HAND, but this is not the case. Since the strength of the induced electric field 

attenuates with the distance from the coil, the rostral M1-HAND (BA4a) in the upper wall 

of the precentral gyrus will always receive a stronger current than the caudal M1-HAND 

(BA4p) in the lower wall of the precentral gyrus. In other words, the rostral M1-HAND 

(BA4a) is more susceptible to TMS-induced neural excitation because it is closer to the 

stimulation coil. The relative magnitude of direct neural excitation of caudal versus rostral 

portions of M1-HAND will depend on the temporal properties of the stimulus, as well as 

properties of the different neuron populations.

This poses a problem: Although stimulation in rostral M1-HAND might activate 

corticospinal neurons, their slow conduction velocities would produce MEPs later than we 

observe. The shortest latency MEPs are evoked by a latero-medial (L-M) oriented TMS 

pulse or a single high-voltage transcranial electrical pulse (TES) (Edgley et al., 1992). The 

central conduction time of these MEPs (~5 ms) is so short as to be consistent only with 

transmission in rapidly conducting corticospinal axons with monosynaptic connections to 

spinal motoneurons. Monophasic TMS inducing a P-A oriented current in the precentral 

crown produces MEPs with onset about 1.5 ms later than the minimum (Di Lazzaro et al., 

1998a). Since this involves at least one additional synapse in the cortex, the corticospinal 

conduction velocity must also be very rapid.

This raises the question of what is being stimulated. The MEP threshold for L-M oriented 

TMS is higher than for P–A, which may mean that the induced current can spread far 

enough into the anterior bank of the central sulcus to activate the large fast-conducting 

corticospinal neurons in area BA4p. The situation is not as clear for conventional P-A 

oriented TMS. One possibility is that despite its lower threshold compared with L-M 

oriented TMS, the induced current still manages to spread deep enough to activate synaptic 

contacts directly on the corticospinal neurons of area BA4p. This seems unlikely in view of 

all the evidence that activation occurs in the gyrus and tip of the anterior bank. A second 

possibility is that P-A TMS activates intracortical axons in the gyrus that monosynaptically 

excite fast-conducting corticospinal neurons in area BA4p (Yamashita and Arikuni, 2001). 

The additional conduction time plus synaptic connection might account for the additional 

1.5 ms latency of P-A MEPs. Note that this possibility implies that some axons must have a 

low threshold for excitation that is compatible with that of synaptic terminals. One possible 

location would be at axonal bends in the just-subcortical white matter in the crown-lip 

region. Salvador et al. modeled both intra-cortical axon terminations and projection axons 

of pyramidal tract neurons with idealized morphologies, finding terminations were activated 

with the lowest stimulus intensities (64.8 – 65.7 A/μs), and the projection axons were 

activated at their axonal bends at higher intensities (90.9 – 105.9 A/μs) (Salvador et al., 

2011). These relative thresholds are consistent with the recruitment order of early I-waves 

and the D-wave for monophasic, P-A TMS, suggesting I-waves are elicited by activation of 
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intracortical axon terminals and the D-wave is elicited by activation of white-matter axon 

bends at higher stimulus intensities. Alternatively, it is possible that the D-wave is produced 

by activation of the intracortical collaterals of pyramidal tract neurons at their terminals, 

leading to antidromic propagation of the action potentials back to the main axon (Amassian 

et al., 1990).

The uncertainty about site of activation has one more implication. If TMS activates neural 

elements in the precentral crown, but recruits corticospinal neurons in the sulcal wall, where 

are I-waves generated? Although numerous models for I-wave generation exist (Ziemann, 

2020), at present there is no information that can address this level of detail. However, 

since most I-waves are recruited at intensities significantly above active motor threshold, 

the question may not be relevant, since they could depend on activation of multiple neural 

elements spread over large volumes of tissue in areas BA4a, BA4p and even beyond (see 

below).

3.2.3. The dorsal premotor cortex in the precentral crown—The superficial parts 

of the PMd located in the crown of the precentral gyrus represent a spatial hot spot for 

TMS-induced neurostimulation. This superficial part of PMd is closest to the coil and 

therefore is exposed to the strongest electric fields in the crown and lip regions of the 

precentral gyrus (see Fig. 1A and section 3.4). This part of the precentral gyrus is mainly 

covered by the caudal part of the PMd which belongs to Brodmann area 6 (BA6) (Fig. 5). 

Only the very rostral part of the rostral M1-HAND (BA4a) may extend into the posterior 

lip region (Geyer et al., 1996). Since the caudal PMd in the crown of the precentral gyrus is 

closer to the stimulation coil than the M1-HAND which is mostly buried in the anterior wall 

of the central sulcus, simulations predict a local maximum of the TMS-induced electric field 

in caudal PMd relative to the M1-HAND (Bungert et al., 2017; Laakso et al., 2014). Further, 

juxtacortical axons in the superficial white matter underlying the gyral crown are also likely 

candidates for stimulation with high enough stimulation intensities (Laakso et al., 2014; 

Opitz et al., 2011). It follows that axonal structures of M1-HAND in the sulcal wall cannot 

be directly excited by TMS without inducing a concurrent and stronger co-stimulation of the 

caudal part of PMd in the precentral crown-lip region, when targeting the precentral gyrus 

with TMS.

Research in non-human primates provided converging evidence for a strong functional 

interaction between PMd and M1, demonstrating dense reciprocal monosynaptic cortico-

cortical connections between the two areas (Dum and Strick, 2005; Muakkassa and Strick, 

1979). Intracellular recordings revealed short-latency excitation of intracortical neurons in 

layer III and V of M1-HAND 1.1–6.5 ms after electrical microstimulation of cortico-cortical 

projections originating from PMd (Ghosh and Porter, 1988). Most relevant to the question 

of how much concurrent TMS of PMd may contribute to TMS-induced excitation of fast-

conducting corticospinal output neurons in M1 is the work by Amassian and colleagues 

published in 1987 (Amassian et al., 1987): focal electrical stimulation of the premotor or 

postcentral cortical surface yielded “very large periodic waves” in the pyramidal tract which 

were “often incrementing in amplitude until rapidly extinguishing” (page 85 in Amassian 

et al., 1987). After removal of precentral cortex, stimulation of postcentral surface was no 

longer able to induce descending waves in the pyramidal tract (page 86, Fig. 19 in Amassian 
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et al., 1987). The authors argued that the abolished response proves “that they are mediated 

by transsynaptic activation of motor cortical pyramidal tract neurons” (page 85 in Amassian 

et al., 1987). It can be concluded that electrical stimulation of premotor and postcentral 

cortex can readily evoke multiple descending volleys (corresponding to I-waves) through 

excitation of cortico–cortical connections, which trigger the intrinsic generation of I-waves 

in M1 (Patton and Amassian, 1954). The authors speculated that surface stimulation of 

premotor or postcentral cortical sites may “generate both direct and indirect orthodromic 

discharges in corticocortical axons projecting to the motor cortex” (page 85 in Amassian et 

al., 1987).

These biophysical and neuroanatomical considerations strongly support the idea that 

concurrent excitation of neuronal elements in PMd (and possibly also postcentral 

somatosensory cortex) results in relevant transsynaptic excitation of neural elements 

in M1-HAND via short-range cortico–cortical premotor–motor connections (Yamashita 

and Arikuni, 2001). This indirect excitation of M1-HAND may thus contribute to the 

neurophysiological features that characterize the MEP. Cortico–cortical axons originating 

from pyramidal cells in rostral M1 (BA4a) or caudal part of the PMd (Yamashita and 

Arikuni, 2001) as well as from the postcentral somatosensory cortex forming the crown-lip 

region of the postcentral gyrus are candidate routes of this transsynaptic indirect excitation 

(DeFelipe et al., 1986).

As pointed out previously, TMS induces stronger electric fields in the caudal PMd, located 

in the precentral crown-lip region, than in M1-HAND, located mostly in the sulcal wall. This 

implies that intracortical inhibitory interneurons in PMd might be excited more strongly than 

their counterparts in M1-HAND located in the central sulcus (Figs. 1 and 5). Due to their 

cellular geometry, TMS-induced excitation of inhibitory neurons might be less dependent 

on the geometric relationship between the neuron and the induced current. Therefore, TMS 

targeting the M1-HAND should inherently produce a stronger intracortical inhibition in 

the PMd (located in the gyral crown) than in M1-HAND (located in the sulcal wall). It is 

conceivable that intracortical inhibition evoked in PMd contributes to the inhibitory effects 

that can be observed with paired-pulse TMS on MEP amplitude. For instance, a weak 

conditioning pulse may induce intracortical inhibition in PMd that weakens the efficacy of a 

subsequent stronger test response to efficiently excite cortico-cortical facilitatory input from 

PMd to M1.

In summary, the anatomy of the precentral hand knob has several important implications 

for TMS. First, the curvature of the hand knob needs to be considered when mapping 

corticomotor representations of M1-HAND or examining effects of direction specificity 

regarding the induced electric field in the precentral gyrus. Second, the precentral gyrus is 

not a homogenous area which is equidistant to the TMS coil, but it hosts the caudal PMd 

(BA6) in the crown-lip region and the rostral and caudal M1-HAND (BA4a/p) in the sulcal 

part of the gyrus. These regions differ in their sensitivity to be excited by TMS because of 

differences in coil-cortex distance and the spatial orientation of cortical axonal structures 

and the induced electric field. This implies that PMd and M1-HAND are concurrently 

stimulated by TMS, but also in an inherently different fashion. Importantly, the strongest 

“local dose” in terms of the induced electric field is achieved in the crown-lip region covered 
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mainly by the caudal PMd and to a variable degree by the rostral M1-HAND (BA4a, old 

M1). However, direct activation of M1-HAND (BA4p, new M1) in the anterior wall may 

partly contribute to MEP generation when using higher intensities of TMS or when inducing 

a L-M directed current.

3.3. Insights from experiments and models of I-wave physiology

Experiments examining descending I-waves in the corticospinal tract have revealed 

important insights into how TMS activates the corticomotor system. Although other sections 

do refer to I-waves, we included a dedicated section to provide comprehensive coverage 

of this important topic. A single TMS pulse given to the human precentral motor cortex 

produces repetitive descending volleys in the fast-conducting axons of the corticospinal 

tract. In animals, several descending corticospinal volleys have also been identified after 

M1 stimulation: a short latency “direct” volley that is believed to originate from the direct 

activation of corticospinal axons (i.e., D-wave), followed by a series of later “indirect” 

volleys (i.e., I-waves) numbered according to their temporal order (Amassian et al., 

1987). These multiple descending volleys are thought to be caused by a synchronized 

discharge of distinct intra-cortical circuits at differently grouped timings and possibly also 

repetitive discharges in single pyramidal tract neurons. Repetitive transsynaptic excitation 

through repetitive excitatory postsynaptic potentials from the interneurons may produce 

high-frequency repetitive firing in Betz pyramidal neurons because of their very short 

refractory period (Kernell and Chien-Ping, 1967).

In humans, the short-latency D-wave and the transsynaptically generated corticospinal I-

waves have been recorded directly in conscious subjects who have had electrodes implanted 

surgically in the epidural space of the cervical cord for control of pain (Di Lazzaro and 

Rothwell, 2014). These lines of research in animals and humans have also revealed several 

physiological differences between the first (I1) and later I-waves: In monkeys, cortical 

cooling has a selective effect on late I-waves with no change in the I1-wave (Amassian et 

al., 1987). Similarly, in humans only late I-waves are suppressed by several paired-pulse 

stimulation protocols (Hanajima et al., 1998) and only the late I-waves are affected by 

pharmacologically induced changes in the level of on-going cortical GABA-ergic activity 

(Di Lazzaro and Rothwell, 2014). The differential effect of cooling on early and late I-waves 

led Amassian et al (1987) to speculate that multiple cortical elements can be activated by 

cortical stimulation evoking the different I-wave components. This may involve different 

neural elements, including both intra-cortical and cortico-cortical neurons (Amassian et al 

1987).

