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This protocol describes a complete data acquisition, analysis and computational forecasting 

pipeline for employing quantitative MRI data to predict the response of locally advanced breast 

cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously 

been successfully applied to a heterogeneous patient population. The protocol details how to 

acquire the necessary images followed by registration, segmentation, quantitative perfusion and 

diffusion analysis, model calibration, and prediction. The data collection portion of the protocol 

requires ~25 min of scanning, postprocessing requires 2–3 h, and the model calibration and 

prediction components require ~10 h per patient depending on tumor size. The response of 

individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, 

reaction–diffusion mathematical model to these data. Successful application of the protocol results 

in coregistered MRI data from at least two scan visits that quantifies an individual tumor’s size, 

cellularity and vascular properties. This enables a spatially resolved prediction of how a particular 

patient’s tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the 

numerical solution of partial differential equations, is required to carry out this protocol.

Introduction

‘Mechanism-based modeling’ of cancer implies the incorporation of biological mechanisms 

into a mathematical model designed to predict the spatial and/or temporal dynamics of 

tumor characteristics. We (and others) have previously described the various opportunities 

and barriers for the practical use of imaging data in predictive, mathematical modeling 

of cancer1-4. There is growing evidence that imaging-informed, biophysical mathematical 

models can accurately predict the development of cancers of the kidney5, prostate6,7, 

brain8-11, lung12,13, pancreas14-17, and breast18-27. These studies often aim to evaluate tumor 

growth or response to therapy on a patient-specific basis without having to first ‘train’ the 

model on large population data; that is, the individual patient’s data calibrate the model, 

followed by a model-generated prediction about that individual patient’s tumor response. 

Imaging data are a fundamental enabler of this process as the measurements can be collected 

in three dimensions (3D) at the time of diagnosis and at multiple time points throughout 

treatment, allowing for patient-specific calibration and prediction. Such an approach not 

only has the capacity to potentially forecast response for individual patients, but this strategy 

may also enable an in silico twin to be established for each patient to test therapeutic 

regimens and optimize treatment26,28. As the majority (85%) of oncology patients receive 

their care outside of academic research-oriented medical facilities29, parameterizing models 

with data accessible in a community setting that is specific to an individual has the potential 

to dramatically and positively impact patient care.

This protocol describes how to acquire quantitative MRI data of breast cancer within 

community-based radiology centers, analyze this data to return spatially resolved maps 

of tumor physiology, and employ the derived parameters for calibrating a predictive, 

mechanism-based, mathematical model of tumor growth and treatment response on a 

patient-specific basis. While the components of this pipeline have been previously described 

separately18-27, this the first description of how to apply the methodology as one complete 

process. There has been a recent increase in the use of medical imaging data to inform 

patient-specific mathematical models of tumor growth and treatment response (see, e.g., 
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ref. 30,); however, the field has been hampered by a lack of consensus on how the relevant 

data are collected, processed and modeled. Thus, we hope this protocol will also provide a 

(practical) learning tool that enables future strategies to be developed that use MRI data in 

mathematical oncology.

Development of the protocol

Traditionally, high-spatial-resolution imaging data that enable anatomical and morphological 

assessment have been acquired in the standard-of-care setting. Such data do not typically 

provide insights into the underlying physiological, cellular and molecular characteristics of 

cancer, thereby limiting their use for mechanism-based, mathematical modeling. Developing 

more specific and quantitative measurements related to tumor biology, such as vascular 

status, perfusion, cellularity, hypoxia, metabolism and proliferation, is a major effort in 

MRI research31. The field has matured over the last decade, with many publications 

establishing the repeatability and reproducibility of several of these imaging measures32-35. 

The National Cancer Institute’s Quantitative Imaging Network was formed to further the 

clinical validation of such quantitative imaging to enable prediction of tumor response to 

therapies in clinical trial settings36.

The present protocol uses two quantitative MRI modalities: dynamic contrast-enhanced 

MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI). DCE-MRI acquires images in 

rapid succession before, during and after the injection of a contrast agent. If the data are 

acquired at high enough temporal resolution, they can be analyzed with an appropriate 

pharmacokinetic model to estimate different tissue vascular features on a voxel-specific 

basis within the imaging volume. DCE-MRI is repeatable and reproducible37-39, and the 

output of DCE-MRI analysis has a statistical relationship with the response of breast 

tumors to neoadjuvant therapy (NAT)40-42. In a parallel fashion, DW-MRI acquires data 

on water mobility in tissues that are linked to the number and quality of cell barriers present, 

thereby providing a noninvasive readout on tissue cellularity43. DW-MRI is also repeatable 

and reproducible37,38,44 and can predict the response of breast tumors to NAT40,45. 

These two methods are therefore reasonable candidates for inclusion in mechanism-based, 

mathematical modeling.

To predict individual prognosis for breast cancer patients, our group has developed 

mathematical models that use patient-specific MRI data to initialize and constrain model 

parameters and predictions; i.e., the model parameters are calibrated to the unique 

characteristics of each patient. The earliest iteration of these modeling efforts employed 

a simple logistic model that utilized DW-MRI data to estimate tumor cellularity20. The 

logistic model was later expanded to be defined both temporally and spatially in 2D, 

where the baseline measurements of the tumor, tumor cell movement, and the mechanical 

properties of the breast tissues were incorporated to constrain the model’s predictions of 

the tumor growth and shape according to each individual patient’s anatomy21. While this 

model’s predictions were shown to outperform standard measures (such as the Response 

Evaluation Criteria In Solid Tumors, RECIST) as a prognostic indicator of response to 

therapy22, it did not explicitly consider the therapies of each individual patient. Following 

that iteration, we extended the model to include estimates of drug delivery to each voxel via 
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DCE-MRI, enabling a more accurate assessment of local tumor cell death due to therapy 

on a patient-specific basis24. Most recently, we have used this model to identify theoretical 

treatment regimens that we hypothesize would outperform the standard-of-care regimen the 

patient actually received26.

Details of the mathematical model

The model used here is based on a 3D mathematical model we developed that includes 

the mechanical coupling of tissue properties to tumor growth and the delivery of systemic 

therapy24,26. This model was designed to be initialized with patient-specific imaging data to 

predict response of breast cancer patients to NAT21-23. The governing equation (a reaction–

diffusion type partial differential equation, PDE) for the spatiotemporal evolution of tumor 

cells NTC(x, t), (see ‘Approximating tumor cellularity’ below), with respect to time, t, and 

per voxel, x, is:

∂NTC(x, t)
∂t = ∇ ⋅ (D(x, t) ∇NTC(x, t))

Diffusion

+ k(x) 1 − NTC(x, t)
θ NTC(x, t)

Proliferation

− αCtissue
drug (x, t)NTC(x, t)

Death due to treatment

Reaction

,
(1)

where the first term on the right-hand side describes the effects of tumor cell movement 

(i.e., the diffusion term), and the second term describes the tumor cell proliferation and death 

in time (i.e., the reaction term). All model parameters and functions are described in Table 

1, and the reader is encouraged to refer to it as they move through the description of the 

mathematical model. This model has been well documented through its evolution18-27, but 

we describe the features of the model and the rationale behind the terms in detail here for 

clarity and completeness.

The function D(x, t) represents the random diffusion (movement) of the tumor cells. 

Previously, this function was simply a constant resulting in isotropic tumor spread21, but 

later work found that incorporating individual patient breast anatomy into the diffusion term 

resulted in statistically significant improvements in the prediction of total tumor cell number 

when compared with clinical observations21. Thus, we mechanically couple the function 

D(x, t) to the breast tissue’s material properties via von Mises stress σvm(x, t):

D(x, t) = D0 exp( − γσvm(x, t)), (2)

where D0 is the diffusion coefficient in the absence of external forces, and γ is an empirical 

coupling constant. The exponential term damps D0, where the von Mises stress is calculated 

for the fibroglandular and adipose tissues within the breast, with the fibroglandular tissue 

assigned a greater stiffness than the adipose tissue46. The mechanical coupling is subject to 

an equilibrium condition dependent upon changes in tumor cell number:

∇ ⋅ G∇ u + ∇ G
1 − 2ν ∇ ⋅ u − λ∇NTC(x, t) = 0, (3)
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where G is the shear modulus, G = E/(2(1−ν)), with Young’s modulus (E) and Poisson’s 

ratio (ν) describing the material properties, u  is the displacement due to tumor cell 

growth, and λ is another empirical coupling constant21-23,30,47-51. Therefore, the diffusion 

term encompasses tumor changes such as growth or response to therapy that can cause 

deformations in the surrounding healthy tissues (i.e., fibroglandular and adipose tissues), 

thereby changing the stress field and the associated expansion of the tumor.

The second term on the right-hand side of Eq. (1) is the reaction term that describes tumor 

proliferation and therapy response. Due to the nature of the data, logistic growth is defined 

per voxel. Specifically, for MRI data, measurements are defined per voxel, and for each 

voxel the volume is known. Therefore, a maximum number of tumor cells can be estimated 

by using an approximate cell size and packing density (again, see ‘Approximating tumor 

cellularity’ below). Using logistic growth, the carrying capacity, θ, is defined per voxel as 

one value for all voxels, and the proliferation rate k is spatially resolved, k(x), and derived 

from the data (see Step 38).

The reaction portion of the model also contains a term for tumor cell death due to therapy. 

The parameter α is a global parameter that represents the effectiveness of the therapy, 

and Ctissue
drug (x, t) represents the concentration of drug in the tumor tissue at position x and 

time t, as approximated from the Kety–Tofts model and patient-specific parameters (see 

‘DCE-MRI analysis’ below). Importantly, the concentration of contrast agent in the tissue 

and plasma time courses from the Kety–Tofts model now represent those quantities for 

the administered drug. This is achieved by replacing concentration of contrast agent in the 

plasma curve with standard drug concentration curves for individual drugs and calculating 

the concentration in the tissue with each patient’s derived vascular perfusion parameters 

(again, see ‘DCE-MRI analysis’ below). Therefore, an approximation of the concentration 

of drug in the tumor tissue that is spatially non-uniform and temporally varying based 

on the individual patient’s NAT schedule is generated. Thus, the therapy term provides 

an estimation of the spatiotemporal distribution of drug in the tissue and its effect on the 

cells of each voxel. This assignment of drug delivery in the model is only a first-order 

approximation, not unlike other efforts that have sought to characterize the heterogenous 

delivery of systemic therapy through tissue52-55. Note that this approach implicitly assumes 

that the chemotherapy will extravasate into the tumor tissue in a manner similar to that of 

the gadolinium-based contrast agent, an assumption that should be relaxed by future model 

refinements. If a patient’s drug concentration in the plasma deviates from population curves, 

this would affect the calibration of the model parameters; however, α provides a layer of 

flexibility in the model whereby the population-averaged approximation of the drug in the 

plasma is modulated by this global parameter.

Overview of the protocol

The procedure is divided into five major components (Fig. 1): identification of patients 

who would benefit (Step 1, not shown in Fig. 1), image acquisition (Steps 2-9), data 

preprocessing and analysis (Steps 10-25), mapping imaging data to the mathematical model 

(Steps 26-36), and tumor forecasting (Steps 37-40). Each component has been divided into 

multiple steps for clarity of presentation. In the procedure, we provide detailed descriptions 
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of each component, as well as guidance on avoiding potential pitfalls and suggestions for 

troubleshooting.