The possibility that different cortical circuits could be activated using transcranial 

stimulation in humans was first suggested by the pattern of discharge of single motor 

units in the muscle evoked by TMS pulses over the motor cortex. A single pulse produced 

several peaks of increased firing probability that were presumed to result from arrival of 

excitatory postsynaptic potentials at spinal motoneurons from the D- and I-wave volleys. 

The data showed that later peaks could be evoked in isolation by changing the direction of 

the current induced in the brain (Day et al., 1989). The possibility of evoking later peaks of 

single motor unit activity in isolation became even clearer when a focal (figure-of-eight) coil 
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capable of inducing more directed current was used (Sakai et al., 1997). Using a monophasic 

TMS pulse configuration, it was shown that a P-A directed electrical current perpendicular 

to the central sulcus usually evoked I1- and then later I-waves, whereas an A-P directed 

current only induced later I-wave activity. In addition, short-latency afferent inhibition (SAI) 

produced much greater inhibition of the I3-wave evoked by a P-A directed current than the 

I3-wave evoked by an A-P directed current, suggesting that the late I waves from P-A and 

A-P directions are mediated by different circuits (Ni et al., 2011a).

The contribution of different cortical circuits in I-wave generation is also supported by 

Maier et al. (2013) who recorded responses evoked by intracortical stimulation in monkeys 

both from the surface of the cord and from individual axons of corticospinal neurons at mid 

cervical level. As in previous studies, they recorded the D- and I-waves from the surface of 

the spinal cord, but they also made some new relevant observations while recording from 

individual axons. Together with the high frequency I-waves discharging at 600 Hz recorded 

from most of the axons, they found that some of the axons showed delayed discharges at 

lower frequencies and also recorded some temporally dispersed activity outside the main 

frequency peaks identifiable from surface recording. They proposed that this additional 

activity might be produced by corticospinal axons with slower discharge and conduction 

velocity. This conclusion is in good agreement with findings yielded by intracortical 

stimulation of cortico-motoneuronal connections in anesthetized macaques (Witham et al., 

2016). In that study, a considerable portion of the cortico-motoneuronal connections from 

caudal (new) M1 that supply the forelimb generated short-latency monosynaptic potentials 

in cervical motoneurons (Witham et al., 2016). Stimulation of rostral (old) M1 also produced 

long-latency monosynaptic effects, but they were relatively weak compared to the effects 

evoked by stimulation of caudal (new) M1 (Witham et al., 2016). Together, these findings 

raise the possibility that the volley recorded from the surface is dominated by the fastest 

conducting axons whose activity may hide responses transmitted by slower-discharging 

axons. Invasive recordings in humans of the corticospinal activity evoked by different 

directions of the induced current in the brain by TMS have revealed similar findings in 

that the late activity evoked by A-P current appears to be less synchronized and, in some 

cases, of lower frequency and thus, may not, as previously thought, be represented by later 

I-waves (Di Lazzaro and Rothwell, 2014; Di Lazzaro and Ziemann, 2013). Indeed, while 

the more commonly recorded descending activity recorded both in animals and in humans 

is represented by very high frequency (approx. 670 Hz) I-waves with a fixed order of 

recruitment, by reversing the direction of the induced current in the brain it is possible to 

record descending activities with different frequencies. Occasionally, a descending activity 

with a frequency that is a subharmonic (333 Hz) of that of the high frequency I-waves, has 

been seen (Di Lazzaro et al., 2017; Di Lazzaro and Ziemann, 2013).

These observations indicate that the physiology of I-waves is complex. Several theories 

about I-wave production have been proposed. Initial theories postulated the existence of a 

chain of intra-cortical interneurons projecting upon the corticospinal cells and hypotesized 

that an intensity dependent activation of the different interneuron circuits produces early and 

late I-waves. More recently, it has been hypothesized that the I-waves might be produced by 

cortical networks with specific oscillatory properties activated by transcranial stimulation. 

Based on a canonical cortical circuit model, Di Lazzaro and Rothwell (2014) proposed that 
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I-waves might be produced by the activation of excitatory bursting pyramidal cells with their 

soma located in cortical layers II and III with axons that project upon corticospinal cells. 

In this case, the I1-wave would be produced by monosynaptic activation and late I-waves 

by reverberating activity in the oscillatory circuit composed of layer II and III excitatory 

neurons and inhibitory interneurons (see also Esser et al. (2005); Seo et al. (2016)).

Other models are based on physiological properties of the pyramidal cells. Rusu et al. 

(2014), updated in Seo et al. (2016), proposed that early and late I-waves are produced 

by intrinsic membrane properties of corticospinal cells in response to a single input from 

layer II and III interneurons impinging onto different parts of the dendritic tree. The 

dispersion of the inputs along the dendritic tree, in particular to distal and basal dendrites, 

together with the spiking properties of corticospinal cells, is suggested to be responsible for 

I-wave generation. This concept might find some indirect support in the concept of “leaky 

membranes” under activation (Paulus and Rothwell, 2016) since late I-waves disappeared 

during motor preactivation (Ziemann et al., 1998). Back-propagation activated calcium spike 

firing is another physiological mechanism that may account for TMS-induced burst-like 

firing of fast-conducting neurons in the corticospinal tract (Larkum, 2013; Larkum et al., 

1999, 2001; Ugawa et al., 2020). When a single back-propagating action potential coincides 

with a subthreshold distal excitatory postsynaptic potential, a burst of action potentials can 

be evoked in pyramidal cells (Larkum, 2013; Larkum et al., 1999, 2001; Ugawa et al., 

2020). It has been proposed that this cellular property of pyramidal cells may account for 

TMS-induced high frequency oscillations of single corticospinal pyramidal cells without 

involving any cellular clustering (Larkum, 2013; Larkum et al., 1999, 2001; Ugawa et al., 

2020). This multi-compartment model assumes that a single TMS pulse triggers an action 

potential in the proximal portion of corticospinal pyramidal axons in layer V. This may 

trigger a recurrent synaptic excitation through axon collaterals, generating a transsynaptic 

feedback input to the apical integration zone (i.e. the distal dendritic tree close to the cortical 

surface) at a certain delay. However, this model that only relies on cellular properties of 

the pyramidal cell remains speculative and does not account for many published findings: 

Patch-clamp recordings in layer V pyramidal cells of rat M1 (Larkum et al. 1999, 2001) 

never demonstrated an interval of 1.5 ms or less between the first two or any later action 

potentials to represent the interval between I1- and I2-waves or later I-waves in epidural 

spinal cord or SICF recordings, but rather intervals in the order of 5 ms or more (Larkum et 

al., 1999, 2001; Short et al., 2017).

Very fast oscillations with a frequency comparable to the I-waves (~600 Hz) have been 

observed in neocortex of rats and cats (Jones and Barth, 2002; Jones et al., 2000; Kandel 

and Buzsaki, 1997) and humans (Gobbele et al., 1998). These oscillations reflect neural 

activity at the cell population level, while single cells may fire at lower rates (but see 

evidence for burst firing patterns below). Therefore, it has been proposed that high frequency 

network synchrony could be produced by modes of synchrony termed “clustering” in which 

the network breaks into several clusters of neurons each of which discharges at single cell 

frequency and which results in a network frequency that is correlated with the number of 

clusters (Brunel and Wang, 2003). It is possible that strong TMS excitation could result in 

poly-synchronization of clusters of strongly interconnected excitatory and inhibitory cortical 

neurons that fire with millisecond precision producing the I-wave activity (Di Lazzaro et al., 
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2012). Interestingly, the delay between I-waves is 1.5 ms and with this delay, computational 

models of networks of highly connected excitatory and inhibitory neurons predict a peak of 

activity of 667 Hz (Brunel, 2000) corresponding exactly to the I-wave frequency. Because 

both high-and lower-frequency I-waves can be recorded after TMS, it is conceivable, that, 

depending on the characteristics of the TMS pulse, more than one oscillatory network can be 

activated providing several sources of inputs to corticospinal cells.

Electrophysiological recordings of descending corticospinal volleys probe the orthodromic 

conduction of action potentials along large fast-conducting axons. Small slow-conducting 

axons are heavily underrepresented when measuring corticospinal orthodromic and 

antidromic conduction, although they outnumber by far the larger fast-conducting axons 

(Firmin et al., 2014). This includes two classes of corticospinal axons with lower conduction 

velocity, monosynaptic axons making directconnections with cervical motoneurons and 

polysynaptic slow-conducting axons projecting onto spinal interneurons (Witham et al., 

2016). Therefore, the electrophysiological studies on I-wave physiology tell little about the 

bulk of corticospinal neurons with smaller axon diameter and slower conduction velocities. 

The possibility that there is a large population of corticospinal fibers not explored by TMS 

is supported by electrophysiological findings in patients with hereditary spastic paraplegia 

who may show severe pyramidal signs associated with normal MEPs (Di Lazzaro et al., 

1999). To explain this discrepancy, it has been suggested that the clinical evidence of 

corticospinal tract involvement in the presence of normal MEPs might be explained by 

selective involvement of a subpopulation of neurons, that can well be the small pyramidal 

tract axons, with a relative sparing of the large fast conducting corticospinal fibers. The latter 

are those consistently activated by TMS.

3.4. Insights from calculating the electric field induced by TMS

Field calculations and measurements help to understand how coil geometry, its position 

and the head anatomy affect the induced electric field evoked in the precentral motor 

cortex. Even simplified head models, such as spherical models (Eaton, 1992; Heller and 

van Hulsteyn, 1992; Roth et al., 1990), already give important insights (see section 2.2 

for more detailed discussion): The electric field strength decays rapidly with distance from 

the coil, excluding the direct stimulation of subcortical areas (Deng et al., 2013; Epstein 

et al., 1990; Thielscher and Kammer, 2004). In addition, radial components of the electric 

field are also suppressed by the sphere-air boundary, independent of coil position and 

orientation. In practice, this causes the field direction to be approximately parallel to the 

inner skull boundary. It is also well established that figure-8 coils induce the strongest fields 

at positions close to the coil center (Ravazzani et al., 1996; Roth et al., 1990; Thielscher and 

Kammer, 2004). Studies employing more realistic head models and numerical methods such 

as finite element method (FEM) or boundary element method (BEM) (Salinas et al., 2009) 

generally confirm these findings (Bungert et al., 2017; Laakso et al., 2014; Opitz et al., 

2011; Thielscher et al., 2011), but additionally show that the folding of cortical gyri and the 

conductivity anisotropy of white matter also affect the field: Higher electric field strengths 

are observed in the crowns of cortical gyri when the field is perpendicular to the gyral crest. 

In this case, the comparatively strong currents flowing in well-conducting cerebrospinal 

fluid enter the gyral crown rather than being shunted. This results in a local peak of 
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the induced electric field in the cortex in the crown-lip region of the precentral gyrus. 

This is in line with physiological experiments showing that the optimal current orientation 

for precentral motor cortex stimulation, as determined by the corticomotor threshold, is 

perpendicular to the central sulcus (Di Lazzaro et al., 2004; Mills et al., 1992; Sakai et al., 

1997; Werhahn et al., 1994). Of note, the local field orientation relative to the pial surface 

varies from oblique (i.e. neither fully normal nor tangential) at the position of the gyral lips 

to mostly tangential directly at the crown.