Patient selection

Our protocol was developed for patients recruited from community-based care centers that 

are eligible for NAT as a component of their care. Such patients are heterogeneous in 

tumor size, receptor status, age, body mass index and ethnicity. NAT (i.e., any treatment 

that occurs prior to surgical intervention) is typically indicated for patients with locally 

advanced breast cancer and consists of one or more regimens given over the course of 

4–6 months. For example, in the case of triple-negative breast cancer, the standard of 

care can include doxorubicin and cyclophosphamide (first regimen), followed by paclitaxel 

(second regimen). There are, however, many variations in these protocols as determined by 

treating physicians. (This is, of course, a primary motivator for developing a mathematical 

forecasting system so that treatments can be optimized on a patient-specific basis26,28.) The 

clinical response designations for NAT of pathological complete response (pCR) or residual 

disease (non-pCR) are determined by surgical pathology. Specifically, pCR is defined and 

reported as no residual invasive disease in either breast or axillary lymph nodes after NAT.

Image acquisition

This protocol requires the acquisition of quantitative MRI data of a breast cancer patient 

before and during NAT for calibrating a predictive, mechanism-based mathematical model 

designed to forecast their individual response. The timing of the imaging time points before 

and during NAT are of critical importance as they are used to calibrate, simulate and 

assess predictions of tumor response with the mathematical modeling system. Our protocol 

recommends for MRI data to be acquired at four time points: (1) prior to the initiation of 

NAT, (2) after one cycle of NAT, (3) after two to four cycles of NAT, and (4) after one 

cycle of NAT from scan 3. (Note: by ‘cycle’ we mean the administration of a single drug 

or combination of drugs over a designated period of time, typically 2–4 weeks.) These four 

time points provide data that correspond to the first cycles of each therapeutic regimen for 

the patients that receive two consecutive regimens (Fig. 2). While three or more imaging 

time points are encouraged, two imaging time points are all that is required to calibrate the 

model system and then compare predictions to standard clinical measures (e.g., pathological 

data from biopsies or surgery) to directly test the modeling predictions.

All image acquisition and patient care (imaging, oncology treatments, etc.) can be performed 

in community care settings (i.e., not academic, research-oriented medical centers). However, 

to work within the confines of imaging in standard-of-care settings, certain factors must 

be considered. For example, in the figures and examples included in this article, two 

scanners were used: one in an outpatient imaging facility, and the second in a regional 

hospital that provides both inpatient and outpatient services. While both imaging facilities 

undertook breast MRI as part of their routine clinical practice (a full diagnostic scan 

is ~20 min), they are located at different sites and on different service contracts, and 

have different quality control guidelines. The MRI technologists at such sites are usually 

responsible for positioning the patients and running the research protocols but might not 

have prior experience or expertise. Therefore, it is important to establish the repeatability 
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and reproducibility of the required MRI measurements in each new environment37,38, and 

implementation of the acquisition protocol requires clear (step-by-step) descriptions to be 

provided for the MRI technologists performing the scans.

Working with community physicians enables a broader segment of the population to 

be reached, but scheduling research MRI scans requires close integration and frequent 

communication regarding the availability of the patients, treating oncologist, referring 

physicians, nurses, imaging center staff and study staff. In our experience, missing time 

points or lack of data due to equipment failure, patient health, scheduling issues and/or 

parties unwilling to provide time is not uncommon. Moreover, community settings do 

not always employ a research-oriented nurse; therefore, lines of communication need to 

be clearly defined at the beginning of the study. Despite these challenges, working in 

community-based radiology settings can be easier for patients, with greater access to 

different facilities and allowing for more convenient travel to participate in the study.

This protocol requires acquisition of five MRI data types at each scan session: (1) DW-

MRI, (2) B1 field map to correct for radiofrequency (RF) inhomogeneity, (3) variable flip 

angle T1-weighted data for generating a precontrast T1 map, (4) dynamic, high-temporal-

resolution, T1-weighted data before, during and after the injection of a gadolinium-based 

contrast agent (DCE-MRI), and (5) high-resolution, pre- and postcontrast, T1-weighted 

anatomical scans. These MRI data types were selected to provide reliable and quantitative 

values for individual breast cancer tumors as they have been well established in the 

literature. The imaging protocol utilizes standard sequences that are available on all clinical 

MRI scanners, eliminating the need for work-in-progress sequences or novel sequences that 

are not universally available.

DW-MRI provides information about the tissue microstructure by quantifying the motion 

of water molecules. Water molecules freely diffuse at ~3 × 10−3 mm2/s at 37 °C, but as 

they encounter various tissue barriers, including large densities of cells, this diffusion rate, 

known as the apparent diffusion coefficient (ADC), will decrease31,56,57. A minimum of two 

b values (a factor that reflects the strength, duration and timing of the diffusion-encoding 

gradients in the scan) is required for estimation of ADC (in this protocol, we use three b 
values of 0, 200 and 800 s/mm2, which are commonly utilized for breast tissue). DW-MRI 

acquired with very high b values (>1,000 s/mm2) may result in low signal-to-noise ratio 

(SNR) that can adversely affect the ADC estimate, while low b values (<100 s/mm2) can 

be affected by tissue perfusion where blood flow in the smallest vessels mimics diffusion, 

thereby altering the interpretation of the image.

As different tissues exhibit different T1 relaxation times, T1 mapping provides a means to 

differentiate tissue types (e.g., fat, muscle, parenchyma and/or tumor) and provides native 

T1 values needed for downstream pharmacokinetic analyses of DCE-MRI data31,56,57. We 

use a standard approach for clinical breast T1 mapping, involving the collection of multiple 

T1-weighted images at variable flip angles. We collect images at ten flip angles ranging from 

2° to 20° (in 2° increments) for estimation of typical breast tissue T1 values (where more 

flip angles provide more data points for better curve fits, and this range allows for accurate 

estimations of various tissues in the breast from adipose to tumor). However, this approach is 
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sensitive to inhomogeneities in the RF B1 magnetic field used to ‘tip’ the magnetization by 

various flip angles, potentially leading to inaccurate estimations of native T1 58. To address 

this issue, a B1 map is acquired to quantify and correct any spatial deviations in the nominal 

flip angle during acquisition of the T1-weighted images used in mapping the T1 parameter. 

Other T1 mapping approaches include inversion and saturation recovery sequences (that 

are not as affected by B1 inhomogeneities); these methods are the ‘gold standard’ for the 

calculation of T1, but the time necessary to collect these sequences in multislice or 3D are 

clinically prohibitive and are not incorporated into our protocol.

In DCE-MRI, a paramagnetic contrast agent is injected into the bloodstream through a 

peripheral vein. It travels throughout the circulatory system and can extravasate into the 

tumor, leading to a decreased T1 relaxation time and corresponding increase in signal 

intensity in a T1-weighted image. DCE-MRI data are acquired by collecting T1-weighted 

images before, during and after the delivery of contrast agent. DCE-MRI data can then be 

analyzed to segment different tissues with differing contrast enhancement and also to extract 

measures characterizing contrast agent pharmacokinetics (details provided below in ‘DCE-

MRI analysis’). Acquisition parameters for our DCE-MRI measurement were selected to 

yield a temporal resolution <10 s (7.27 s) for accurate estimation of pharmacokinetic 

parameters59,60. If adjusting this protocol for other tissue types, it is important to bear in 

mind that an appropriate flip angle that minimizes contrast agent saturation effects must be 

selected for optimal DCE-MRI results, which may vary depending on the tissue imaged (i.e., 

breast versus brain).

Data preprocessing and analysis

Image processing starts with quality control, image correction and image registration, 

before moving to extract tumor-specific characteristics and quantitative descriptions of 

each tumor’s cellular density and vasculature. The methods used include segmentation via 

clustering techniques as well as analysis of the quantitative MRI data to return maps of 

quantities reporting on blood flow and water diffusion40.

Tumor segmentation

To analyze and process data, a tumor region of interest (ROI) is required for each patient 

and scan session. Using expertly drawn ROIs for the tumor burden is the gold standard. 

However, if provided with a conservatively drawn ‘bounding box’ (i.e., a hand-drawn 

polygon that surrounds the tumor but not its specific contours), thresholding based on 

enhancement is often used to determine the boundaries of tumors from DCE-MRI data. This 

threshold is a value chosen for which any voxel with signal intensity above that threshold 

in the postcontrast image is considered part of the tumor. As thresholding techniques 

can require manual adjustment for each patient scan and additional information to define 

patient-specific thresholds24 (and vary by contrast type and amount), it is best to use as 

automated an approach as possible. Our protocol employs a fuzzy c-means (FCM) clustering 

algorithm61,62. The FCM algorithm outputs the probability of a voxel being tumor or 

nontumor, based on DCE-MRI contrast enhancement patterns. As FCM clustering does not 

partition voxels into clusters, it is more tunable than other ‘hard’ clustering methods (e.g., 

k-means clustering). See Fig. 3 for representative images of generating ROIs using FCM.
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Registration techniques

Our approach to imaging-based modeling requires that all image sets for each patient be 

registered to one common spatial coordinate system; i.e., the images must be coregistered. 

Note that all registration processes do not completely preserve voxel information—even 

when rigid registration is used—due to multiple interpolations and resampling. To achieve 

image alignment, we perform two types of registration: intravisit registration (aligning all 

the data collected within one scan session) and intervisit registration (aligning each of the 

datasets across all scanning sessions for each patient). Intravisit registration is performed to 

correct for patient motion during the scanning session and is accomplished through a rigid 

registration prior to the calculation of quantitative parameters from the data.

For each patient, all image datasets are registered across time (intervisit) to a common space 

via a nonrigid registration algorithm with a constraint that preserves the tumor volumes 

at each time point63. If MRI data are obtained at four time points, we choose to register 

scans 1, 3 and 4 to scan 2 (target), as scan 2 is not an endpoint scan and is acquired early 

enough so that the patient will (likely) have tumor burden present to help guide alignment. 

The registration algorithm consists of a rigid registration of the tumor ROIs followed by 

a deformable b-spline registration with a rigidity penalty on the tumor regions64,65. This 

rigidity penalty is imposed to preserve the tumor volume/size and shape across all scan 

times. With a fully deformable registration, the tumor ROIs of scans 1, 3 and 4 may be 

morphed to match the tumor ROI of scan 2. See Fig. 4 for example comparisons of different 

registration results.

DCE-MRI analysis

The DCE-MRI data are analyzed using models of contrast agent pharmacokinetics to derive 

quantitative parameters of vascular perfusion and tissue volume fractions59. Specifically, 

the extended Kety–Tofts model is used to perform quantitative analysis of DCE-MRI 

data. We have found that a temporal resolution of 7.27 s for DCE-MRI data provides 

sufficient SNR and temporal sampling for the extended Kety–Tofts model to be applied66. 

However, we strongly encourage evaluation of voxel time course fits to determine which 

model appropriately captures the time course behavior of specific datasets. Pharmacokinetic 

modeling requires characterization of the time rate of change of the concentration of contrast 

agent in a feeding artery, i.e., the arterial input function (AIF). We estimate the AIF from 

the population-averaged signal intensity time course extracted from the axillary artery67. 

Further, we calculate the bolus arrival time (BAT) to shift the population AIF on a voxel-

wise basis to align the enhancement time of the AIF with that of the individual voxel61, 

allowing for improved fits and more accurate parameter estimation.

The reference region model68 is another approach to quantitative DCE-MRI analysis, 

removing the need for direct measurement of an AIF, where the tumor enhancement curve 

is compared with that of a reference region, such as pectoral muscle tissue (requiring 

additional tissue segmentation efforts). Simpler methods to analyze DCE-MRI data, such as 

the calculation of the signal enhancement ratio69 and area under the signal intensity time 

course curve31, can provide semiquantitative measures of vascular characteristics that have 
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proven informative in distinguishing benign and malignant lesions70 and predicting disease 

recurrence71.

Approximating tumor cellularity

The ADC is calculated from the DW-MRI data, representing the rate at which water 

molecules diffuse in the tissue. It has been shown to approximate the cellular density 

of tissue. ADC values are calculated for each voxel via standard methods72, and there 

is abundant literature on the inverse relationship between the measured ADC and tumor 

cellularity73-77. However, there is a level of ambiguity in the source of changes in ADC, 

as many other factors (e.g., cell membrane permeability78, cell size and tissue tortuosity79) 

in addition to cellularity can also affect the measured ADC. Therefore, the approach of 

appraising cellularity with ADC is an approximation, and ongoing efforts are designed to 

eliminate some of the ambiguity in the interpretation of ADC80-82, which could lead to 

improvements in the outcomes from applying the protocol.

Mapping imaging data to the mathematical model

After the generation of quantitative maps from each MRI data type, the maps are registered 

across all scan sessions (i.e., intervisit registration) for each patient so that all imaging 

data are aligned to a common image space. Once aligned, a breast domain is defined, 

within which each individual patient’s data are used to calculate physical characteristics 

of each patient’s tumor utilized by the mathematical model. The steps for generating 

tumor characteristics include calculating tumor cellularity, defining masks delineating 

fibroglandular and adipose tissues, approximating drug distributions, and estimating 

summary measures for each tumor across all scans.

The mathematical model employs the patient-specific characterization of breast anatomy, 

cellularity, vascular features and approximate drug distributions. This strategy is motivated 

by the hypothesis that, if a mathematical model, initialized and constrained by noninvasive 

imaging data for an individual patient collected early in the course of therapy, can be 

used to reliably predict tumor response, oncologists may be able to intervene and modify 

therapy on a patient-specific basis. Additionally, such a model could be used to optimize 

therapeutic regimens for patients with more robust mathematical methods such as optimal 

control theory26,28.

Tumor forecasting

The quantitative maps are then used to initialize and calibrate tumor cell proliferation, 

drug efficacy and cellular migration within the mathematical model. That is, each patient’s 

own imaging series is used to parameterize or identify growth and response parameters 

unique to that individual patient. Once parameterized, the model can be run forward for 

patient-specific predictions of the spatiotemporal evolution of tumor cellularity, allowing for 

a prediction of treatment response that can be directly compared with the observed outcome 

for each patient.

Jarrett et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Expertise needed to implement the protocol

This protocol is designed to be implemented by a multidisciplinary team with experience 

and expertise across a wide-range of fields including both the acquisition and analysis of 

advanced, non-standard-of-care MRI data in the clinical setting, image processing (including 

segmentation and registration), and the numerical solution of PDEs. If implemented in the 

community setting, implementation requires coordination with community health providers.

The procedure described below was developed in direct response to the challenges 

presented for the incorporation of breast cancer MRI data into predictive mathematical 

models. These methods were therefore developed for data collected in the community 

setting, across multiple imaging sites, within specific standard-of-care constraints, and 

for a heterogeneous patient population. We have worked extensively to establish the 

repeatability and reproducibility of this quantitative MRI protocol at community-based 

imaging centers37,38,83. Furthermore, our protocol utilizes several strategies to reduce bias 

and dependency on user interaction, including detailed data acquisition strategies as well as 

automated or semiautomated computational algorithms. There are, unavoidably, tasks that 

require expert evaluation (e.g., outlining tumor ROIs by radiologists) and others that rely on 

the operator’s input (e.g., positioning the field of view (FOV) for MRI acquisition), which 

we have noted throughout the protocol. Throughout our methods, we have worked to include 

automated quality checks and quantification of the data to reduce overall user/operator 

influence.

Applications of the protocol

The protocol was designed for predicting response in breast cancer patients receiving NAT 

as a component of their clinical care. While the details of the protocol presented here are 

specific to breast cancer, the methods are generally applicable to any solid tumor for which 

the requisite data are accessible. In fact, this protocol has already been modified for a 

multimodality breast cancer modeling study25 and, more recently, for brain cancer84. (There 

have also been many applications of our approach in the preclinical setting47,48,85-88.)

In addition to the mechanism-based, mathematical modeling for which the protocol was 

designed, investigators who have previously collected the appropriate imaging data may 

use portions of the protocol for data processing and analysis to yield (for example) 

longitudinally aligned quantitative maps of tumor features. The data returned at the 

completion of Step 24 can then be employed in more conventional statistical studies 

that assess longitudinal changes in tumor characteristics and separating responders from 

nonresponders40,42,45. Such data can also provide the input data for analysis in the emerging 

field of radiomics89,90, in ‘habitat imaging’91,92, and for application in artificial-intelligence-

based models.

Limitations

The temporal sampling requirements of the DCE-MRI protocol constrain the achievable 

spatial resolution of data that can be collected while limiting noise. All images are acquired 

in the sagittal plane; while the transverse plane is the standard-of-care choice with a bilateral 

FOV, our imaging protocols use sagittal slices for better resolution over the affected breast 
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within a minimal amount of time. For example, a standard-of-care, T1-weighted, contrast-

enhanced acquisition requires 80–90 s, whereas the same scan in our protocol is <10 s. With 

this coarser spatial resolution, we are likely unable to measure important anatomical features 

and may potentially miss small feeding vessels. This, in turn, can limit modeling strategies 

that aim to incorporate nutrient/oxygen delivery as well as estimates of the distribution of 

systemic therapies. Of course, ongoing efforts are actively investigating ways to provide 

faster acquisitions at the spatial resolution and FOV typically acquired in the standard-of-

care setting 61,93,94.

Another limitation is that, even if we consider only the United States, each oncology practice 

or oncologist typically has a set of treatment regimens that are prescribed more often (all 

still within National Comprehensive Cancer Network guidelines); thus, there may be more 

treatment options included in the study when working with multiple recruiting physicians 

and oncology clinics, and especially so if implementing in multiple countries. This can 

introduce limitations on the type of analyses that can be performed until a large enough 

cohort of patients has been accrued for statistical power.

With any quantitative measurement, error is expected. Therefore, we have included best 

practices for encountering and dealing with physiologically implausible results, such as 

during the interpretation of diffusion-weighted data and pharmacokinetic analysis. This is 

of particular importance because mathematical models project/propagate errors derived from 

the data employed for calibration and prediction (which we address in the tumor forecasting 

section, Steps 37-40). Of course, the MRI data and corresponding quantitative analyses are 

ultimately approximations of the breast cancer’s characteristics at the tissue and cellular 

scale, and alternative methods and procedures should continue to be explored to reduce error 

and ambiguity in these quantities.

We emphasize that what we present here is just one of many possible modeling 

formulations applicable to the dataset produced by this pipeline, and there are various other 

cancer modeling styles95. Also, while the protocol is built to accommodate heterogenous 

populations of patients, there are certain exclusions applied to make the mathematical 

modeling as practical as possible. For example, we exclude tumors at stages I and IV due 

to the fact that stage I tumors may be too small to reliably measure (<2 cm in diameter) 

with the MRI techniques, and stage IV may require alternative modeling techniques to 

account for tumor invasion and metastasis. Also, stage I and IV patients do not typically 

receive NAT; stage I tumors are treated with surgery and radiation, and stage IV tumors 

are treated with palliative care. Furthermore, we note that many programming languages 

and numerical schemes are available for determining solutions for PDEs (such as the finite 

element method23), and for those less interested in the derivation of numerical codes, 

specific software programs exist to aid in the implementation of PDEs (e.g., FEniCS and 

MATLAB’s PDE solvers).
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Materials

Subjects

• Women over the age of 18 years who present with intermediate-to-high-grade 

invasive primary breast cancer and are considering NAT as a component of their 

clinical care. Patients with disease from all subtypes and treatment regimens 

(including immunotherapy, targeted and cytotoxic therapies) may be included 

if they have disease stage II and III cancers. Patients with a history of kidney 

disease, with abnormal creatinine or estimated glomerular filtration rate, who 

are pregnant or who are breast feeding must be excluded. Also exclude any 

patients who have any non-MR compatible ferromagnetic materials, are acutely 

ill, and/or for whom an MRI is technically unfeasible (e.g., due to breast volume 

or obesity) ! CAUTION Patient data must be collected according to institutional 

and national regulations, and informed consent must be obtained from patients 

(for an example, see Supplementary Data 1). In the United States, data must 

be collected under an institutional review board-approved and American Health 

Insurance Portability and Accountability Act (HIPAA)-compliant study in which 

patients give informed consent to participate in a longitudinal MRI (with 

contrast) study throughout the course of their standard-of-care NAT. For the 

example data we present here, we obtained health information related to each 

participant’s disease and MRI scans. This information includes laboratory test 

results, medical imaging reports, and diagnosis and treatment codes.

Reagents

• Gadolinium-based contrast agent (e.g., Multihance (Bracco) or Gadovist 

(Bayer)) ▲ CRITICAL Required for contrast-enhanced scans.

Equipment

• Power injector for administration of contrast agent (e.g., Medrad)

• MRI scanner

• Personal computer or server ▲ CRITICAL For the data processing and analysis 

as well as the model simulations, a personal computer may be capable of running 

the model calibration via the software described below, but we recommend using 

a server with similar specifications to our server, which has parallelized scripts 

for computational efficiency: 40 nodes, CPU per node: 2/8 Xeon E5-2680 2.7 

GHz (turbo, 3.5) 1/61 Xeon Phi SE10P 1.1 GHz, memory: 32 GB per node.

Equipment setup

MRI scanner—MRI of the breast should be acquired using 3T scanners equipped with 

an 8- or 16-channel double-breast receive coil. For our studies, we employ Siemens 

scanners (Siemens Healthcare) with Sentinelle coils (Invivo). Other 3T scanners (Philips, 

GE) and breast coils may require slight adjustments to replicate the pulse sequences 

described in Steps 4-9, but as these are standard sequences, the scanners have the 

capabilities of collecting equivalent imaging protocols. After scanning, Digital Imaging and 
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Communications in Medicine (DICOM) files are stripped of protected health information 

(PHI), labeled with assigned study identifiers, and uploaded onto a firewalled protected 

server.

Software

• REDCap (https://www.project-redcap.org/) or similar ▲ CRITICAL All clinical 

information regarding patient demographics, diagnosis, treatment and surgical 

outcome must be acquired from the patient clinical record by a nurse at the 

referring physicians’ office. We relay this information to the research team 

using HIPAA-compliant communication and store in REDCap, a secure, HIPAA-

compliant web application for building and managing online databases96,97. 

REDCap is a widely available and utilized service for managing single- and 

multiinstitutional clinical studies.

• MATLAB (MathWorks, Natick, MA) or similar ▲ CRITICAL We use 

MATLAB software for the vast majority of our process owing to its 

portability and convenient functionality across our diverse group of biomedical 

researchers including experimentalists, computational scientists, engineers, 

physicists, mathematicians and medical professionals. However, alternative 

software programs are available for the data processing, and with a sufficient 

programming background, the functions described throughout our protocol can 

be replicated in those environments.

• Elastix (https://elastix.lumc.nl/) ▲ CRITICAL Elastix is a toolbox for rigid 

and nonrigid registration of images in 3D98. The algorithms used in Elastix 

for registration are similar to previous approaches used by our group63,99-101. 

However, Elastix is an open-source toolbox, and its functions can be run through 

the command line via MATLAB allowing it to be integrated into existing data 

processing scripts.