Regional spots of high electric field strength may also occur in the white matter underlying 

the crown of the gyrus (see Fig. 1A). This gradient can be explained by a jump in electrical 

conductivity at the interface between grey and white matter as well as anisotropy in 

the conductivity produced by alignment of downward-projecting fiber bundles, which are 

mainly perpendicular to the electric field direction (Opitz et al., 2011; Thielscher et al., 

2011). It has been proposed that the transition zone between cortical grey and white matter 

may be a site for triggering an action potential, when using FEM models with a sharp 

conductivity border at the grey-white matter interface (Miranda et al., 2007). In reality, this 

conductivity transition is not as sharp, because the increase in myelination is more gradual 

when transitioning from grey matter to white matter (Zilles, 1990). However, even when 

using a volume conductor model that included this unnatural, sharp conductivity transition, 

a recent modeling study did not find activation in L5/6 pyramidal axons that crossed the 

grey–white matter boundary in the precentral gyrus (Aberra et al., 2020). Therefore, it is 

unlikely that excitation of myelinated axons at the transition from grey to white matter plays 

a relevant role at slightly suprathreshold stimulation intensities.

Instead, corticofugal axons may be activated in the white matter at their bends by electric 

fields directed outward at the bend. Given that the main axons projecting from the tip of 

the crown into the white matter are mostly perpendicular to the field, which is tangential 

to the scalp, it is unlikely that these axons are stimulated by this mechanism. However, 

axons projecting from the transition zone between crown and wall of the precentral gyrus 

will bend downwards into the white matter at angles approaching 90°. These axonal bends 

might constitute a low threshold site of excitation (Gomez-Tames et al., 2020; Salvador et 

al., 2011; Yamashita and Arikuni, 2001).

While the field calculations proved useful to generate hypotheses on the likely stimulation 

positions in the brain, more validation studies are still required. For instance, the 

validity of field calculations could be demonstrated by showing that they can predict 

electrophysiological properties of TMS. The issue of validation concerns both the predicted 

field pattern (as it might be imprecise due to model uncertainties) and the sometimes 

implicitly used assumption that mostly positions of high field strength are stimulated. 

Indirect support comes from a range of motor mapping studies which used TMS with 

figure-8 coils at the optimal orientation and consistently demonstrated that the center of 

gravity is situated above the crown of the precentral gyrus (Herwig et al., 2002; Inuggi et 

al., 2010; Niyazov et al., 2005; Sparing et al., 2008), in line with the results of the studies 

modeling the TMS-induced electric field (Diekhoff et al., 2011; Dubbioso et al., 2021; 

Weiss et al., 2013). In addition, in patients, a good overlap between a “mean stimulation 

field” reconstructed from TMS motor mapping via FEM calculations and direct electrical 
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stimulation was demonstrated (Opitz et al., 2014). On the other hand, the results of electric 

field calculations on their own cannot explain the differences in corticomotor threshold, 

when contrasting stimulation with P-A versus A-P field directions (Kammer et al., 2001). 

As the induced field distributions are identical for both cases - except for the vectors being 

mirrored by 180° - the threshold differences are thus exclusively caused by a different 

impact of the field on the neural elements (Opitz et al., 2014). Without understanding the 

origin of this effect, strong conclusions on the exact stimulation position and mechanisms 

in the M1-HAND are premature. Recent realistic simulations started combining accurate 

field calculations with estimates of how the induced electric field affects the complex 

neural structures in order to generate more detailed hypotheses on the mechanism of action 

of TMS. This line of research was started by Salvador et al. (2011) and continued by 

Pashut et al. (2014), Seo et al. (2016) and Aberra et al. (2020) and will be important 

to further fine-tune the hypotheses generated by the models. One important consideration 

is that the outcomes produced by realistic simulations critically depend on which neural 

elements are included in the simulation and to which extent morphological details of these 

neural elements are taken into consideration. For instance, the outcome will fundamentally 

differ depending on how the pyramidal axons are modeled in the simulation (Fig. 2). If 

the underlying cortical model reduces the pyramidal axon to a simple stick without any 

branching, the simulation will not be able to show any contribution of the axonal arbor 

with its axon terminals and collaterals and thus lead to misleading results (Aberra et al., 

2020). Therefore, anatomical or physiological insufficiencies of each model should always 

be fully acknowledged and considered when interpreting and comparing the results of 

biophysical simulations. Along these lines, future refinements of the biophysical models 

described above might also test the involvement of superficial sites within the subcortical 

white matter as possible activation sites for TMS (Laakso et al., 2014). Axons entering white 

matter would be primarily stimulated at their bends and inverting the current orientation will 

hyperpolarize a bend that was previously depolarized which may contribute to direction-

specific differences in neural excitation for TMS currents in P-A or A-P direction, although 

this can be accounted for by the activation threshold anisotropy of pyramidal neurons as 

well. In addition, axonal ramifications in white matter might have low thresholds.

Most TMS studies using MEPs as primary read-out make the implicit assumption that TMS 

caused a homogenous stimulation of the entire M1-HAND. As discussed in more detail in 

section 3.2.2, the caudal portion (BA4p) of M1-HAND is located deep in the anterior wall 

of the precentral sulcus and thus requires higher stimulus intensities for direct targeting. 

Indeed, systematic comparisons of orientation-dependent MT changes with the electric field 

changes predicated by biophysical models suggest that the TMS pulse targets primarily the 

crown or lip of the precentral gyrus (Bungert et al., 2017; Laakso et al., 2018; Weise et 

al., 2020). In line with the modeling results by Aberra et al. (2020), the absolute strength 

rather than the normal component of the electric field in that region was found to correlate 

with neural excitation in two of these studies (Bungert et al., 2017; Weise et al., 2020). This 

has an important implication for “TMS of the M1-HAND” in the precentral motor hand 

knob. The PMd in the precentral crown and maybe the very rostral portion of M1-HAND 

(BA4a) in the posterior lip region of the precentral gyrus are located at the hemispherical 
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surface (Geyer et al., 1996; Geyer et al., 2000) and are therefore primarily stimulated by 

TMS targeting M1-HAND (see section 3.2).

It is important to point out that there is currently no consensus on which part of M1-HAND 

is stimulated by TMS. Competing to the hypothesis discussed above that stimulation mainly 

occurs at positions where the induced electric field strength is highest (i.e., around gyral 

crowns), it was suggested that it rather occurs where the field component causing an inward 

current flow perpendicular to the cortical layers is strongest (Chen and Mogul, 2009, 2010; 

Fox et al., 2004; Salinas et al., 2007, 2009). This hypothesis has been formulated in the 

cortical column cosine theory of TMS efficacy (Fox et al., 2004). Common to all papers on 

the cortical column cosine theory is that the coupling of the electric field on the neurons 

is modeled in an abstract way, but not derived from detailed biophysical models. The 

overarching theory states that the coupling of the electric field on cortical neurons will 

be maximal, if the orientation of the induced E-field is aligned with the main axis of the 

cortical column (e.g. pyramidal cells) (Arabkheradmand et al., 2018; Krieg et al., 2013, 

2015). Given that the field direction in the gyral crown is parallel to the cortical layers, the 

cortical column cosine theory postulates a spatial bias towards stimulation of sulcal positions 

(Fox et al., 2004). The most superficial part of the gyral wall close to the lip region of the 

crown constitutes a sweet spot for TMS (Fox et al., 2004). This region is closer to the coil 

than deeper regions in the sulcal wall, and cortical columns are still optimally aligned to the 

normal electrical field produced by TMS while being closer to the stimulation coil the coil 

and (Fig. 2C).

It has been argued that the site of peak activation in the precentral cortex as revealed by 

H2
15O − PET studies strongly support the cortical column cosine theory (Fox et al., 2004). 

Using H2
15O − PET study, it was shown that at train of suprathreshold 3 Hz rTMS of the 

M1 caused predominantly deep sulcal activity in the posterior part of the M1-HAND in 

7 out of 11 participants (Fox et al., 2004). In these 7 participants, the center-of-mass 

activation was found at x,y,z-coordinates of −32, −32, 48 which was very close to the 

center-of-mass activation during voluntary movement and corresponds to BA4p where the 

bulk of the fast-conducting corticospinal output neurons (i.e., the Betz pyramidal cells) 

are located (Geyer et al., 1996). It should be noted though that a peak activation at 

x,y,z-coordinates of −32, −32, 48 is located rather deep to be in good agreement with 

the cortical column cosine theory which predicts a peak activation in the superficial part 

of the sulcal wall (lip region). The lack of activation in the remaining four participants 

was attributed to juxtacortical axonal excitation, but such activation should also lead to 

transsynaptic activation of cortical patches created by ortho- and antidromic propagation 

of action potentials. Other H2
15O − PET, however, also reported more superficial activation 

spots in the precentral hand knob (Fox et al., 2004; Shitara et al., 2013; Siebner et al., 

2001; Takano et al., 2004): Applying sub-threshold rTMS at various rates, ranging from 

1–5 Hz, six healthy individuals showed a rate-dependent increase in activity peaking in a 

more superficial site of the precentral gyrus (x,y,z-coordinates: [C0]38, −22, 56) (Fox et 

al., 2004; Shitara et al., 2013; Siebner et al., 2001; Takano et al., 2004). Subtracting the 

effects of afferent stimulation, a more recent TMS-fMRI study demonstrated activation of 

both the superficial and deeper parts of the M1-HAND by a biphasic suprathreshold TMS 
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pulse (Shitara et al., 2013). In contrast to these PET studies, recent studies have combined 

functional brain mapping and E-field modeling and provided promising results, pointing to 

the superficial areas of the crown top and lip region of precentral cortex as primary target 

sites for TMS (Bungert et al., 2017; Weise et al., 2020).

A note of caution is warranted, when using functional brain mapping of regional neuronal 

activity to corroborate biophysical models of direct neuronal excitation by TMS. If 

H2
15O − PET or fMRI are used to validate models of primary neuronal activation, one should 

not claim that specific PET or fMRI activations reflect the exact site of direct neural 

activation by TMS. While modeling work focuses on the induction of action potentials a few 

milliseconds after TMS, functional activation maps reflect neuronal activity averaged across 

timescales of seconds (fMRI) or tens of seconds to minutes (PET). Therefore, secondary 

neuronal effects may dominate the regional neuroimaging read-outs, including transsynaptic 

spread of excitation and inhibition regionally and at the network level (Siebner et al., 

2009). For instance, a H2
15O − PET study mapped the acute changes in regional cerebral 

blood flow during and minutes after 150 pulses of 5 Hz rTMS of the left M1 at 90% 

of active MT (Fox et al., 2004; Shitara et al., 2013; Siebner et al., 2001; Takano et al., 

2004). A cluster in the top of the precentral crown showed a well-defined increase in 

rCBF lasting approximately 8 min after 5 Hz rTMS. peaking at x,y,z-coordinates: −24, 

−20, 68 which was paralleled by a reduction in intracortical inhibition as evidenced by 

paired-pulse TMS in a parallel experiment (Fox et al., 2004; Shitara et al., 2013; Siebner 

et al., 2001; Takano et al., 2004). While these findings indicate a TMS-induced modulation 

of cortical activity confined to the top of the crown of the precentral hand knob, it does 

not prove that this spot was the primary site of neuronal stimulation. In conclusion, it 

is inherently difficult to causally infer the primary site of neuronal excitation from fMRI 

or PET readouts. Finally, mapping of regional blood flow or regional blood oxygenation 

levels with PET or MRI provides an integrated readout of net regional neural activity. 

Hence, a prominent activation of intracortical inhibitory GABA-ergic circuits (deactivation) 

may counter-balance the activation of glutamatergic pyramidal cells (activation) and thus, 

obscure the real magnitude of TMS-induced regional activation. This problem has long been 

recognized in the field of epilepsy research, using EEG-fMRI to capture changes in regional 

metabolic activity induced by spikes or spike-wave bursts (Gotman et al., 2006).

The cortical column cosine theory provides a phenomenological explanation of the 

directionality effects of TMS. Since large parts of M1-HAND are positioned in the posterior 

wall of the precentral gyrus (Geyer et al., 1996), the pyramidal cells there are oriented in 

parallel to the hemispheric surface with their initial axons projecting anteriorly and medially. 

The theory assumes that these cells are more easily excited than superficial pyramidal cells 

because the induced currents flow parallel to their main axis and not perpendicular to it. 

This suggestion was motivated by an early simulation study which observed that a simplified 

pyramidal neuron with a straight long axon is most effectively depolarized by currents 

running along the long axis of the neuron and having an orthodromic orientation from the 

dendritic tree towards soma and axon (Tranchina and Nicholson, 1986). According to this 

principle axis effect, a P-A oriented current direction in the M1-HAND should be optimal 

to induce direct electrical stimulation of pyramidal cells that have a P-A dendrite-to-axon 
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orientation in the anterior sulcal wall (Laakso et al., 2014). Conversely, an A-P oriented 

current direction in the M1-HAND should be optimal to induce direct electrical stimulation 

of pyramidal cells that have an A-P dendrite-to-axon orientation. A limitation is that these 

predictions are derived from a simplified model of pyramidal cells in which axons are 

simply straight sticks that have no collateral branches (i.e., lack any axonal arborization). 

These predictions have not been confirmed in recent modeling studies that either modeled 

more realistic neural morphologies (Wu et al., 2016) including axonal ramifications (Aberra 

et al., 2020) or estimated the gyral region directly activated by TMS by combining electric 

field models with experimental threshold mapping (Bungert et al., 2017; Laakso et al., 2018; 

Weise et al., 2020) (see also section 2.2). Moreover, the TMS electric field strength decays 

rapidly with depth and, consequently, even for a simplified neuron model with a “stick” 

axon, lowest activation thresholds for the anterior bank of the central sulcus are observed in 

the gyral lip (Fig. 6 in Aberra et al., 2020).

The lack of consensus regarding the primary site of neuronal excitation in human M1 

highlights the need for a better understanding of the TMS effects on the level of single 

neurons and cortical neural circuits. Future progress will depend on further refinements 

of realistic biophysical models that combine accurate field calculations with estimates of 

how the induced electric field influences different neurons, combined with systematic tests 

and comparisons of the predictions of detailed biophysical models with measurements in 

humans, and direct validation using single cell recordings in animals (e.g., Moliadze et al. 

(2003); Mueller et al. (2014); Li et al. (2017)). Phenomenological models necessarily stay 

abstract and allow for less strict tests of the correspondence between model predictions 

and measurements compared to biophysical models. Phenomenological models should 

thus be gradually replaced by biophysical models when enough knowledge about cell 

morphology, channel dynamics, and synaptic properties is available that allow the latter 

to be implemented well.

3.5. Probing cortical excitability of intracortical inhibitory circuits

Since TMS can effectively excite inhibitory interneurons in the cortex, it is possible to study 

the excitability of intracortical inhibitory networks in M1 using several TMS protocols. 

The physiological basis for a relatively high susceptibility of intracortical interneurons to 

TMS-induced excitation is discussed in section 2.4.

3.5.1. Intracortical inhibition at short intervals—A subthreshold conditioning TMS 

pulse applied at short intervals (1–5 ms) prior to a suprathreshold test stimulus inhibits 

the test response. This form of inhibition is termed SICI and is dependent on both the 

intensity of the conditioning and test stimuli (Kujirai et al., 1993). SICI can be obtained 

with intensities of the conditioning stimulus below active MT and is less expressed when 

TES is used as either the test or conditioning stimulus (Kujirai et al., 1993). These results 

provide evidence for a cortical locus for SICI. Additional support for this comes from 

studies using both single motor unit recordings and epidural spinal recordings (Di Lazzaro 

et al., 1998c; Hanajima et al., 1998), which provide evidence that SICI involves suppression 

of late I-waves. The early I1-wave is little affected by the conditioning stimulus and this 

suggests that SICI does not directly affect pyramidal cell excitability but brings about its 
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inhibitory effect via other intracortical elements. Several mechanisms may contribute to 

the inhibition at different ISIs. SICI at an ISI of 1 ms may, at least partially, reflect a 

combination of axonal refractoriness and synaptic inhibition (Fisher et al., 2002; Hanajima 

et al., 2003) while SICI at an ISI of 2.5 ms (often coinciding with peak inhibition) likely 

reflects post-synaptic inhibition mediated by GABAA receptors (Ilic et al., 2002; Ziemann 

et al., 1996b) or, as discussed in more detail in section 2.1, shunting inhibition (Paulus and 

Rothwell, 2016).

3.5.2. Cortical silent period—The cortical silent period (CSP) describes the relative 

electromyographic silence seen following the MEP evoked by single-pulse TMS applied 

during a voluntary contraction. The duration of the CSP increases with stimulus intensity 

and typically has a maximum duration of 200–300 ms, while -in contrast- the level of 

voluntary contraction has little influence on the duration (Inghilleri et al., 1993; Kimiskidis 

et al., 2006; Kimiskidis et al., 2005). Spinal mechanisms contribute to the early part of CSP 

(~50 ms) (Fuhr et al., 1991), whereas the later part is due to cortical effects (Inghilleri et 

al., 1993). The duration of the CSP evoked with a TMS pulse is longer than that evoked 

using a TES pulse (Inghilleri et al., 1993), a finding which provides evidence that the 

CSP is dependent on activation of an intracortical inhibitory network. Pharmacological 

evidence suggests that the long-lasting period of inhibition reflects inhibitory cortical 

activity involving the activation of GABAB receptors (Siebner et al., 1998a; Stetkarova and 

Kofler, 2013). However, the CSP may also reflect involvement of GABAA receptors at lower 

stimulus intensities (Kimiskidis et al., 2005; Pierantozzi et al., 2004; Werhahn et al., 1999).

3.5.3. Long-interval intracortical inhibition—Long-interval intracortical inhibition 

(LICI) is studied by using suprathreshold conditioning and test stimuli applied at ISIs 

of 50–200 ms. Epidural spinal recordings have shown that the later part of the LICI is 

associated with suppression of the late I-waves (Chen et al., 1999b). GABAB dependent 

networks contribute to LICI (McDonnell et al., 2006; Ziemann et al., 2015). These features 

suggest that LICI and CSP reflect activity of similar networks. However, there is some 

evidence that the measures are not identical but may have some commonality (Benwell 

et al., 2007; Hammond and Vallence, 2007). LICI and SICI can interact with SICI being 

reduced in the presence of LICI (Sanger et al., 2001). Evidence suggests that this is due 

to a cortical interaction (Ni et al., 2011b) and may be related to presynaptic auto-inhibition 

mediated by GABAB receptors (Florian et al., 2008). The interactions between different 

inhibitory networks also highlight the intricate nature of the intra-cortical networks that can 

be activated and probed using TMS.

3.6. Probing the intracortical effects of sensory afferents

All intracortical neuronal elements in M1 that contribute to TMS-induced transsynaptic 

excitation of fast-conducting cortical output neurons are strongly modulated by afferent 

activity. Sensory input from the contralateral limb reaches the M1 either through 

the somatosensory cortex or more directly via thalamo-cortical afferents. Electrical or 

mechanical stimulation of afferent activity may either depress or enhance the amplitude of 

MEPs evoked by a single supra-motor threshold TMS pulse (Classen et al., 2000; Tokimura 

et al., 2000). The modulatory effects of sensory stimulation on MEP amplitude depends 
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on the exact interval (Classen et al., 2000; Tokimura et al., 2000) and the somatotopic 

relationship between the sensory input and motor output (Dubbioso et al., 2017). At short 

latencies of around 20 ms, an inhibition (“short-latency afferent inhibition”, SAI) is induced 

whose origin is cortical (Tokimura et al., 2000). SAI is induced by homotopic stimulation 

of sensory input that matches the location of the muscle targeted by TMS. Conversely, 

heterotopic stimulation of a finger distant to the muscle targeted by TMS may produce 

short-latency afferent facilitation (SAF) (Dubbioso et al., 2017). For homotopic stimulation, 

MEPs may also be facilitated at slightly longer latencies, whereas at even longer intervals 

of around 200 ms another afferent inhibition is observed (“long-latency afferent inhibition”, 

LAI) (Chen et al., 1999a). SAI is mediated by cholinergic and GABA-ergic circuits (Di 

Lazzaro et al., 2005; Tokimura et al., 2000).

While the effects of homotopic afferent inputs on singe-pulse MEP amplitude are mostly 

inhibitory (SAI and LAI), afferent inputs induce a disinhibition of local inhibitory circuits 

(SICI, LICI and the CSP) (Hess et al., 1999; Stefan et al., 2002; Udupa et al., 2009, 2014). 

The strength of SICF (see section 3.1.1 for details) is facilitated, when being conditioned 

by electric stimulation of an afferent nerve (Cash et al., 2015). This facilitation increases 

with increasing strength of SICF or SAI (Cash et al., 2015). LAI also has an inhibitory 

interaction with other cortical inhibitory circuits such as LICI, but does not appear to 

influence SICI (Sailer et al., 2002). These examples show that the conditioning effects 

of afferent somatosensory stimulation on the TMS-evoked MEP amplitude can be readily 

probed in conditioning-test paradigms, engaging intracortical circuits. These circuits are still 

incompletely understood and show complex interactions with intracortical circuits that can 

be assessed with paired-pulse conditioning-test TMS paradigms.

Suprathreshold TMS at rest as used in SAI paradigms induces BOLD activations in the 

anterior and posterior subregions of M1-HAND (Shitara et al., 2013), corresponding to 

the location of rostral and caudal sub-divisions (i.e., BA4a and BA4p) found in human 

cytoarchitectonic studies (Geyer et al., 1996). In the squirrel monkey, the rostral and caudal 

portions of the M1 receive different afferent input from the limb: the rostral (old) M1 

preferentially processes proprioceptive kinesthetic input, whereas the caudal (new) M1 

receives mainly cutaneous mechanoreceptive input (Shitara et al., 2013; Strick and Preston, 

1982). Therefore, it is likely that the quality of afferent input will have different modulatory 

effects on cortical circuits in the human BA4a and BA4b. Such differential effects remain 

to be tested in detail. So far, there is only circumstantial evidence derived from plasticity 

inducing TMS protocols that two different sets of motor cortical interneurons exist that both 

contribute to motor output are modulated by afferent activity, presumably receiving input 

predominantly through a spino-cerebello-thalamo-cortical vs. spino-thalamo-cortical route 

(Hamada et al., 2014).

In summary, the synchronized stimulation of afferent volleys can be used to study rapid and 

slow effects on corticomotor excitability as well as the excitability of cortical interneuron 

circuits in the M1. These effects have mainly been studied in the M1-HAND.
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4. What do we know about the effects of TMS targeting areas outside the 

M1-HAND?