Procedure

Patient selection ● Timing ~15 min

1. Ensure patient is eligible for the study. Patients should be women over the age 

of 18 years who present with intermediate-to-high-grade invasive primary breast 

cancer and are considering NAT as a component of their clinical care. Verify 

with the treating oncologist that each patient has no history of kidney disease 

and has normal creatinine and estimated glomerular filtration rate within 30 d of 

imaging studies. Exclude pregnant women and women who are breast feeding. 

Also exclude any patients who have any non-MR-compatible ferromagnetic 

materials, are acutely ill and/or for whom an MRI is technically unfeasible (e.g., 

due to breast volume or obesity).

2. Obtain informed consent from patient. Patients should be asked to consent to 

participate in research. A copy of the consent form used by our ongoing study is 

supplied in the Supplementary Data 1.
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! CAUTION Informed consent must be obtained from all subjects. Quantitative 

MRI, PHI and therapeutic regimens are acquired for patients diagnosed with 

intermediate-to-high-grade invasive breast cancers who are eligible for NAT as 

a component of their clinical care at community-care oncology sites. The study 

population consists of women over the age of 18 years who present with primary 

breast cancer and are considering NAT as a component of their clinical care. 

Importantly, patients with disease from all subtypes and treatment regimens 

(including immunotherapy, targeted and cytotoxic therapies) may be included for 

disease stage II and III cancers.

Image acquisition ● Timing ~1.5–2 h total per session (patient arrival to departure), 40 min 
(patient placement and removal from scanner), ~25 min (MRI scanning)

▲ CRITICAL We recommend the scanner be reserved for 40 min to allow sufficient time 

for patient to be positioned in the breast coil (prone position), be scanned, and exit from the 

scanner. Preparation for the MRI examination is no different than a typical, standard-of-care 

examination, including the placement and removal of an intravenous line for administration 

of the contrast agent.

3 Insert an intravenous line. To do this, insert a short peripheral intravenous 

catheter (20–22 gauge) in the antecubital or forearm area. Check correct 

positioning of the catheter tip for venous backflow by withdrawing blood and 

flushing with normal saline.

4 Establish the FOV. Obtain several localizer scans at the beginning of the MRI 

session. First, obtain a localizer scan by acquiring a three-plane (axial, sagittal 

and coronal) scout image series covering both breasts. Adjust the FOV to ensure 

coverage of the tumor in the affected breast without changing scan parameters 

that would affect resolution or scan time. As all patients have been diagnosed 

with breast cancer and tumor location is known, it is helpful to identify the 

approximate location of the lesion (e.g., ‘7 o’clock, right breast’) from the 

referring physician’s office prior to the MRI to aid FOV placement. Often, a 

metal-induced susceptibility artifact around the biopsy clip/marker can be used 

to locate the approximate tumor center on the localizer scans. While finding 

the center of the FOV, adjust the coverage in the anterior–posterior direction to 

include the axillary artery whenever possible (to allow for characterization of 

the AIF). Acquire a second localizer scan with a sagittal-only sequence with 30 

slices, each 5 mm thick (15 cm of patient right-to-left coverage).

▲ CRITICAL STEP The imaging volume must be centered on the tumor 

and include all or as much of the tumor as possible. Please see Table 2 

for a complete summary of the imaging parameters described in this and the 

following steps.

? TROUBLESHOOTING

5 Acquire DW-MRI data. Acquire DW-MRI over ten slices with 5 mm thickness 

and no slice gap. We use the following parameters: repetition time/echo time 

TR/TE = 3,000/52 ms, flip angle 90°, matrix 128 × 128 (over a 256 × 256 mm2 

Jarrett et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2022 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FOV), and GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 

acceleration of 2. We include spectrally selective adiabatic inversion recovery 

(SPAIR) fat suppression. To allow for approximately equal SNR ratios at all b 
values, average 6 acquisitions for b values of 0 and 200 s/mm2, and average 

18 acquisitions for a b- value of 800 s/mm2 for a monopolar, single-shot 

spin echo, echo planar imaging sequence in a 3D-diagonal diffusion-encoding 

direction. If using other scanners, use a sequence comparable to GRAPPA, 

e.g., Autocalibrating Reconstruction for Cartesian imaging (ARC) for GE and 

image-domain SENSitivity Encoding (SENSE) for Phillips.

? TROUBLESHOOTING

6 Map the B1 field. Use the Siemens TurboFLASH sequence with a 

preconditioning RF pulse102 to map the B1 field with the following acquisition 

parameters: TR/TE = 8,680/2 ms, flip angle 8°, matrix 96 × 96, and slice 

thickness 5 mm. Due to the inclusion of a slice gap in the B1 mapping protocol, 

perform two acquisitions with a 5 mm slice gap, to cover the same FOV as 

the above measurements without missing coverage in the slice direction. This 

pulse sequence is only available as a standard product sequence on Siemens 

scanners at the time of publication. When Philips or GE Healthcare scanners are 

used, an approximate B1 map can be computed from assuming a uniform T1 

over adipose tissue and interpolating over the rest of the images as published 

previously103,104.

? TROUBLESHOOTING

7 Acquire a high-resolution T1-weighted image. Use a volumetric interpolated 

breath-hold examination (VIBE; no breath-holding required) sequence with 

the following acquisition parameters: TR/TE = 5.3/2.3 ms, flip angle 10°, 

acquisition matrix 256 × 256, slice thickness 1 mm (96 slices), GRAPPA 

acceleration of 2 in the phase encode direction, and SPAIR fat suppression. 

Then, acquire images for the precontrast T1 map without fat suppression with 

T1-weighted images from the 3D gradient-echo, FLASH (fast low-angle shot) 

sequence, also known as an SPGRE (spoiled gradient recalled echo) sequence, 

at ten flip angles (2°, 4°, 6°, …, 20°) with the following parameters: TR/TE = 

7.9/2.71 ms and GRAPPA accelerating factor of 3 in the phase encode direction. 

Use an acquisition matrix of 192 × 192 × 10 over a sagittal square FOV (256 

mm2) with slice thickness of 5 mm.

▲ CRITICAL STEP This precontrast T1-weighted MRI scan with fat 

suppression is required for anatomical visualization purposes as well as for 

radiologists to identify the tumor ROI. The precontrast T1 map is required for 

pharmacokinetic modeling of the DCE-MRI data described in the next step.

8 Acquire a dynamic set of T1-weighted, VIBE (no breath-holding required) 
images (this is the DCE-MRI acquisition). Use the following acquisition 

parameters: TR/TE = 7.02/4.6 ms, flip angle 15°, matrix 192 × 192, with 

ten slices of 5 mm thickness each, and GRAPPA acceleration factor of 2 in 
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the phase encode direction yielding a temporal resolution of 7.27 s. (Note 

that, with further developments in rapid acquisition, slices thinner than 5 

mm may be accessible without sacrificing too much SNR.) The comparable 

sequences on GE and Philips scanners are FAME (Fast Acquisition with 

Multiphase EFGRE3D) and THRIVE (T1W High Resolution Isotropic Volume 

Examination), respectively. Start acquisition of this DCE-MRI data. After 1 min, 

begin to administer a gadolinium-based contrast agent via a power injector at 

the dosage recommended on the product insert and at the flow rate of 2 mL/s 

through the IV catheter placed in Step 3, all while continuing to acquire the 

DCE-MRI data. Follow administration of the contrast agent with a saline flush 

(20 mL) at a flow rate of 2 mL/s through (again) the IV catheter placed in Step 

3.

▲ CRITICAL STEP Note that different contrast agents or injection rates 

may lead to different pharmacokinetics. If pharmacokinetic parameters are 

calculated, used or compared across the patient population, it is imperative to 

use a consistent contrast agent and injection protocol. It is also important to 

record the contrast agent dosage used for reference at subsequent visits.

9 Acquire a postcontrast, high-resolution T1-weighted image. Use a VIBE (no 

breath-holding required) sequence with the following acquisition parameters: 

TR/TE = 5.3/2.3 ms, flip angle 10°, acquisition matrix 256 × 256, slice thickness 

1 mm (96 slices), GRAPPA acceleration 2, and SPAIR (Spectral Selection 

Attenuated Inversion Recovery) fat suppression.

▲ CRITICAL STEP A postcontrast, T1-weighted MRI scan with fat 

suppression is required for anatomical visualization purposes as well as for 

radiologists to identify the tumor ROI.

Image analysis ● Timing ~2–3 h

10 Upload and save data. Save as un-anonymized DICOM files onto the Picture 

Archiving Communication System (PACS) server associated with the radiology 

practice that is acquiring the scans. Save a separate copy of the DICOM files 

for which PHI is replaced with a unique subject identifier, and upload these 

anonymized files onto a firewalled protected server.

■ PAUSE POINT Data analysis can be performed at a later date. For each 

patient, we advise that the images be processed and analyzed as a set across all 

visits. See Fig. 5 for a flowchart of all steps in the data analysis pipeline.

11 Organize data. Copy DICOM data into individual patient visit directories to 

ensure original copies of the data taken off the scanner are preserved. Import 

DICOM data into the MATLAB workspace using built-in MATLAB functions 

dicomread and dicominfo. Arrange DICOM slices in ascending order of slice 

position within the scanner (i.e., not acquisition order but spatial order; slices 

collected in an interleaved fashion should be reordered by spatial location). Save 

the final image for each type of MRI scan as a matrix in a MATLAB structure, 

along with the header information for each DICOM (pulled in using dicominfo). 
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Save each scan’s structure in floating point precision as . mat files to integrate 

with the pipeline’s image processing and analysis steps. Save the DW-MRI, 

variable flip angle T1-weighted and DCE-MRI data as 4D matrices where the 

fourth dimension represents each b value, flip angle and repetition, respectively. 

Save the final MATLAB structure to each patient/visit directory.

■ PAUSE POINT Data analysis can continue at a later date.

12 Check the slice positions. Use the DICOM header information so that each scan 

is aligned with those of the DCE-MRI data to ensure the same FOV is being 

analyzed across scans for each patient and visit.

▲ CRITICAL STEP At the scanner, several types of errors can occur, 

including a shifted FOV (compared with previous scans) or slices offset by a 

value different than the 5 mm slice thickness.

■ PAUSE POINT Data analysis can continue at a later date.

? TROUBLESHOOTING

13 Up-sample the DW-MRI and B1 map data to match the DCE-MRI spatial 
resolution. Use a nearest-neighbor interpolation for 2D gridded data (interp2, 

MATLAB). Save the resulting interpolated data to the .mat file in the MATLAB 

structure for that patient and visit.

▲ CRITICAL STEP In this protocol, the B1 map and DW-MRI data are 

acquired at a lower spatial resolution than that of the DCE-MRI data (due 

to time constraints and SNR considerations). These scans must match the 

resolution of the target image for successful intravisit registration.

■ PAUSE POINT Data analysis can continue at a later date.

14 Align DW-MRI data to DCE-MRI data. Use the b = 0 image (as the SNR is 

higher for the b = 0 s/mm2 data compared with the b = 200 or 800 s/mm2 

data). Register each slice of the b = 0 s/mm2 diffusion-weighted scan to the 

corresponding slice of the first repetition of DCE-MRI data using the MATLAB 

rigid registration algorithm with function imregtform. Apply the transformation 

obtained from the function’s output to the b = 200 and 800 s/mm2 DW-MRI data 

using the MATLAB imwarp function. Save the resulting 4D matrix of DW-MRI 

data registered to the DCE-MRI data as a separate .mat file.

■ PAUSE POINT Data analysis can continue at a later date.

15 Align the variable flip angle T1-weighted MRI to the DCE-MRI data. Repeat 

Step 14, but use the variable flip angle T1-weighted MRI data in place of 

the DW-MRI data. Register each slice of each T1-weighted image to the first 

repetition of DCE-MRI data (imregtform, imwarp, MATLAB). Save the variable 

flip angle data as a 4D matrix, and then export as a .mat file.

■ PAUSE POINT Data analysis can continue at a later date.
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16 Align B1 maps. The B1 mapping sequence utilized for this study outputs 

a proton-density-weighted image and a calculated map of the estimated flip 

angle each voxel in the image experienced. To align the B1 maps to the DCE-

MRI data, register each slice of the proton-density-weighted image to the first 

repetition of DCE-MRI data (imregtform, imwarp, MATLAB—see Step 14) 

owing to the higher SNR of the proton-density-weighted image compared with 

the flip angle map. Apply the resulting geometric transformation to the flip 

angle map. Save the resulting data, and export as a .mat file.

■ PAUSE POINT Data analysis can continue at a later date.

17 Correct for motion within the DCE-MRI scan. Align each slice of each 

repetition of the DCE-MRI sequence to the corresponding slice of the first 

repetition (imregtform, imwarp, MATLAB—see Step 14). Save the resulting 

data as a 4D matrix, and export as a .mat file.

▲ CRITICAL STEP Breast motion due to respiration or patient movement can 

occur during the DCE-MRI acquisition.

■ PAUSE POINT Data analysis can continue at a later date.

18 Generate tumor ROIs. Manually draw a bulk ROI (this must be done by a board-

certified radiologist) to conservatively outline the lesion under investigation. 

Then, apply FCM clustering to the voxels within the drawn ROI with the class 

number set to 2 (one each for the lesion and nonlesion tissue types) using 

MATLAB’s fcm function. After the binary mask is identified, postprocess to fill 

holes (i.e., zeros in the mask that are surrounded by ones) via the MATLAB 

function imfill. Additionally, eliminate regions <8.45 mm3 (i.e., 1 × 1 × 1 

voxels) via the MATLAB function bwareaopen. Save the resulting ROI to 

the .mat file in the MATLAB structure for that patient and visit.

▲ CRITICAL STEP The following lesion segmentation process was adapted 

from ref. 62.

■ PAUSE POINT Data analysis can continue at a later date.

? TROUBLESHOOTING

19 Ensure registration is successful, and identify any artifacts (due to silicone 
implants, cardiac motion, etc.). Manually visualize each set of pre- (from 

Steps 11-13) and postregistration (from Steps 14-17) scans. Remove patient 

datasets with substantial artifacts (deforming the images) from the study. To 

evaluate the results of tumor segmentation, visualize ROIs by overlaying them 

on background-subtracted DCE-MRI data as well as high-resolution postcontrast 

T1-weighted images.

■ PAUSE POINT Data analysis can continue at a later date.

20 Calculate ADC maps. Fitting the DW-MRI data to Eq. (4):

S(b) = S0 ⋅ exp( − ADC ⋅ b), (4)
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where S(b) is the signal intensity in the presence of diffusion gradients at 

strength b, S0 is the signal intensity in the absence of diffusion gradients, and 

b is the strength of the diffusion gradients. Fit Eq. (4) to the signal intensities 

from the b = 200 and b = 800 s/mm2 DW-MRI data on a voxel-by-voxel basis. 

In particular, for datasets that have only two b values, the ADC values can 

be calculated directly (i.e., no fitting). Alternatively, use linear regression with 

ln(S(b)) and b to determine the ADC map via MATLAB function regression. 

While the b = 0 s/mm2 data are acquired, they are not used in the ADC 

calculation for this protocol—due to low b values being affected by tissue 

perfusion—but are used in the registration of the diffusion-weighted data (details 

in Step 14). Save the resulting ADC map to the .mat file in the MATLAB 

structure for that patient and visit.

■ PAUSE POINT Data analysis can continue at a later date.

? TROUBLESHOOTING

21 Calculate the B1-corrected T1 values for each voxel. Fit (lsqcurvefit, MATLAB) 

the measured multi-flip angle, signal intensity data to the gradient-recalled echo 

signal, S, equation:

S = S0 ⋅ sin(f ⋅ a) ⋅ (1 − exp( − TR ∕ T1))
1 − (exp( − TR ∕ T1) ⋅ cos(f ⋅ a)) exp −TE ∕ T2

∗ , (5)

where S0 is a constant related to scanner gain and proton density, α is the 

prescribed set of flip angles, and f is the flip angle correction factor for a 

given voxel that accounts for inhomogeneity in B1 (TE << T2* is assumed, so 

exp(−TE/T2*) can be set to 1). The flip angle correction factor (f) is calculated 

by dividing the B1 map by the flip angle (a). The fitting process yields the 

flip-angle-corrected T1 map and S0. Save the resulting corrected T1 map to 

the .mat file in the MATLAB structure for that patient and visit.

■ PAUSE POINT Data analysis can continue at a later date.

22 Calculate the population AIF. For each patient’s dataset, generate a subtraction 

image from the contrast-enhanced data where the average precontrast dynamics 

are subtracted from the average postcontrast dynamics. For each scan, identify 

the axillary artery in the subtraction images. Manually select a single voxel 

within the axillary artery as a ‘seed’ for a 3 × 3 kernel centered on the seed. Save 

the location of the seed in a vector. For an adjacent slice, select a 5 × 5 ROI 

centered on the voxel corresponding to the seed voxel location. For each voxel 

within the 5 × 5 ROI, define a 3 × 3 window centered on each voxel. Compare 

the average signal intensity time courses of each window (25 windows) to that 

of the seed voxel’s kernel using the correlation coefficient (MATLAB’s function 

corr). For the voxel window with the greatest correlation to the seed, save the 

location of the voxel in the vector and set the voxel as the new seed. Repeat this 

process through all of the slices. For the voxels saved in the vector, remove any 

voxels with the following criteria:
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• the maximum signal intensity does not occur within the first ~45 s of 

the postcontrast dynamics

• the maximum signal intensity is approximately <20 times greater than 

the standard deviation of the first three precontrast dynamics

• the average signal intensity of the last ~120 s is approximately >40% of 

the maximum

For the voxels that remain in the vector after the three bulleted steps, 

average them at each time point to yield one single, average time 

course. Save the resulting time course as the individual AIF to the .mat 

file in the MATLAB structure for that patient and visit. To generate the 

population AIF, average the resulting individual AIFs across all patient 

sets available.

▲ CRITICAL STEP This calculation of the population AIF makes 

use of the semiautomatic algorithm developed by Li et al.63. 

Calculation of the population AIF can be updated with each acquisition 

of new patient data67.

■ PAUSE POINT Data analysis can continue at a later date.

? TROUBLESHOOTING

23 Determine the BAT. Fit the signal intensity time course from each tumor voxel 

(using MATLAB’s lsqcurvefit) to the half-logistic function

Shl(t) =
0, 0 < t ≤ τAT
2A

1 + exp( − B(t − τBAT)) − A, t > τAT

, (6)

where A and B control the amplitude and slope of the uptake portion of the 

Shl(t) time course, respectively, and τBAT is the BAT at a specific voxel location. 

Temporally align the population AIF curve for each voxel with:

Cp(t) =
0, 0 < t ≤ delaypop

AIF t − delaypop , t > delaypop
, (7)

where delaypop = τBAT − τpop and τpop is the BAT of the population AIF61.

24 Convert the measured signal intensity for the DCE-MRI experiment to the 
concentration of contrast agent to enable the pharmacokinetic modeling 
described below. The signal intensity measured in the DCE-MRI experiment 

is described by Eq. (5), where we note that T1 ≡ T1(t) is how the measured T1 

value at time t changes due to the concentration of contrast agent according to:

1 ∕ T1(t) = r1Ct(t) + 1 ∕ T10, (8)
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where r1 is the relaxivity constant specific to the contrast agent, and T10 is the 

native T1 (from the precontrast T1 map obtained from Step 21). Finally, Ct(t) is 

described using the BAT-shifted AIF (i.e., Cp(t) from Eq. (7)) and fitting each 

voxel’s concentration time course to the extended Kety–Tofts model,

Ct(x, t) = Ktrans(x)∫
0

t
Cp(u) exp( − (Ktrans(x) ∕ ve(x)(t − u)))du + vp(x)Cp(t), (9)

where Ct(x, t) and Cp(t) are the contrast agent concentrations in the tissue and 

plasma, respectively, at position x and time t; Ktrans(x) is the volume transfer 

constant of contrast agent from the plasma to the tissue space at position x, ve(x)
is the extravascular extracellular volume fraction at position x, and vp(x) is the 

plasma volume fraction at position x. The measured signal intensity time course 

for each voxel within the tumor ROI can now be fit by this nested set of three 

equations (i.e., Eq. (9) substituted into Eq. (8), which is then substituted into Eq. 

(5)) and Cp(t) from Eq. (7), using lsqcurvefit (MATLAB). This fitting routine 

provides a value of Ktrans, ve and vp at each voxel position, x, within the tumor 

ROI. Calculate the efflux constant, kep (x) as Ktrans(x) ∕ ve(x). Save the resulting 

four pharmacokinetic parameter maps to the .mat file in the MATLAB structure 

for that patient and visit.

■ PAUSE POINT Data analysis can continue at a later date.

? TROUBLESHOOTING

25 Generate enhanced anatomical images. Enhance contrast by applying a local-

statistics-based transfer function to each voxel of a subtraction anatomical image 

(average precontrast images minus average postcontrast images)105. Specifically, 

use the transfer function

Ienh =
Ic − Ic

2 − Iorig
2 , 0 < X ≤ Xc

Ic − (Imax − Ic)2 − (Imax − Iorig)2, Xc < X ≤ Xmax
(10)

where Iorg is the original image, Imax the maximum intensity in the original 

image, and Ienh the resulting enhanced image. This transfer function is S-shaped, 

so Ic is the inflection point defined as the 95th percentile of the intensity. 

This strategy for histogram normalization ensures that foreground enhancement 

as well as background suppression can be achieved simultaneously. Save the 

resulting enhanced anatomical images to the .mat file in the MATLAB structure 

for that patient and visit.

■ PAUSE POINT Data analysis can continue at a later date.
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Mapping the imaging data to the mathematical model ● Timing ~1 d (Steps 28-30 are the 
rate-limiting steps as they require the use of all patient data in a study)

▲ CRITICAL The following steps (i.e., Steps 26-36) describe the methods required to 

convert the processed MRI data into a single modeling domain and derive relevant, physical 

quantities for model simulations starting with intervisit registration.

26 Manually compare the slices across the different visits evaluating each patient’s 
anatomy to determine a rough slice alignment. Note that this is the first-time 

data from different visits are compared; i.e., one cannot complete this step 

or continue to the next steps until data are acquired from at least two visits. 

Using enhanced images, utilize unique characteristics in the patient’s anatomy 

(visible structures in the tissue and vessels) and the tumor-bearing slices to 

determine which of the ten slices for each visit correspond to the slices across all 

visits. Performing this initial alignment improves the ability of the registration 

algorithm to converge to a solution. Save the corresponding slices to the .mat file 

in the MATLAB structure for that patient and visit.

▲ CRITICAL STEP This is required prior to applying the registration 

algorithm.

■ PAUSE POINT Analysis can continue at a later date.