4.1. Mapping the motor leg representation

Focal TMS with a figure-of-eight coil can be used to selectively target areas in M1 

which represent a specific body part because of the somatotopic arrangement in the 

pericentral sensorimotor cortex. Most TMS studies of M1 targeted M1-HAND, but TMS 

can also be used to study the cortical representations of other body parts, in particular 

the representations of the leg or face (Groppa et al., 2012a). The primary motor leg area 

(M1-LEG) is located at the mesial surface of the M1 in the interhemispheric fissure (Fink et 

al., 1997; He et al., 1995; Nielsen et al., 1995; Penfield and Rasmussen, 1950). Due to the 

longer distance between the M1-LEG and the stimulating coil, the leg muscles need higher 

stimulus intensities for evoking a MEP relative to the M1-HAND. The most frequently 

studied target muscle in the leg is the tibialis anterior muscle. Because right and left 

M1-LEG are located close to each other, selective unilateral stimulation is more challenging 

than for TMS of the hand or face representations located at the hemispherical surface. 

Descending volleys evoked by both electric and magnetic stimulation over M1-LEG has also 

been recorded from epidural electrodes in human subjects. It was found that the earliest 

volley was produced by TES with the anode 2 cm lateral to the vertex whilst the initial 

volley evoked by TMS occurred 1.1–1.4 ms later. In analogy with the outputs evoked by 

stimulation of the M1-HAND, these were considered to be a D- and an I1-wave (Di Lazzaro 

et al., 2001). Another TMS study recorded descending volleys at the level of the thoracic 

spinal cord elicited by single-pulse TMS of M1-LEG. A similar threshold for eliciting 

a D- and I1-wave was found in 5 out of 10 healthy individuals, while the I1-wave was 

recruited first in the remaining 5 individuals (Houlden et al., 1999). Latency measurements 

from single motor units in the tibialis anterior muscle suggest a predominant activation 

of I1-waves from M1- LEG at intensities close to MT (Terao et al., 2000). Paired-pulse 

TMS of M1-LEG has also shown to evoke SICF revealing a short-latency facilitation of 

MEP amplitude at I-wave periodicity to the same extent as TMS of M1-HAND (Chen and 

Garg, 2000). Together, these results suggest that TMS of M1-LEG may directly (D-waves) 

and indirectly (I-waves) activate corticospinal neurons supplying the lower extremities at 

intensities close to corticomotor threshold.

4.2. Can we generalize from M1 to other cortical areas?

The M1 is a unique area, generating direct corticospinal motor output via large fast-

conducting pyramidal neurons (giant Betz cells) (Geyer et al., 2000). As pointed out 

above, transsynaptic excitation of these fast-conducting pyramidal neurons causes a burst 

of descending volleys in the corticospinal tract which can lead to a MEP. These large 

pyramidal cells and their corticospinal axons represent a unique output structure that is 

not present in other cortical areas. The M1 also shows a large amount of myelination 

and relatively low cell density relative to associative cortical areas. Further, the bulk of 

M1 does not reach the cortical surface, but is located in the wall of the sulcus (Geyer 

et al., 2000). Multidimensional scaling analysis of cortical receptor fingerprints revealed 

“exceptional positions” of motor areas BA4 and BA6, indicating that the microstructure of 
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human precentral cortex differs substantially from most other neocortical areas (Zilles and 

Palomero-Gallagher, 2017). These neuroanatomical and neurophysiological particularities 

render it unlikely that knowledge about the neural underpinnings of TMS-induced cortical 

stimulation gathered with TMS of the precentral gyrus can be transferred one-to-one to 

cortical areas other than M1.

It is common practice to adjust the intensity of TMS to the individual MT, even when 

targeting other brain regions. However, it is unlikely that the cortical MT obtained with 

TMS over the M1 is a reliable indicator for the efficacy of TMS in areas outside M1. 

Both cortical MTs and phosphene thresholds (PT; subjectively estimated with occipital 

TMS) allow standardizing intensities in controlled studies to a certain extent. Most studies, 

however, do not find a correlation when individual PTs are compared with individual resting 

or active MTs (Antal et al., 2004; Boroojerdi et al., 2002; Stewart et al., 2001), but see 

(Deblieck et al., 2008). Although MTs are thus most likely an inappropriate guide to the 

cortical excitability of other non-motor areas of the brain, they are still used due to the 

lack of efficient alternatives. Individual MRI scans can be used to determine the distance 

between the coil and the cortical target and this information may be used to adjust the 

intensity to account for differences in coil–target distance between subjects (Nahas et al., 

2004; Stokes et al., 2005). Electric field models based on the MRI scans can further inform 

individualization of the pulse intensity as well as the coil position and orientation (Beynel et 

al., 2020; Gomez et al., 2021; Gomez-Tames et al., 2020; Janssen et al., 2014).

4.3. Stimulation of cortical areas in the parietal lobe

TMS has contributed to understanding the temporal dynamics of parietal involvement in 

wide range of tasks probing attention, spatial and sensory-motor processing (Duecker 

and Sack, 2015; Rushworth and Taylor, 2006). Yet, a systematic investigation of parietal 

stimulation effects is complicated by large inter-individual variance of the optimal parietal 

stimulation site for a given task (Ryan et al., 2006). This problem is further emphasized 

by the fact that the parietal cortex encompasses multiple specialized regions that differ in 

their functional characteristics. Therefore, TMS studies generally target specific parietal 

sites according to their scientific question of interest. Knowledge is developing about the 

effect of parietal stimulation on distant network nodes, indicating remote effects on visual 

and motor areas (Bestmann et al., 2008; Heinen et al., 2011; Kaneko et al., 2020). Studies 

also suggest that the effect of parietal stimulation may be highly task-specific and influenced 

by individual anatomy (Ryan et al., 2006).

While it has been shown that studies benefit from individualized coil placement based on 

structural or functional MRI (Sack et al., 2009), a consensus for an easy identification 

procedure of individual stimulation sites is not generally available. In analogy to functional 

localization of the M1 with the help of the precentral motor hotspot, TMS-induced 

behavioral interference in visuospatial tasks has been used to functionally determine the 

individual parietal ‘hotspot’, and at this functional parietal hotspot, individual TMS intensity 

correlated with the effect of TMS on task-related reaction time (Oliver et al., 2009; Salatino 

et al., 2014). However, systematic investigations of other parameters such as the optimal 
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coil orientation or pulse number or the impact of task difficulty and specificity remain to be 

systematically explored.

The effects of parietal stimulation on a network level can be explored independently of 

behavioural read-outs with dual-site TMS by applying a conditioning TMS pulse at a 

parietal site and a test pulse at M1 (see section 2.6 for details). An inhibitory parietal 

influence will decrease MEP amplitude, while a facilitatory influence will have the opposite 

effect. Using this technique, an innervation gradient along the intraparietal sulcus (IPS) 

has been found. Conditioning the anterior IPS had an inhibitory effect on M1, whereas 

conditioning the posterior IPS had a facilitatory parietal-motor effect, with stronger posterior 

facilitation in the left hemisphere (Karabanov et al., 2013; Koch et al., 2007). These 

parietal–motor interactions are modulated by task context (Karabanov et al., 2012) and 

their strength is correlated with individual white matter organization in the parieto-motor 

tracts (Koch et al., 2010). Parietal-to-M1 interactions are mostly indirect, and mediated by 

the premotor cortex (Koch et al., 2010). This indirect parietalpremotor-M1 interaction can 

be studied with a triple-coil technique. Using the influence of the premotor cortex on M1 

as readout, a conditioning parietal stimulation can affect premotor-to-M1 interaction at an 

intensity of stimulation that does not affect MEP amplitude directly (Shields et al., 2016).

Multimodal stimulation studies combining TMS with functional MRI or EEG have 

further helped to understand network effects outside of M1: TMS-fMRI demonstrated that 

stimulating IPS produced effects on the BOLD signal in visual area V5/MT+ in a task 

context and stimulation intensity specific manner (Ruff et al., 2008). EEG recordings of 

the evoked cortical response revealed distinct region-specific oscillatory ‘signatures’ in 

response to single-pulse TMS (Fecchio et al., 2017; Rosanova et al., 2009): parasagittal 

stimulation of the superior parietal lobule evoked oscillations in the beta range (13–

20 Hz), while parasagittal stimulation of the frontal or occipital areas evoked gamma 

and alpha oscillations, respectively (Fecchio et al., 2017; Rosanova et al., 2009). The 

discovery of area-specific oscillatory signatures which display different frequencies suggests 

that information processing in these different cortical areas is ‘tuned’ to characteristic 

frequencies.

4.4. Stimulation of visual cortical areas

Visual cortex comprises posterior cortical regions V1–V6 and has been targeted by TMS to 

clarify the working mechanisms of TMS or to investigate the functional specialization of 

specific visual areas. The latter category of studies used focal TMS to temporarily disrupt 

functional processing in the cortical target region. This interference approach proved to 

be useful to demonstrate and characterize causal links between functional specialization 

of visual cortical areas and visual perception. Its temporal resolution enabled to assess 

the temporal flow of information between functionally or anatomically connected visual 

areas. Seminal studies in the field confirmed that TMS over early visual areas V1/V2 in 

the occipital lobe can impair visual perception of shortly presented three-letter stimuli at 

a specific time window, peaking 70–100 ms after the presentation of the visual stimulus 

(Amassian et al., 1989; Beckers and Homberg, 1992; Matthews et al., 2001; McKeefry 

et al., 2008). Later it was shown that TMS of areas V1/V2 suppresses the perception of 
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low-contrast achromatic stimuli activating the magnocellular visual pathway already at an 

earlier time window (i.e., 40 ms earlier) than low-contrast chromatic stimuli activating the 

parvocellular pathway (Paulus et al., 1999a). Focal TMS targeting area V5 at the border of 

the temporal and occipital lobe has been used to weaken visual motion perception, modify 

direction discrimination and speed acuity (Amassian et al., 1989; Beckers and Homberg, 

1992; Matthews et al., 2001; McKeefry et al., 2008).

TMS over the visual cortex can not only disrupt perception but can also induce a transient 

perception of a flash of light, referred to as phosphenes. Phosphenes elicited by TMS of 

V1/V2 are small and static, whereas those induced by TMS over V5 are large, reflecting 

the cortical magnification factor, and are moving (Kammer et al., 2005a; Silvanto and 

Muggleton, 2008). Early studies (e.g. Kammer (1999)) have demonstrated a relatively good 

topographic correspondence between TMS-induced phosphenes and TMS-induced visual 

field deficits (scotomas) induced from several stimulation sites, suggesting that phosphenes 

could aid as a guide for visual stimulus alignment in psychophysical studies. Both TMS-

induced phosphenes and scotomas can be elicited from a large area over the occipital lobe, 

with a large range of possible coil positions. However, the stimulation intensities needed 

to induce phosphenes are lower than the TMS intensities needed for inducing scotomas. 

They correspond mainly to the stimulated hemisphere and, when stimulating over V1/V2, 

occur mostly in the lower visual field, consistent with a stimulation of the dorsal parts of the 

early visual areas. The core of the scotomas matches to the core of the induced phosphenes. 

It is worth pointing out that certain characteristics of TMS-induced phosphenes, such as 

the texture, shape and position in the visual field are stable when the coil is positioned 

at different scalp positions overlying early visual cortical areas in the same hemisphere 

(Salminen-Vaparanta et al., 2013). One may argue that this constancy indicates that TMS-

evoked phosphenes cannot be related exclusively to one functionally defined visual area. 

Alternatively, the finding that TMS elicits stable percepts that are relatively independent of 

the coil position may indicate that the same neuroanatomical structure is always stimulated, 

for instance the same occipital gyrus or portion of the optic radiation (Marg and Rudiak, 

1994).

Complementing the MT derived by TMS targeting the precentral cortex, the phosphene 

threshold (PT) has been used to probe visual cortical excitability alone or in combination 

with other methods, e.g., with EEG or fMRI (e.g., Schwarzkopf et al. (2010); Silvanto et al. 