? TROUBLESHOOTING

27 Convert files to .mhd files. This can be accomplished by using MATLAB’s 

Medical Imaging Toolbox function write_mhd. To use this function, save the 

tumor ROIs and enhanced anatomical images for the slices determined in Step 

26 for registration. Additionally, define parameter files for each patient and scan 

to be registered (further instructions for formatting of these files can be found 

at http://elastix.bigr.nl/wiki/index.php/Parameter_file_database). Once these files 

are generated, perform registration by calling the elastix function, which first 

rigidly aligns the tumor ROIs and corresponding anatomical images followed 

by the b-spline registration with rigidity penalty over the tumor ROI. Once the 

deformation field is generated, apply the deformation field to all remaining maps 

and images for each patient set by calling the transformix function.

▲ CRITICAL STEP This is required prior to running Elastix.

28 Explore a range of rigidity penalty weights. To select an appropriate weight for 

the rigidity penalty, apply the above registration functions (Step 27) for a range 

of values for subset of patients, where scan 2 is the ‘target’ image and scan 1 is 

the image to be registered.

29 Evaluate rigidity penalty weights. Evaluate the results of the different penalty 

weights (from Step 28) using the metrics detailed below. Select a weight that 

maximizes metrics 1 and 3 while minimizing metric 2. For metric 3, divide 

histograms (probability density functions) of the original target and registered 

maps into the same 100 segments (i.e., converting the histograms into vectors), 

and then normalize to calculate their inner product as similarity.
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• Metric 1: similarity or normalized mutual information between 

reference image and registered target image

• Metric 2: sum of the Jacobian determinant of the final deformation 

field within the tumor region

• Metric 3: consistency between the distributions of quantitative 

parameters before and after registration

30 Select a rigidity penalty weight. Compare the resulting registered images (Step 

28) to identify a ‘tolerant range’ of the studied configuration parameter (i.e., 

weight of the rigidity penalty term). Within this tolerant range, the performance 

of registration is reasonable and similar; outside the range, the registration either 

fails or substantially changes values within the tumor ROI (per the metrics 

described in Step 29). Note that the tolerant range varies between different 

patients, as well as between different visits for individual patients. Therefore, 

choose a value that falls in the tolerant range for all the patients used in this 

parameter investigation.

■ PAUSE POINT Analysis can continue at a later date.

31 Register the images. Using the details of Step 27 and the penalty weight derived 

from Steps 28-30, register the enhanced images of scans 1, 3 and 4 to scan 

2 (target). Apply the resulting deformation fields to all corresponding patient 

parameter maps. Save the resulting registered data to new .mat files (separate 

from previous data analysis files) in the MATLAB structure for that patient and 

visit.

■ PAUSE POINT Analysis can continue at a later date. The following steps 

describe defining and calculating modeling quantities.

? TROUBLESHOOTING

32 Define modeling domains. Manually draw breast ROIs to define the domain for 

mathematical modeling. Using the enhanced images, for each slice, carefully 

outline the breast region outside of the chest wall and within the skin of the 

organ using the MATLAB function roipoly. Save the outlined shapes as binary 

masks, with zeros outside the breast ROI. If the tumor is not near the chest wall, 

segmentation can simply eliminate the chest region. Save the resulting breast 

masks to the .mat file in the MATLAB structure for that patient and visit.

■ PAUSE POINT Analysis can continue at a later date.

? TROUBLESHOOTING

33 Calculate tumor cells per voxel. Using the MATLAB function imfilter, smooth 

the registered ADC maps for each slice using a Gaussian filter with size 3 × 3 

voxels. Convert the ADC value for each voxel within the tumor (as segmented 

using the above methods) to an estimate of the number of tumor cells per voxel 

at each position x and time t, NTC(x, t), via established methods:20-22,24,27,72
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NTC(x, t) = θ ADCw − ADC(x, t)
ADCw − ADCmin

, (11)

where ADCw is the ADC of free water (3 × 10−3 mm2/s)106, ADC(x, t) is the 

ADC value for the voxel at position x and time t, and ADCmin is the minimum 

(positive) ADC value over all tumor voxels for the patient across all scans27,74. 

The parameter θ is the carrying capacity describing the maximum number of 

tumor cells that can physically fit within a voxel; its numerical value can be 

determined by assuming a spherical packing density of 0.7405107, a nominal 

tumor cell radius of 10 μm108 and a voxel volume of 8.45 mm3 (using the 

DCE-MRI resolution). Save the resulting tumor cell map (NTC(x, t)) to the .mat 

file in the MATLAB structure for that patient and visit.

■ PAUSE POINT Analysis can continue at a later date.

34 Segment the fibroglandular and adipose tissues. Use the enhanced imaging data 

and a two-class k-means clustering (MATLAB function kmeans) to generate 

initial masks for fibroglandular and adipose tissues37. To suppress noise and 

eliminate voxels containing both tissues, apply k-means clustering for a second 

time on the adipose region segmented by the first clustering to erode the 

edges. Finally, for the fibroglandular tissue mask, eliminate small ‘islands’ (≤10 

connected voxels) using MATLAB function bwareaopen. Save the resulting 

segmentation masks to the .mat file in the MATLAB structure for that patient 

and visit.

■ PAUSE POINT Analysis can continue at a later date.

35 Approximate drug delivery. To approximate concentrations of drug delivered 

throughout the tumor tissue, utilize the derived physiological parameters 

from the perfusion/diffusion analysis and each patient’s individual therapeutic 

regimen. Using Eq. (9) (the Kety–Tofts model) whereby the DCE-MRI-derived 

parameters (Ktrans, ve and vp) are available for each voxel (from the analysis 

described in Step 24), replace the Cp(t) term in Eq. (9) with the concentration of 

drug in the plasma from measured population curves for each drug the patient 

received (for example, see refs. 109-112) with repeated doses according to each 

patient’s specific therapeutic regimen. Save the resulting drug distributions as a 

4D matrix (time being the fourth dimension) to the .mat file in the MATLAB 

structure for that patient and visit.

■ PAUSE POINT Analysis can continue at a later date.

? TROUBLESHOOTING

36 Calculate tumor summary measures. Calculate the total tumor cellularity by 

summing the number of tumor cells across all the voxels in the tumor ROI. 

Approximate the tumor volume as the product of the total number of voxels 

within the segmented tumor ROI and the voxel volume (8.45 mm3 using the 

DCE-MRI spatial resolution described above in section 7). To calculate the 
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longest axis of each tumor, evaluate the 3D tumor ROI using the function 

regionprops3 within MATLAB, which approximates the longest possible axis 

within a 3D object. These measures of cellularity, volume and longest axis 

are to be applied to all of the model’s predictions to enable direct comparison 

with the clinically measured data. Note that implementing this process of image 

segmentation and longest diameter calculation makes the evaluation as rigorous 

as possible.

■ PAUSE POINT Mathematical modeling can continue at a later date. The 

following steps provide the methods for implementing a mathematical model to 

utilize the above patient-specific, MRI-derived quantities to generate individual 

patient response predictions.

Tumor Forecasting ● Timing ~10 h per patient, can be up to several days depending on 
tumor size

37 Implement the model (i.e., Eqs. (1-3)) in 3D. Use a fully explicit finite 

difference scheme with central difference in space and forward difference in 

time. With voxel dimensions defined by the size of the DCE-MRI voxel grid, 

a maximum diffusion coefficient of 0.001 mm2/d, a time step of Δt = 0.25 d 

will ensure numerical stability. Set the size of the computational domain by a 

square whose dimensions are determined by the size of the breast domain for 

each patient. Assign the tissue stiffnesses in Table 1 to the tumor, fibroglandular 

and adipose tissue ROIs for the mechanical coupling. Apply a no-flux boundary 

condition for the tumor cells and zero tissue displacement (i.e., u = 0 at the 

x-boundary) on the breast domain boundary. For computational efficiency, 

solve the mechanical coupling (Eq. (3)) to the diffusion (Eq. (2)) every 20 

timesteps. For additional details on implementing these numerical methods, see 

ref. 50. Please also see the troubleshooting table for additional details to ensure 

simulation accuracy.

■ PAUSE POINT Model calibration can continue at a later date.

? TROUBLESHOOTING

38 Calibrate model parameters for each patient. Utilize two of the MRI datasets for 

each patient to calibrate the mathematical model and then simulate the model 

to a later scan or the time of surgery to make a prediction of tumor response. 

For example, the datasets from visits 1 and 2 are used for calibration to the 

first therapeutic regimen, thereby enabling simulating the model and predicting 

the measured response of the tumors at the time of visit 3. Similarly, use 

datasets from visits 3 and 4 for calibration to the second therapeutic regimen to 

simulate the model and predict the response of tumors at the time of surgery (as 

determined by pathology). See Fig. 2 for an illustration of this calibration and 

prediction strategy.

Use the cellularity maps of the two scans for each patient (derived from the 

ADC of the DW-MRI data—see Steps 20 and 33) to calibrate model parameters, 

where the tumor from the earlier imaging visit initializes the calibration (with 
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the corresponding tissue maps for mechanical coupling and distributions of 

drugs) and the later tumor ROI is the target for calibration. Calibrate the D0 and 

α parameters globally, and the k parameter map spatially, where the remaining 

parameters are assigned to the literature values in Table 1 and θ is directly 

calculated (Step 33). Utilize a Levenberg–Marquardt least-squares, nonlinear 

optimization for calibration113, where the sum of squared errors between the 

simulated tumor cell numbers from the model and the calculated number of 

tumor cells from the imaging data is minimized with the following parameters: 

maximum number of iterations 200, initial lambda 10−20, and lambda increment 

factors 9 and 11, and perform the Jacobian calculation every 25 iterations. 

Additionally, bound the global parameters D0 and α to be greater than zero, 

and bound D0 < 0.001 mm2/d. Stopping criteria are the sum of the squared 

errors < 0.001, concordance correlation coefficient of 1 between the model 

simulation and target distribution of tumor cells, and/or after the maximum 

number of iterations has been realized. See ref. 50 for additional details on the 

implementation of the Levenberg–Marquardt method for model calibration.

■ PAUSE POINT Tumor forecasting can continue at a later date.

? TROUBLESHOOTING

39 Assess uncertainty. For the following predictions and evaluations, uncertainty 

related to the calibrated parameters and data measurements must be considered. 

Choose three representative datasets from the cohort. Using the calibrated 

parameters, simulate the model from scan 1 to scan 2 (target scan for 

calibration) for each tumor. Add an appropriate range of noise (determined 

by, for example, repeatability studies for DW-MRI data37) to voxels in each 

tumor cell map of the model generated scan 2 results using a normal distribution 

(MATLAB function randn). Calibrate the model to the noisy scan 2 tumor cell 

map, and save the resulting parameter values. Repeat for a total of 100 sets 

for each tumor in the three representative datasets (N = 300 total). Calculate 

the percent difference for each parameter between the corresponding original 

parameter values and each of the results from fitting the noisy data. Calculate 

the 95% confidence interval for each parameter using all samples. Determine 

whether a uniform or normal distribution is representative of the resulting 

parameter difference distributions.

For each patient in the cohort, generate 50 random parameter sets by sampling 

distributions of the parameters defined by the calculated 95% confidence 

intervals centered about each patient’s calibrated parameter set (use MATLAB’s 

rand for uniform distributions or randn for normally distributed values). 

Simulate the model from scan 2 to scan 3 for each of the 50 randomized 

parameter sets for each patient. Calculate the 95% confidence interval across 

all 50 resulting tumor predictions for each patient for total cellularity, volume 

and longest axis. Therefore, simulation results will include confidence intervals 

based on the uncertainty in the parameter estimates.
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40 Forecast tumor response. Using the corresponding calibrated parameters and 

maps (tissues, tumor cellularity, drug distributions) from scan 2, simulate the 

model from the time of scan 2 to scan 3. Evaluate the resulting 3D prediction 

with measured tumor response using the summary measures (total tumor 

cellularity, total tumor volume and longest axis, Step 36). Additionally, compare 

the predicted tumor and measured scan 3 tumor with the Dice coefficient 

(measuring overlap of the predicted ROI and measured ROI; a Dice of zero 

indicates no overlap, whereas a Dice of 1 indicates perfect overlap), and/or the 

concordance correlation coefficient to directly compare the prediction to the 

measurement for each patient. The predicted percent change from baseline to 

scan 3 can be compared with actual response defined by RECIST.