(2010)). Applying a probability criterion, the PT is most frequently defined as the intensity 

of TMS at which the observer reports phosphenes on 50% of trials. It was proposed that 

the causal relationship between cortical excitation and phosphene perception depends on 

the power and phase of the ongoing occipital alpha activity (Dugue et al., 2011; Romei 

et al., 2008). Cortical stimulation, occurring between the peak (phase = 0) and the next 

zero-crossing (phase = π/2) of the occipital alpha oscillation, is most likely to produce 

phosphenes (Dugue et al., 2011). Nevertheless, as it was mentioned above, the generation 

of phosphenes cannot exclusively be related to a certain functionally defined visual area. 

It was suggested that both the optic radiation close to its termination in the dorsal parts of 

V1 and back-projecting fibers from V2 and V3 back to V1 could generate visual percepts 

(phosphenes) and deficits (scotomas) in distinct parts of the visual field (Kammer et al., 

2005a; Thielscher et al., 2010).

Siebner et al. Page 51

Clin Neurophysiol. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Studies in animals have revealed important insights into the neurophysiological mechanisms 

of action of TMS by targeting visual cortical areas (see section 2.4). In the visual cortex of 

the cat, single biphasic TMS pulse applied over the occipital pole with an electric current 

flowing from lateral to medial elicited neuronal facilitation for 500–1000 ms, followed 

by synchronous suppression of activity lasting up to a few seconds (Moliadze et al., 

2003) or minutes (Allen et al., 2007), affecting a large pool of neurons (Kozyrev et al., 

2014). The immediate effect of the stimulation could be related to a direct or indirect 

threshold-dependent stimulation of inhibitory and excitatory interneurons, e.g. by inducing 

fast intracortical inhibition (Kozyrev et al., 2014), and/or by disrupting the temporal 

structure of activity by altering phase relationship between neural signals (Allen et al., 

2007). Modeling studies support these observations in a local circuit model: a single-pulse 

TMS within a limited time window after the sensory afferent input suppressed spiking 

activity and disrupted the population response (Miyawaki et al., 2012). The magnitude of 

suppression was significantly larger for synaptically-connected neurons than for isolated 

neurons, suggesting that intracortical inhibitory synaptic coupling plays a role in the induced 

suppression. The suppression phase can be blocked by a 10 Hz train of rTMS (Kozyrev 

et al., 2014), as was revealed by optical imaging with voltage-sensitive dye in the visual 

cortex of cats. Other studies found that a single pulse or trains of TMS affect the activity 

not only of the visual cortical neurons but also those in the large cortico-geniculate feedback 

pathway, connecting V1 and the dorsal lateral geniculate nucleus (de Labra et al., 2007). 

It was hypothesized that this involves inactivation of the cortico-geniculate downflow, 

affecting mainly the tonic neuronal activity (de Labra et al., 2007).

Many of these findings in animals have implications for the application of TMS to study 

the visual system in humans. For instance, measurements of spiking activity and local 

field potentials in the cat visual cortex suggested that TMS has state-dependent effects: 

higher pre-TMS activity predicted larger post-TMS responses (Pasley et al., 2009). In 

human studies, it was also observed that the neural impact of a stimulation is determined 

not only by stimulus properties, but also by the baseline activation state of the targeted 

brain region: TMS impairs motion detection ability when it is applied over V5 during a 

simple motion detection task, but using the same stimulation parameters it facilitates motion 

detection if the targeted area was experimentally suppressed prior to the task (Cattaneo 

and Silvanto, 2008; Silvanto et al., 2008; Silvanto and Pascual-Leone, 2008). Exploitation 

of visual adaptation led to the observation that the less active visual neuronal populations 

within the targeted area react stronger to TMS, suggesting that the sensitivity of cortical 

neurons to TMS depends on their on-going firing rates. This reduces the signal-to-noise 

ratio and results in a behavioral disruption. However, in this effect the interaction between 

the stimulus strength and the TMS intensity is critical, by decreasing the TMS intensity the 

visual performance can be increased (Abrahamyan et al., 2011; Schwarzkopf et al., 2011). 

This low-intensity phenomenon may reflect stochastic resonance introduced by low-intensity 

TMS, which enhances information transfer by the addition of low levels of noise (Miniussi 

et al., 2013; Miniussi et al., 2010). This, in turn, lowers the threshold for visual perception at 

the behavioral level.

Developments in the field during the last decade imply that the application of rhythmic 

TMS is a promising tool to entrain cortical activity (Herring et al., 2015; Thut et al., 2003; 
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Thut et al., 2011). It was suggested that in the visual cortex, TMS-evoked oscillations are 

generated by the same neuronal circuits as the targeted spontaneous oscillations (Herring 

et al., 2015). Oscillations in the alpha-frequency band evoked by single-pulse TMS were 

modulated by top-down attention in the same direction as spontaneous alpha oscillations, 

increasing in amplitude when visual attention was low and decreasing when it was high. 

Therefore, rhythmic TMS can be an effective tool to study the causal role of neuronal 

oscillations in visual perception.

4.5. Stimulation of prefrontal cortex

TMS to the prefrontal cortex (PFC) has helped to establish the role of the PFC in cognitive 

functions like memory (Rossi et al., 2012), language (Cattaneo, 2013) and decision making, 

as well as the internal milieu of behavioral motivations and emotions (Levasseur-Moreau 

and Fecteau, 2012; Mondino et al., 2015) in a deterministic framework (Miniussi et al., 

2013). All these depend on the ability of TMS to transiently interact with the activity of 

specialized functional networks, especially when applied “online” during task execution. 

The immediacy of TMS-induced online effects can establish a clear relationship between 

cause and effect, if not directly then at least through a chain of intermediate mechanisms 

(Bergmann and Hartwigsen, 2021). For M1, it is well known that the threshold, latency, and 

amplitude of the MEP response evoked by TMS strongly depend on the direction of the 

induced current in the precentral gyrus (see section 2.1). A behavioral TMS study showed 

that the orientation of the induced electrical current is also relevant when stimulating the 

prefrontal cortex (Hill et al., 2000). TMS was applied with a figure-of-eight coil, placed at 

one of eight different orientations over the dorsomedial prefrontal cortex, while participants 

performed a memory-guided saccade task. It was found that the most effective current 

orientation to interfere with memory-guided saccades was antero-lateral (Hill et al., 2000). 

This direction-specific behavioral effect indicates that the induced current direction in the 

cortical target area needs to be considered as independent variable, when studying online 

effects of TMS on task performance.

The effects of prefrontal TMS are not only mediated by TMS-induced changes in the 

PFC region that is directly stimulated by TMS. Given the complex interactions of the 

PFC with other areas, TMS affects the functional interaction of the stimulated area with 

connected brain areas, which may contribute substantially to the effects of prefrontal TMS 

at the behavioral level. These connectivity-based network effects should not be viewed as a 

limitation. Methodological control conditions achieved by stimulation of cortical areas or by 

looking at time course of interactions between nodes will reveal distinct specializations. For 

example, it might be possible to establish functional connectivity and a hierarchy of control 

(i.e., from the PFC to other cortices) by means of multi-site TMS or TMS in combination 

with neuroimaging procedures (Castrillon et al., 2020; Lorenc et al., 2015; Siebner et al., 

2009). For instance, a conditioning TMS pulse of the pre-supplementary motor area in the 

medial prefrontal cortex facilitated MEPs elicited by a TMS test pulse over M1-HAND, 

when actions had to be re-programmed (Mars et al., 2009). Dual-site TMS did not produce 

any MEP facilitation, when the same actions had to be produced in the absence of conflict.
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Prefrontal TMS has also been used to characterize the differential involvement of the 

same cortical area in different cognitive tasks. Here, the same protocol may induce 

opposite effects based on the specific cortical engagement and capacities related to the 

cognitive function that are engaged by the experimental task. For example, the same TMS 

protocol applied to the same PFC region may facilitate a cognitive function, e.g., action 

naming (Cappa et al., 2002), yet impair long-term memory (Rossi et al., 2001). Therefore, 

behavioral effects induced by prefrontal TMS require a nuanced interpretation that considers 

the specific task context and generalizing conclusions should be made with caution.

Prefrontal TMS is often personalized by adjusting the intensity to individual resting motor 

threshold as determined at M1-HAND, but, as discussed above, this dosing procedure relies 

on the assumption that prefrontal cortex and precentral gyrus are equally responsive to 

TMS. Kahkonen et al. (2004) used the TMS evoked cortical potential to capture the dose–

response relationship of the prefrontal cortex. Applying single TMS pulses to dorsomedial 

prefrontal cortex, they found that the TEPs at the Fz/FCz electrodes scaled positively with 

stimulus intensity (Kahkonen et al., 2004). This TEP response was already observed at 60% 

of the MT (assessed at M1-HAND), and TEP amplitude increased as stimulation intensity 

is increased (Kahkonen et al., 2005). While these data suggest that M1 threshold may be 

used for determining the TMS intensity of PFC (see also Kaminski et al. (2011)), a recent 

study by Conde et al. (2019) was able to produce very similar TEPs as those that had been 

published by Kahkonen et al. (2005) with a realistic sham stimulation. The realistic sham 

TMS procedure mimicked the auditory and somatosensory co-stimulation in the absence of 

significant transcranial stimulation of the prefrontal cortex (Conde et al., 2019). Together, 

these studies indicate that the regional TEP response to prefrontal TMS may be used for 

individual dose adjustment, but this procedure is only valid if the procedure controls for 

peripheral co-stimulation.

4.6. Stimulation of premotor areas in the frontal lobe

Premotor areas are located rostral to M1 and thus can be targeted using the precentral 

motor hot spots as reference points. The premotor cortex has traditionally been functionally 

divided into dorsal (PMd) and ventral (PMv) premotor areas. Recent studies however 

suggest a more complex organization, e.g. that PMd itself is composed of several functional 

subdivisions (Genon et al., 2017; Genon et al., 2018). The PMd and PMv are located 

anterior to the hand and face representations of the M1. Since the PMd and PMv are located 

at the hemispheric surface, these regions can be targeted with TMS using relatively low 

stimulus intensities. The caudal supplementary motor area (also referred to as SMA-proper) 

is located medially within the interhemispheric fissure just in front of M1-LEG. Due to its 

rather deep location relative to the hemispheric surface, effective stimulation of the SMA 

using TMS requires relatively higher stimulation intensities than PMd and PMv and will 

also result in concurrent stimulation of more superficial and medial parts of the PMd. Caudal 

premotor areas can indirectly influence corticospinal motor output via dense cortico-cortical 

connections to M1, but also potentially directly via descending, di-synaptic projections to 

spinal motoneurons (Dum and Strick, 2005).
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Most TMS studies have typically investigated the role of PMd and PMv in the context 

of skilled hand movements. It has been shown that PMd contributes to the anticipatory 

control of grasping movements when they are conditioned to external cues, such as arbitrary 

associations between color and object weight (Chouinard et al., 2005; van Nuenen et al., 

2012), but also to internal sensorimotor signals, such as lift initiation after enough tactile 

information has been accumulated (Davare et al., 2006; Loh et al., 2010). These TMS 

findings fit well with recordings in non-human primates showing that PMd (F2) contains a 

hand representation (Raos et al., 2004). Recordings of neural activity in this area identified 

neurons which exhibit cue-specific preparatory activity (Cisek and Kalaska, 2005). It is 

therefore plausible that TMS interfered with the firing rate of this neuronal population, 

hence leading to measurable deficits in grasp control. Further, dual-site TMS experiments 

probed PMd-to-M1 interactions and revealed short-latency (1.2 ms) net facilitatory effects 

of ipsilateral PMd on corticospinal output from M1-HAND (Groppa et al., 2012c). The 

expression of this ultra-short ipsilateral premotor-to-motor facilitation was modulated by 

task context, depending on the cued motor response (Groppa et al., 2012c). Hence, dual-site 

TMS can probe how preparatory motor activity encoded in PMd contributes to motor output 

generated in M1 during cued motor tasks.

TMS applied over PMv was shown to disrupt hand shaping and alter the pattern of hand 

muscle recruitment when grasping an object (Davare et al., 2006). Interestingly, neuronal 

recordings in the monkey PMv (F5) demonstrated the existence of visuomotor ‘canonical’ 

neurons whose firing rate was grasp- and object shape-specific (Rizzolatti and Luppino, 

2001). Based on these two findings, Davare et al. used a dual coil TMS protocol where 

a conditioning pulse over PMv probed the effect of underlying neural populations on a 

test pulse applied 6–8 ms later over M1 (Davare et al., 2008). Thus, the rationale was 

to experimentally manipulate the excitability of visuomotor neurons in PMv by asking 

subjects to perform a precision grip vs. a whole hand grasp, which would in turn show 

grasp-specific effects of PMv conditioning on M1 output. At rest, PMv conditioning exerted 

a net inhibitory influence on M1, whereas during grasp preparation PMv facilitated M1 in a 

muscle- and grasp-specific fashion (Davare et al., 2009; Davare et al., 2010). Interestingly, 

this demonstrates that the susceptibility of a given neural population to TMS varies based 

on its excitability level. A similar physiological mechanism can also explain the fact that 

net inhibitory or facilitatory PMv-M1 interactions can be found by varying the intensity 

of PMv-TMS conditioning, an experimental manipulation likely to recruit different PMv 

output neurons with different connectivity profiles (Baumer et al., 2009). In line with 

this view, another study found that right PMv-left M1 physiological interactions switch 

from facilitation to inhibition when the grasp had to be corrected online (Buch et al., 

2010). Again, the mechanism underlying this effect can be explained if the implementation 

of corrective grasp motor commands brings into play another neural population with a 

prominent inhibitory influence on M1.

4.7. Stimulation of the cerebellum

One major challenge for quantifying the effects of cerebellar stimulation is the lack of any 

direct, non-invasively measurable output. The effects can only be inferred from secondary 

measurements, either physiological or behavioural. Physiological measurements allow for 
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evaluation of both instantaneous (online effects) or delayed consequences (after-effects) 

of cerebellar TMS, whereas behavioural read-outs are only suited (with few exceptions) 

to evaluate after-effects of cerebellar TMS. Two physiological approaches to probe the 

impact of cerebellar TMS stand out so far, as they offer excellent temporal resolution: 

one approach measures modulatory effects of cerebellar TMS on corticomotor excitability 

in M1 (Daskalakis et al., 2004), while the other uses eye movement recordings as 

psychophysiological read-out (Colnaghi et al., 2010). To explore these discrete cerebellar-

motor interactions in humans, cerebellar output can be manipulated non-invasively either 

with electrical or magnetic pulses (Ugawa et al., 1991; Ugawa et al., 1994; Ugawa et al., 

1997; Ugawa et al., 1995).

Despite their ideal temporal resolution, there is one major limiting factor: the scalp-to-

cerebellar cortex distance is more than three times longer and more variable than the 

distance from scalp to M1-HAND. This leads to poor focality and neuronal population 

targeting (Wagner et al., 2009; Wagner et al., 2007). Indeed, some authors have found 

that smaller coils are unable to activate cerebellum because their fields do not penetrate 

sufficiently deep below the scalp (Spampinato et al., 2020). Most authors use large coils 

(such as the double cone coil) for cerebellar stimulation, and further improvements might 

be achieved with non-focal TMS coil designs with higher depth penetration (Hardwick et 

al., 2014). However, such solutions raise further problems. These coils are less comfortable 

because they produce strong neck muscle contraction and activate afferent axons in nerves of 

the cervicobrachial plexus (Werhahn et al., 1996). Non-focal stimulation may also activate 

the neighbouring occipital lobe and result in anti- and orthodromic co-activation of the large 

myelinated axons in the corticospinal tract or other major ascending fibre tracts in the brain 

stem. So far, two methods have been proposed to address these problems: one is to adjust 

the stimulation intensity according to the individual distance between the scalp and the 

cerebellar target (Popa et al., 2010), while the other is to identify the intensity required 

to activate pyramidal tract axons in the brainstem beneath the cerebellum. Cerebellar 

stimulation limited to intensities lower than this threshold would reduce brainstem activation 

and have the additional advantage of avoiding antidromic conduction of pyramidal tract 

impulses back into M1 (Fernandez et al., 2018; Ugawa et al., 1995).

At the same time, the critical role of the distance between the coil and the cerebellar target 

also represents an advantage for applying an ideal, active sham stimulation. The active sham 

condition is represented by a real stimulation delivered with the exact same intensity as in 

the real TMS condition, but with the coil placed 5 cm below the cerebellar target on the 

back of the neck (Kishore et al., 2014; Popa et al., 2010). This realistic sham TMS condition 

induces the same twitch in the neck muscles, produces the same sound, and stimulates 

similarly the brachial plexus, but without delivering a neurobiological significant stimulation 

to the cerebellar target.

A better understanding of what structures within the cerebellum are responding to TMS 

could also help us adjust the stimulation intensity and orientation appropriately. A few 

studies have addressed this problem by modelling the effective electric fields that are 

induced by TMS in the neuronal structures of the posterior fossa (Bijsterbosch et al., 2012; 

Guadagnin et al., 2014; Hardwick et al., 2014; Rampersad et al., 2014). They concluded 
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that the effects critically depend on the subjacent anatomy, tissue composition, and coil 

placement - individual modeling being necessary for minimizing outcome variability. 

Regarding the modeling of the electric fields in the cerebellar folia, it is still unclear whether 

they show a similar directional dependency as shown for the cortical gyri of the neocortex. 

In the cerebrum, direction-specific effects depend on the cerebrospinal fluid compartment 

on both sides of the gyral crown, but the situation may be very different in the cerebellum 

with its densely packed folia (Opitz et al., 2011). It is still unclear which neural structures 

in the cerebellar cortex are most susceptible to stimulation and how much the underlying 

white-matter fibers can be effectively stimulated. Are the Purkinje cells stimulated directly 

or transsynaptically through the parallel or climbing fibers? Animal models, along with 

realistic individual head models and field distribution for humans are needed to answer these 

questions. However, despite of the uncertainty regarding its spatial resolution and target, the 

superb temporal resolution of the TMS pulses bears great potential for empirical studies of 

cerebellar function, especially when exploring physiological effects.

Two experimental approaches can currently provide clues regarding the structures that are 

stimulated within the cerebellum. One approach employs dual-site conditioning-test TMS 

targeting the cerebellar hemisphere and the contralateral M1-HAND. The second approach 

involves single TMS pulses delivered over the ocular motor vermis (posterior vermis, lobule 

VIc and VII) during saccade adaptation. For dual-site cerebellar-cortical TMS, the first 

coil is placed over the cerebellum and applies a conditioning stimulus to the posterior 

cerebellum. This conditioning cerebellar stimulation can reduce the amplitude of MEPs 

evoked by a test pulse delivered over M1-HAND 5–7 ms after the cerebellar conditioning 

stimulus (Ugawa et al., 1995). The effect is due to activity in cerebellar outflow fibres in the 

superior peduncle which conduct impulses to cortex via thalamus and is absent in patients 

with ataxia with lesions within this pathway (summarised in Iwata and Ugawa (2005)). The 

final projections of the cerebellothalamo-cortical pathways also seem to project onto cortical 

interneurons, at least in M1-HAND, since cerebellar conditioning pulses decrease not only 

MEPs but also SICI, while facilitating ICF (Brighina et al., 2009). Moreover, continuous 

theta-burst stimulation (cTBS) of the cerebellum reduces SICI and increases LICI, while 

cerebellar iTBS reduces LICI (Koch et al., 2008).

The conditioning-test approach is most frequently referred to as cerebellar-brain inhibition 

(CBI) or less commonly, but more specifically, cerebello-motorcortical inhibition (Ni et 

al., 2010). This cerebello-motorcortical inhibition can be temporarily suppressed by low-

intensity 1 Hz rTMS or cTBS delivered to the cerebellum with a flat coil that cannot 

reach deeper than the cerebellar cortex (Popa et al., 2010), or by tDCS that induces a local 

change of regional excitability in the cerebellar cortex (Batsikadze et al., 2019). It was 

hypothesized that cerebellar TMS pulses activate the Purkinje cells, which send inhibitory 

projections onto the den-tate nucleus, thus resulting in a de-facilitation of the tonically 

excitatory dentato-thalamo-cortical pathway (Daskalakis et al., 2004; Pinto and Chen, 

2001; Ugawa et al., 1997; Ugawa et al., 1995). Recent electrophysiologic measurements 

in animals support this view: superior cerebellar peduncle stimulation in monkeys evoked 

motor cortical responses at a latency consistent with a bi-synaptic projection (Nashef et al., 

2018). Yet, does the cortico-to-nuclear de-facilitation hypothesis account for the temporal 

profile of cerebello-motocortical inhibition? The cerebellar TMS pulses elicit a suppression 

Siebner et al. Page 57

Clin Neurophysiol. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of MEP amplitude already after a few milliseconds. Such short-latency onset inhibition 

can be evoked with paired-pulse TMS of M1-HAND and reflects the temporal dynamics 

of inhibitory postsynaptic potentials (i.e., SICI). Even if the TMS pulse acutely blocks the 

output from the excitatory dentato-thalamo-cortical pathway, it is unlikely that this will 

immediately and synchronously remove all the excitatory action potentials that are on their 

way to the cortex. Since this excitatory drive is temporally dispersed, its removal should 

take at least a few milliseconds. Therefore, one might expect a later onset of CBI, if 

cortico-to-nuclear de-facilitation is the key mechanism.

Another approach employs single TMS to target the ocular motor vermis (posterior vermis, 

lobule VIc and VII) during saccade adaptation. TMS of these structures can induce 

hypometric contralateral and hypermetric ipsilateral saccades (Hashimoto and Ohtsuka, 

1995), accelerate ipsiversive pursuit and decelerate contraversive pursuit (Ohtsuka and 

Enoki, 1998), and reduce the delay between eye and head movements in coordinated 

eye-head movement tasks (Nagel and Zangemeister, 2003). These effects were attributed 

to the TMS pulse increasing the inhibitory output from the paravermal Purkinje cells to the 

ipsilateral fastigial nucleus, thus introducing an imbalance in the control of the pontine and 

midbrain burst neurons (Colnaghi et al., 2010).

Evidence for the influence of cerebellar TMS on non-motor cortical areas in humans is still 

indirect, coming mostly from fMRI studies. Both intermittent and cTBS of the cerebellum 

appear to modulate the functional connectivity between the cerebellum and the default mode 

network, dorsal attention system, and frontal and parietal cognitive regions (Halko et al., 

2014; Rastogi et al., 2017). More indirect support for the effects of cerebellar stimulation 

on non-motor functions begin to emerge from cognitive neuroimaging studies (e.g., verbal 

working memory (Sheu et al., 2019), short term memory of visual sequences (Ferrari et al., 

2018a), perception of emotional content (Ferrari et al., 2018b), attentional control (Esterman 

et al., 2017), visuomotor learning adaptation (Koch et al., 2020), or sequence learning: 

(Ballard et al., 2019), etc.).