Using the corresponding calibrated parameters and maps (tissue, cellularity, 

drug distribution) from scan 4, simulate the model from the time of scan 4 to 

scan surgery. Compare the resulting summary measures and their corresponding 

predicted percent changes with surgically defined responses for the cohort (e.g., 

pCR versus non-pCR groups) using appropriate statistical comparison test for 

the cohort size (i.e., t tests, Wilcoxon rank sum test, Kendall and Pearson 

correlation coefficients, etc.).

Troubleshooting

Troubleshooting advice can be found in Table 3.

Timing

All times are approximate.

Step 1, patient accrual: highly variable depending on local method

Step 2, patient consent: 15 min

Step 3, placement of IV line: 10 min

Step 4, FOV determination for MRI examination: 2 min

Step 5, DW-MRI data acquisition: 1 min 39 s

Step 6, B1 map data acquisition: 34 s

Step 7, pre-contrast high-resolution T1-weighted scan, and variable flip angle T1-weighted 

images: 3 min 13 s and 1 min 39 s, respectively

Step 8, DCE-MRI data acquisition: 8 min

Step 9, precontrast high-resolution T1-weighted scan: 3 min 13 s

Step 10, upload to PACS: 5–10 min
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Step 11, DICOM reading and conversion: 6 min

Step 12, checking of slice positions using the DICOM header information: 1 min

Step 13, upsampling of the DW-MRI and B1 map data to the resolution of the DCE-MRI 

data: 3–4 min

Step 14, alignment of the DW-MRI data to the DCE-MRI data: 1 min

Step 15, alignment of the variable flip angle T1-weighted images to the DCE-MRI data: 7 

min

Step 16, alignment of the B1 data to the DCE-MRI data: 1 min

Step 17, motion correction within the DCE-MRI data: 9 min

Step 18, tumor segmentation: 20 min

Step 19, quality control of the acquired data: 5 min

Step 20, calculation of the ADC maps: 4 min

Step 21, computation of the B1-corrected T1 maps: 22 min

Step 22, construction of a patient’s AIF: 5 min

Step 23, BAT determination for each voxel in the DCE-MRI dataset: 5 min

Step 24, pharmacokinetic analysis for each voxel in the DCE-MRI data: 25 min

Step 25, enhancement of the anatomical images: 2 min

Step 26, comparison of slices across all visits for each patient: 10 min

Step 27, conversion of file types to .mhd: 1 min

Steps 28–30, identification of longitudinal registration weighting for all patient data from all 

patient visits: 1 d

Step 31, alignment of parameter maps from all visits for each patient: 15 min

Step 32, selection of domain for mathematical modeling for each patient set (i.e., all scan 

sessions from one patient): 5–10 min

Step 33, conversion of ADC maps to estimates of cell number: 1 min

Step 34, segmentation of breast tissue into fibroglandular and adipose tissues: 1 min

Step 35, estimation of spatiotemporal distribution of drug concentration: 1 min

Step 36, calculatation of the estimate of tumor cells, total tumor volume and longest axis: 1 

min
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Step 37, simulation of the model forward in space and time: 5 min

Step 38, calibration of the model to the patient data: several hours to 2 d, depending on the 

domain size

Step 39, assessment of uncertainty in model predictions: 1 d

Step 40, evaluation of predictive ability: 5 min

Anticipated results

In the following sections, we describe and present illustrative results associated with 

processing one dataset through the entire protocol. The example dataset used is that of 

a breast cancer patient with triple negative (estrogen receptor, progesterone receptor and 

human epidermal growth factor receptor 2 negative) invasive ductal carcinoma in the left 

breast. At the time of the first imaging session, the patient was 59 years of age with a body 

mass index of 28.3 kg/m2. All four scans were acquired over a period of 6 months during 

which the patient was treated with NAT. Surgery determined that the patient had residual 

disease (i.e., a non-pCR outcome) at the conclusion of NAT.

Image acquisition

See Fig. 6 for examples of the resulting MRI data collected for the patient’s first scan from 

the data acquisition steps. Figure 6a shows the lower b-value diffusion-weighted image (see 

Step 5), while Fig. 6b presents the B1 map quantifying the difference between the prescribed 

flip angle and that actually experienced by each voxel (Step 6). Figure 6c shows a single 

10° flip angle image from the multi-flip angle data acquired to estimate the T1 map (Step 7), 

and Fig. 6d displays the average of all images acquired during the DCE-MRI sequence (Step 

8). Note the differences between the various MRI modalities; in particular, observe how the 

DCE-MRI data (Fig. 6d) allow for visualization of the tumor and other tissue structures.

Data processing and analysis

See Fig. 7 for how the example images in Fig. 6 are processed using the protocol (Steps 

10-25) to identify various properties of the patient’s tumor. In particular, the ADC map 

is derived from the DW-MRI data acquisitions (Step 20), the tumor ROI is defined using 

the DCE-MRI data and FCM algorithm (Step 18), a corrected T1 map is generated from 

the variable flip angle T1 images and the B1 map (Step 21), and the resulting Kety–Tofts 

parameters characterizing the vasculature within the tumor are derived utilizing the DCE-

MRI data, tumor ROI and corrected T1 map (Step 23).

Mapping imaging data to the mathematical model

See Fig. 8 for example intermediary and subsequent images for the steps that convert the 

quantitative data maps to quantities utilized within the mathematical modeling system. Here, 

for example, images for all four scans can be visualized in the intervisit registration Fig. 8a 

(Steps 26-31). After intervisit registration, a modeling domain is identified over the breast 

(Step 32), ADC values within the tumor ROI are converted to tumor cellularity (Step 33), 

masks for the fibroglandular and adipose tissues are generated using a k-means clustering 
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algorithm (Step 34), and drug distribution in the patient’s tissue is approximated using the 

Kety–Tofts model and plasma concentration curves of the patient’s therapeutic regimen 

(Step 35). For this patient, the resulting summary measures described in Step 36 for visits 

1–4 are: total cellularity (cells) of 1.53 × 109, 1.42 × 109, 1.13 × 109 and 1.20 × 109; 

volumes (mm3) of 14,462, 11,831, 5,813 and 4,551; and longest axes (mm) of 36, 34, 32 and 

29, respectively.

Tumor forecasting

See Fig. 9 for an example comparison of the prediction from the mathematical model and 

the experimentally measured data for three central slices at the time of scan 3 for the same 

patient data presented in Figs. 6-8. Specifically, the mathematical model was calibrated 

using the patient’s data from her first two scans, and then, with the resulting patient-specific 

parameters, the model was simulated forward in time from scan 2 to the time of scan 3 

(as described in Steps 37-40). Note that the model is able to predict the patient’s tumor 

response with errors <17% for the three summary tumor measures (total cellularity, volume 

and longest axis) and has strong statistical correlation with the shape and cellular densities 

of the tumor (see figure caption for more details).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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We have made available one patient dataset that has been fully preprocessed (i.e., Steps 

1-36) and ready for the calibration and prediction components (i.e., Steps 37-40). This will 

enable the interested investigator to verify that the calibration and prediction code is working 

on the individual investigator’s platform. The dataset is available at https://github.com/

ChengyueWu/Quantitative-MRI-of-breast-cancer-patients-to-forecast-response-to-therapy.

Code availability

We have made the code for the calibration and prediction components (i.e., Steps 37-40) 

available without charge to anyone for academic, research, experimental or personal use. 

This code and license may be found at https://github.com/ChengyueWu/Quantitative-MRI-

of-breast-cancer-patients-to-forecast-response-to-therapy. To distribute or make other use of 
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the software, including commercial use, a license must be obtained from The University of 

Texas at Austin (by contacting licensing@otc.utexas.edu).

Appendix

Related links

Key references using this protocol

Weis J et al. A. Cancer Res. 74, 4697–707 (2015): 10.1158/0008-5472.CAN-14-2945

Jarrett A et al. Neoplasia. 22, 820–830 (2020): 10.1016/j.neo.2020.10.011 [PubMed: 33197744] 
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Fig. 1 ∣. Overview of the protocol.
Each panel contains summary keywords for each section. The procedure has five major 

sections: defining the patient population (Step 1, not shown), image acquisition (Steps 2-9), 

data analysis (Steps 10-25), mapping imaging data to the mathematical model (Steps 26-36), 

and tumor forecasting (Steps 37-40). Each section of the procedure focuses on specific 

areas of the protocol, and each section can be adapted for alternative investigations or 

used independently given specific circumstances in other studies. For example, the image 

acquisition section can be adapted for MRI studies in other organs. Also, given imaging 

data that are already acquired and analyzed, the mapping and forecasting sections can be 

applied. Note that informed consent must be obtained from all subjects. DCE-MRI, dynamic 

contrast-enhanced MRI; DW-MRI, diffusion-weighted MRI.
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Fig. 2 ∣. Timeline of MRI acquisition with an example standard-of-care NAT regimen for triple-
negative breast cancer consisting of two therapeutic regimens.
a, Example NAT regimen only. b, Example regimen with the protocol’s calibration and 

prediction strategy. For a and b, wide arrows indicate the first dose and start of each 

cycle (i.e., the administration of a single drug or combination of drugs over a designated 

period of time, typically 2–4 weeks), while the narrow arrows indicate any additional doses 

within each cycle. For the first regimen, red arrows represent combination doxorubicin 

and cyclophosphamide (typically consisting of four cycles where drugs are administered as 

single doses separated by 2 weeks). For the second regimen, blue arrows represent paclitaxel 

(typically consisting of four cycles where therapy is administered every week with each 

cycle lasting 3 weeks—small arrows represent the additional doses). Some patients are 

treated with carboplatin in combination with paclitaxel, where carboplatin is administered 

during the first week of each paclitaxel cycle only (wide blue arrows). After NAT is 

complete, patients undergo surgery as part of their standard of care to determine pathological 

response. The protocol has MRI data collected prior to and just after the first cycle of each 

therapeutic regimen.
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Fig. 3 ∣. FCM clustering to generate a tumor ROI.
Depicted is the sagittal cross section of a breast for the average DCE-MRI data for one 

patient (all panels). For the middle panel, a manually drawn ROI is shown, which identifies 

a conservative bounding polygon for the tumor. The right panel depicts the resulting ROI 

generated from the FCM algorithm within the manually drawn bounding polygon. Informed 

consent was obtained from this patient.
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Fig. 4 ∣. Comparison of intervisit registration results with and without tumor ROI penalties 
incorporated into the registration scheme.
a, Target image (scan 2, defined in Fig. 2). b, ‘Moving’ image to be deformed/shifted 

to align to the target image (scan 3). In b, the moving image’s tumor ROI is indicated 

by a black outline. c, Result of registering the moving image to the target image using 

the approach described in Steps 27-31 of the text (i.e., rigid + nonrigid B-spline with 

a tumor ROI penalty). d,e, Representative grid of the original moving image (d), and 

resulting deformed grid after registration (e), corresponding to the registered image in c. f, g, 