5. Concluding remarks

More than three decades have passed since TMS was introduced as a non-invasive method 

to stimulate the human cortex. Although it has undoubtedly pushed the frontiers of 

human neuroscience and interventional neurophysiology with a potential for therapeutic 

applications, we still lack a comprehensive understanding of which neural elements in the 

cortex are primarily targeted with TMS. It is fair to conclude that TMS induces action 

potentials by depolarizing myelinated axonal structures in the stimulated cortex and that 

this regional excitation may spread via cortico-cortical and cortico-subcortical connections 

to connected brain regions. Both the regional as well as remote effects due to spread of 

excitation via neural fibers are highly state-dependent and involve excitatory (glutamatergic) 

and inhibitory (GABA-ergic) neurons. More detailed statements regarding the preferential 

site of excitation (e.g., gyral crown versus sulcal wall) or the sensitivity of distinct classes 

of intracortical neurons are still debated, although some progress has been made in recent 

years to clarify these questions. More basic research on the biophysics and neurobiology of 

TMS is needed to get further basic insight into its mechanisms of action. Preclinical research 
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in animals, particularly recordings from single cells and the use of advanced methods such 

as optical imaging and optogenetics in combination with neuroimaging and biophysical 

modeling need to work hand in hand to clarify how TMS interacts with the human brain. 

The complexity of the brain’s response to TMS provides a challenge for the interpretation 

of its (neuro)physiological and behavioural effects (Bestmann and Krakauer, 2015), and 

cautions against simplistic rationales for its application. A deeper understanding of how a 

magnetic pulse (or pulses) stimulates the brain from single cell types to microcircuits to 

brain networks is a prerequisite for linking the physiological and behavioural consequences 

of TMS, tailoring TMS to individual brains and for advancing it as a scientific and 

therapeutic tool.
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Abbreviations:

A-P Anterior-to-posterior

BEM Boundary element method

CBI Cerebellar-brain inhibition

CSP Cortical silent period

cTBS Continuous theta-burst stimulation

D-wave Direct wave

EEG Electroencephalography

FEM Finite Element Methods

fMRI Functional magnetic resonance imaging

GABA c-aminobutyric acid

I-waves Indirect waves

IPS Intraparietal sulcus

ISI Interstimulus interval

iTBS Intermittent theta-burst stimulation

L-M Lateral-to-medial

LAI Long-latency afferent inhibition

LICI Long-interval intracortical inhibition

M1 Primary motor cortex

M1-HAND Hand representation of primary motor cortex

MEP Motor evoked potential

MT Motor threshold

P-A Posterior-to-anterior
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PAS Paired associative stimulation

PET Positron emission tomography

PFC Prefrontal cortex

PMd Dorsal premotor cortex

PMv Ventral premotor cortex

PT Phosphene threshold

rCBF Regional cerebral blood flow

rCMRglu Regional metabolic rate of glucose

rTMS Repetitive transcranial magnetic stimulation

S-D Strength–duration

SAF Short-latency afferent facilitation

SAI Short-latency afferent inhibition

SICF Short-interval intracortical facilitation

SICI Short-interval intracortical inhibition

TEP TMS evoked EEG potential

TES Transcranial electric stimulation

TMS Transcranial magnetic stimulation

VGSC Voltage-gated sodium channel Indices

ANT anterior

POST posterior.
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HIGHLIGHTS

• TMS primarily targets the gyri at the hemispheric surface due to limited depth 

penetration.

• The direct response to TMS is complex, involving a mixture of neuronal 

populations.

• Myelinated axon terminals of pyramidal cells and inhibitory interneurons in 

the crown of the gyri constitute low-threshold targets for TMS.

• Neuronal excitation propagates along axons and across synapses from the 

primary stimulation site to connected regions in a state-dependent fashion.

• TMS always causes substantial peripheral somatosensory and auditory co-

stimulation.
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Fig. 1. Sagittal view on the pre and postcentral gyrus illustrating key biophysical features of 
transcranial magnetic stimulation (TMS).
The sagittal slice cuts through the motor hand knob which hosts the precentral motor hand 

representation. Panel A. Spatial pattern of the electric field magnitude (|E|) induced by 

TMS in both precentral and postcentral gyrus (generated with SimNIBS software). Note 

that the highest field strengths are obtained in the crowns of the pre- and postcentral 

gyri. The illustration also shows that significant “hot spots” may arise in subcortical 

white matter, although the activation threshold there is likely to be different than in the 

gray matter due to differences in the represented neural elements. The numbers indicate 

the various cyto-architectonically defined cortical areas according to Brodmann. Panel 
B. Layer-specific distribution of activation thresholds in relation to induced current 
direction in the hand knob of the pre-central gyrus. Shown are median thresholds for 

layers 1–6 on analysis plane through pre-central gyrus, parallel to coil handle and near coil 

center for monophasic stimulation with posterior-anterior (P-A) and anterior-posterior (A-P) 

current directions. The thresholds were simulated with a multi-scale model coupling electric 

field distribution from Panel A to morphologically realistic cortical neuron models in 

NEURON software. Modified from Aberra and colleagues (2020) with permission. Panel C. 
Direction-specific depolarization of axon terminals illustrated for pyramidal cells (PC) 
in cortical layers II/III, IV and V. Pyramidal cells, including their axonal arborization, are 

“projected” into the anterior (light blue) and posterior part (light green) of the precentral 

gyrus, forming the posterior wall of the precentral gyrus or anterior wall of the central 

sulcus, respectively. The same cells are also projected onto the crown of the precentral gyrus 

(grey area). Depending on the induced current direction in the precentral gyrus, different 

terminals of axonal branches are primarily depolarized by the TMS-induced electric field. 

These axons are highlighted as bold blue and green lines according to induced current 

directions. Axon branches susceptible to a posterior-anterior (P-A) current direction in the 

gyrus are labeled in blue and axon branches susceptible to anterior-posterior (A-P) current 

direction are labelled in green. The dendritic tree, soma and axonal branches perpendicular 

to the P-A and A-P directions are labeled in grey and red color. From a biophysical 

modeling perspective, the axon terminal mechanism of action potential induction illustrated 

in this panel is a key mechanism by which TMS induces action potentials, but it does 

not exclude additional mechanisms (e.g. excitation at axonal bends), especially at high 

Siebner et al. Page 85

Clin Neurophysiol. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intensities of stimulation. The illustration is inspired by results from the multi-scale model 

depicted in Panel B. Please note that the real size of the TMS coil is much larger. ANT: 

anterior, POST: posterior.
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Fig. 2. Theoretical accounts for the site of activation for transcranial magnetic stimulation (TMS) 
in the precentral gyrus.
The figure displays a sagittal slice through the motor hand knob of the precentral gyrus 

with pyramidal cells occupying layer II/III. Inset A. Drawing of a single pyramidal cell. 
Displays a drawing of a single pyramidal cell with key anatomical features highlighted. 

Inset B. Activation of pyramidal cell in the crown or lip region. The panel depicts a 

pyramidal cell (Neuron A) located in the crown of the precentral gyrus. Possible sites of 

activation with a monophasic current (posterior-to-anterior direction) are highlighted in red 

for pyramidal cells modelled with and without axonal arborizations. Note that the axon 

terminals constitute primary targets when the pyramidal cell is modeled with arborizations. 

Neural excitation at the axon terminals will lead to propagation of action potentials in both 

orthodromic and antidromic directions. The orthodromic propagation leads to transsynaptic 

effects in downstream neurons (e.g. Neuron B). In contrast, when the neuron is modelled 

without axonal arborizations, activation is unlikely to take place in the crown region of 

the gyrus. This is in accordance with the phenomenological cortical column cosine theory 

(Fox et al., 2004) and demonstrated via modeling in Aberra et al., (2020). Inset C. 
Activation of a pyramidal cell in the lip region of the gyrus or in the sulcal wall. 
The panel shows a pyramidal cell located at the border between the lip region and the 

sulcal wall of the precentral gyrus. Possible sites of activation with a monophasic current 

(posterior-to-anterior current direction) are highlighted in red for cells modelled with and 

without axonal arborizations. Please note that activation at e.g. the axon terminal or the axon 

hillock can lead to both orthodromic and antidromic propagation of action potentials. The 

orthodromic activation will lead to transsynaptic effects. Induction of action potentials at the 

axon terminals (or axon hillocks, although this is less plausible from a biophysical modeling 
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perspective) provides a key mechanism through which TMS exerts its neuronal effects. This 

does not, however, preclude other potential sites of activation such as excitation at axonal 

bends as discussed in the text.
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Fig. 3. Multiple sites of peripheral co-stimulation. The figure summarizes peripheral sensory 
receptors and axons that can be excited by transcranial magnetic stimulation (TMS).
Blue box. Auditory stimulation by the loud, high frequency click sound produced in the coil 

and cable during discharge, causing auditory evoked potentials (AEP) in the EEG. Yellow 
box. Somatosensory stimulation of peripheral sensory and motor axons (i.e., peripheral 

branches of the facial, trigeminal or occipital nerve) give rise to cortical somatosensory 

potentials (SEPs). Excitation of peripheral motor nerves lead to sensory input caused by 

the evoked muscle twitches. Twitch-induced sensory input also occurs, when TMS of motor 

cortex produces motor evoked potentials (MEP). In addition, the proximal segments of 

the facial and trigeminal nerves can be effectively excited by TMS at many scalp sites, 

even within the commonly used range of stimulus intensities. Green box. Somatosensory 

stimulation may arise from magneto-electric stimulation of afferent myelinated nerve fibers 

or mechanical stimulation of unencapsulated Ruffini-like receptors in the dura mater. Red 
box. The skin contains various receptors responding to coil-induced tonic pressure or TMS-
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induced coil vibration (Meissner’s corpuscles, Merkel’s disks and Pacinian corpuscles) and 

stretch due to coil movement (Ruffini corpuscles).
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Fig. 4. Network effects of transcranial magnetic stimulation (TMS) and state-dependency.
Focal TMS can induce neural activity in nodes of the brain network connected with 

the targeted cortical region. Excitation of connected regions occurs through axonal and 

transsynaptic conduction of the regionally induced action potentials to anatomically 

connected cortical and subcortical regions. Axonal spread may also involve antidromic 

excitation. The propagation of neuronal excitation throughout the network depends on 

its physiological state at the time of stimulation. This is illustrated conceptually in the 

network diagram. Depending on whether TMS is applied in state A or state B, the network 

propagation that is evoked by a physically identical TMS pulse given over exactly the 

same cortical region (red) with the same intensity, may differ substantially not only in 

magnitude but also in spatial pattern. State dependence may be more relevant to orthodromic 

propagation as compared to antidromic propagation throughout the targeted brain network.
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Fig. 5. Candidate descending corticospinal pathways activated by transcranial magnetic 
stimulation (TMS) in the precentral motor hand knob.
The insertion in the upper right-hand corner displays a sagittal slice of the motor hand 

knob with key anatomical landmarks highlighted. The likelihood of direct activation 

of neurons appears greatest in the lip/rim regions of the motor hand knob. Through 

synaptic transmission in cortico-cortical projections, activation will spread and activate 

rostral and caudal parts of M1 potentially contributing to indirect waves (I-waves). The 

greater preponderance of fast-conducting, monosynaptic cortico-motoneuronal neurons in 

the caudal (new) M1 (BA4p) compared to the rostral (old) M1 (BA4a) is highlighted. As 

shown, the exact transition between the rostral parts of the M1 and the caudal of PMd in the 

lip/rim region of the gyrus is gradual and may vary from subject to subject (highlighted in 

orange). Please note that this figure focuses on the precentral gyrus and anterior wall of the 

central sulcus, but additional corticospinal pathways may be activated by TMS via excitation 

of postcentral primary somatosensory cortex (S1) and its cortico-cortical projections to 

rostral/caudal M1.
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