Deformations of the representative grid after rigid registration only (translation and rotations 

only) (f) and after the nonrigid B-spline registration without a tumor ROI penalty (g). Across 

b–g, white circles have been added to aid in comparing the fields for the areas surrounding 

the tumor. Note that, by including the tumor ROI penalty, there is less deformation of 

the tumor ROI; i.e., there is less deformation within the white circle in e versus g. This 

procedure is applied to the scan 1, 3 and 4 MRI datasets. Informed consent was obtained 

from this patient.
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Fig. 5 ∣. Flowchart of the data analysis steps of the protocol.
Step numbers are listed in red, and step names are listed in black. While the early data 

analysis steps (10-19) rely on the completion of the previous steps, several of the latter steps 

(20-24) can be performed in parallel.
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Fig. 6 ∣. Example image acquisition results.
a–d, A central slice for an illustrative patient depicting the 200 s/mm2 b value from DW-

MRI (a), the flip angle (FA) ratio from the B1 map (b), the 10° T1-weighted acquisitions (c) 

and the average signal intensity for the DCE-MRI data across all dynamics (d). The tumor 

burden is indicated with the red box. Informed consent was obtained from this patient.
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Fig. 7 ∣. Example results from the data analysis.
a–h, Each of the MRI data is aligned, interpolated to the same resolution, and registered 

across visits using a rigid registration algorithm. The DW-MRI data are used to calculate 

the ADC map (a, e). The DCE-MRI data are used to identify the tumor ROIs (b, f). The 

multi-flip angle (MFA) T1 scans and the B1 map correction are used to calculate a T1 map 

(c, d and h, respectively). The DCE-MRI data (b) along with the T1 map (h) are used to 

calculate the Kety–Tofts model parameters (g) within the tumor ROI (from f). Informed 

consent was obtained from this patient.
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Fig. 8 ∣. Converting imaging data to physical quantities for the mathematical model.
a–g, Prior to deriving modeling quantities, intervisit registration is required to align the 

images across all visits (a; details provided in Fig. 4). Once aligned, the ADC maps (b) 

are used to calculate the tumor cellularity (c). DCE-MRI data (d) are used to identify 

fibroglandular and adipose tissues (e) using a fuzzy k-means algorithm. The Kety–Tofts 

model parameters, specific to each patient, are used along with each patient’s individual 

therapeutic regimen (f) to derive approximate drug distributions in the tumor tissue (g). 

Informed consent was obtained from this patient.
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Fig. 9 ∣. Results of the 3D model predictions (over three central slices, left column) compared 
with the observed results at the third scan time (right column) for one example patient.
The number of tumor cells is indicated by the color overlay on each anatomical image. 

Notice that the model captures the correct shape of the tumor (Dice coefficient = 0.79), and 

while areas of higher and lower cellularity may not directly match, there are similar scales 

of the cellular densities between the model’s predictions and the patient’s actual tumor, 

resulting in Pearson and concordance correlation coefficients of 0.80 and 0.78, respectively. 

Comparing the summary measures of the predicted and measured tumor at scan 3 yields 

13%, 17% and 4% difference in total cellularity, volume and longest axis, respectively. 

Informed consent was obtained from this patient.
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Table 1 ∣

Description of variables for the model system

Variable Description

NTC(x, t) Number of tumor cells in the voxel at position x at time t

D Diffusion coefficient of tumor cells, where D = D0exp( − γσvm(x, t)) (mm2 ∕ d)
σvm Von Mises stress (N/m2)

u Displacement vector due to tumor cell growth (mm)

G Shear modulus due to breast tissue properties, where G=E/(2(1−ν)) (kPa)

Ctissue
drug (x, t) Concentration of drug in the tissue in the voxel at position x at time t μM)

Parameter Description Value

D0 Diffusion coefficient of tumor cells without stress Calibrated, mm2/d

γ Mechanical coupling coefficient for stress Assigned at 2.0 × 10−3 (m2/N)

ν Poisson’s ratio Assigned, 0.45 (dimensionless)

E Young’s modulus for adipose, fibroglandular and tumor tissues Assigned, 2 kPa, 4 kPa and 20 kPa, respectively

λ Coupling constant for displacement of tumor cells Assigned as 2.5 × 10−3 (N·m/cell)

k(x) Proliferation rate of tumor cells in the voxel at position x Calibrated, 1/d

θ Carrying capacity of tumor cells per voxel Defined, cells

α Efficacy of the drug against tumor cells Calibrated, 1/(μM·d)
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Table 2 ∣

Breast MRI acquisition parameters

MRI parameters DW-MRI
B1 mapping

a High-resolution T1
(pre- and postcontrast)

T1 mapping: variable
flip angle

DCE-MRI

Scan sequence Single-shot spin 
echo, echo planar

TurboFLASH T1-weighted, VIBE 3D gradient-echo 
FLASH

T1-weighted, 
VIBE

TR (ms) 3,000 8,680 5.3
7.9

b 7.02

TE (ms) 52 2 2.3
2.4

b 4.6

Flip angle (°) 90 8 10 2–20 15

Acquisition matrix 128 × 128 96 × 96 256 × 256 192 × 192 192 × 192

Slice thickness (mm)
5
c

5
c 1

5
c

5
c

GRAPPA acceleration 
factor

2 None 2 3 2

Fat suppression SPAIR None SPAIR None None

a
Due to the inclusion of a slice gap in the B1 mapping protocol, two acquisitions (at 17 s each) were performed to cover the same FOV as the other 

measurements.

b
These parameters should be set to ‘minimum’ given the confines of the other pulse sequence settings.

c
If adequate SNR can be maintained, then these values can be reduced. All breast MRI data were acquired in the sagittal plane with a FOV of 256 × 

256 mm2.
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Table 3 ∣

Troubleshooting table

Step Problem Possible reason Solution

4 Unable to identify the 
tumor

Breast tissue anatomy and tumor sizes/
shapes vary widely between patients, 
and it may be very difficult to identify 
the tumor

Biopsy clips and radiological notes are frequently helpful for 
identifying the tumor location. Biopsy clips create a dark signal 
void surrounded by brighter tissue signal and are easily spotted

5 Low SNR The resolution of the image may be too 
fine

Boost SNR by choosing a lower resolution or regridding the 
image post acquisition

6 When a product 
sequence for measuring 
B1 is not available

Scanner is not equipped with a B1-
mapping sequence

After an initial uncorrected T1 map is made using the variable-
flip angle sequence approach, use thresholding to select only 
those voxels that most likely belong to adipose fat. Based on the 
assumption that T1 values should be a consistent value for these 
voxels, compute an estimate of the flip angle error by assuming 
the acquired map includes B1 error. Once the B1 map is filled 
in for adipose fat voxels, use spatial interpolation to estimate B1 

at other (non-fat) voxels. This correction, while suboptimal to 
performing a true B1 map, should serve to reduce the magnitude 
of flip angle error when B1 mapping sequences are not available 
on the study scanner103,104

12 A certain scan 
acquisition contains 
more slices than included 
for the DCE-MRI data

This often happens during scanning for 
variable flip angle T1 mapping data, the 
high-resolution T1-weighted data

Only utilize the aligned slices or do a 3D interpolation to 
realign the images for downstream analysis, and save the data in 
a new structure

18 Too much or too 
little tumor results from 
segmentation

FCM algorithms have a threshold that 
can be tuned for belonging to different 
partitions

Adjust the membership threshold in the FCM algorithm

20 Unable to derive 
expected values for ADC

Using low b values (<100 s/mm2) can 
be affected by tissue perfusion, thus 
altering the interpretation of the image 
Poor data fitting

Including more than two b values can improve the accuracy of 
parameter estimation
May need to use interpolation methods to populate ADC values 
for voxels with bad fits

21 Signal drop in the AIF Standard-of-care examinations may 
administer high concentrations of 
contrast agent, which may induce T2* 
effects in the signal intensity curves 
measured from the large vessels (i.e., 
those typically employed for AIF 
estimation)

May need to assume an analytical form of the concentration of 
the contrast agent in the plasma and fit to the average signal 
intensity time course67

22 Unphysiological values 
from the 
pharmacokinetic model 
fits Ktrans, ve, vp, kep < 0, 
ve, vp > 1, and/or Ktrans, 
kep > 5

Could be in regions of necrosis where 
the Kety–Tofts model does not account 
for such phenomena114

Bound calibration method or filtered-out values beyond the 
physiological range from downstream analysis (may need to use 
interpolation methods to populate filtered-out voxels)

26 Alignment of tumors/
anatomy is off by several 
slices

Can occur despite best efforts to center 
the FOV on the center of the tumor 
during scanning—due to the tumor 
dramatically changing in size and shape 
during the course of therapy

Additional blank slices may be needed to ‘pad’ the ends of 
any particular scan set to achieve alignment and maintain equal 
dimensions across datasets Table continued

31 Intervisit registration 
failure

Despite careful initial alignment of 
slices and selection of the tumor ROI 
weight factor, the registration can fail 
(especially for tumors that have greatly 
reduced in size by the time of scan 4)

Additional manipulations may be required, including trimming 
the moving images to remove large amounts of image 
outside the breast and/or remove large amounts of the image 
that includes the chest cavity. Even with these additional 
corrections, registration can fail or simply be unable to 
align tumor ROIs. In these cases, simple rigid registration or 
manual alignment may be necessary. The MATLAB functions 
imregtform and imwarp can be used for rigid registration

32 Unusual breast domain Some breasts contain implants near the 
tumor ROI that would not be a part of 
the modeling domain

For breasts containing implants, two domains can be drawn: the 
first containing the entire breast region and the second where 
the breast implant is segmented out. The first breast mask can 
be used for image/display purposes, but the mathematical model 
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Step Problem Possible reason Solution

simulates on the second domain as we assume the tumor cannot 
grow into the breast implant

35 DCE-MRI data do 
not have the requisite 
temporal resolution for 
pharmacokinetic analysis

We note that certain MRI protocols 
do not allow for the requisite temporal 
resolution for pharmacokinetic analysis

In these cases, to approximate a normalized drug distribution 
in each voxel of tissue, a map of the blood volume can be 
calculated by computing the area under the dynamic curve 
(AUC) of the baseline-subtracted time course for each voxel 
and normalized by the AIF AUC value (as an approximation 
of blood volume) from contrast-enhanced data25. The signal 
enhancement ratio71 may also be used in this way to estimate 
drug distribution

37 Numerically unstable 
results

This can be due to several numerical 
scheme errors

Check that the diffusion coefficient, grid size and time step 
selected maintain numerical stability (see ref. 50 for stability 
equations specific to this scheme). Verify boundary conditions 
where tumor cells are conserved and not lost when proliferation 
is zero and diffusion is large

38 Calibration is 
computationally 
expensive

Calibration can take >1 d per 
patient when using a spatially defined 
proliferation map for large tumors and 
domains

To reduce computation time for all calibrations, the voxel 
matrix within the designated domain can be down-sampled. 
Parallelize codes to further reduce computational cost by 
utilizing multiple available processors concurrently on a server. 
Focus calibration on a smaller domain containing the tumor 
ROI and not over the whole breast. Broyden’s method can also 
be used to approximate the update of the Jacobian for each 
iteration

Calibration will not 
converge

Using maps from the previous scan 
may limit the calibration scheme to 
hit the target (e.g., using scan 1 
maps to calibrate to scan 2). Different 
tumors may be more difficult for the 
calibration to converge

Can use the starting number of tumor cells and shape from 
scan 1 (scan 3) with the tissue and drug distribution maps of 
scan 2 (scan 4) for calibration. The lambda increment factors 
increased or decreased are often problem-specific and need 
to be empirically determined to improve convergence. Larger 
tumors may require more iterations
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