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ABSTRACT
Heterosis refers to the superior performance of a hybrid offspring
over its two inbred parents. Although heterosis has been widely
observed in agriculture, its molecular mechanism is not well studied.
Recent advances in high-throughput genomic technologies such as
RNA sequencing (RNA-seq) facilitate the investigation of heterosis at
thegeneexpression level. However, it is challenging to identify genes
exhibiting heterosis using RNA-seq data because high-dimension
of hypotheses tests are conducted with limited sample size. Fur-
thermore, detecting heterosis genes requires testing composite null
hypotheses involving multiple mean expression levels instead of
testing simple null hypotheses as in differential expression analysis.
In this manuscript, we formulate a statistical model with parameters
directly reflecting heterosis status, and develop a powerful test to
detect heterosis genes. We employ a Bayesian framework where the
RNA-seq count data aremodeled through a Poisson-Gammamixture
with Dirichlet processes as priors for the distributions of the parame-
ters of interest, the fold changesbetweeneachparent and thehybrid.
Markov Chain Monte Carlo sampling with Gibbs algorithm is utilized
to provide posterior inference to detect heterosis genes while con-
trolling false discovery rate. Simulation results demonstrate that our
proposed method outperformed other methods utilized to detect
gene expression heterosis.
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1. Introduction

Heterosis, also called hybrid vigor, describes the phenotypic improvement of a hybrid off-
spring over its two inbred parents. Heterosis was documented by [7] and has been widely
utilized in growing agricultural crops, such as rice [30], to increase development rates and
grain yields. In China, hybrid rice is estimated to be planted on more than 50% of the rice
farmland, and produces 10–20% more than inbred varieties [6]. However, the mechanism
of heterosis is not yet well studied [5].

Researchers have speculated that genes which are differentially expressed between
hybrid offspring and its two inbred parents, or gene expression heterosis, might be
responsible for phenotypic heterosis [14,27]. The recent development of high-throughput
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genomic technologies, such as microarray and RNA-sequencing (RNA-seq), allow
researchers to measure the expression levels for tens of thousands of genes simultaneously.
Then gene expression heterosis can be studied by comparing expression levels between
the hybrid offspring and its two inbred parents for all expressed genes. More specifically,
it is of particular interest to test for each gene if it exhibits high-parent heterosis (HPH),
i.e. the mean expression level of the hybrid is greater than both parental means, or low-
parent heterosis (LPH), i.e. themean expression level of the hybrid is less than both parental
means.

For both microarray and RNA-seq technologies, tens of thousands of genes are simul-
taneously measured for their expression levels. However, due to the high cost of such
experiments, sample sizes are usually small. This introduces the ‘small n, large p’ prob-
lem, where n refers to the sample size and p refers to the number of variables (genes). The
power for hypothesis testing in such settings is often low after adjusting formultiple testing
errors. To utilize information from other genes, hierarchical models and Bayesian meth-
ods have been employed to borrow information across genes. These strategies have been
established in differential expression analysis, such as the widely applied moderated-t test
for microarray data [26] and baySeq [13] for RNA-seq data. Differential expression analy-
sis aims to identify genes whose expression levels change across treatments or conditions.
Hence, the null hypothesis is no change, and is a simple null case. However, for detecting
HPH or LPH genes, the null hypotheses involve the mean expression levels for three con-
ditions in a composite null. Therefore, the well-developed differential expression analysis
methods are not directly applicable for the detection of heterosis genes.

Only a few methods have been proposed to detect gene expression heterosis. In 2014, Ji
et al. [15] constructed an empirical Bayesian framework to detect gene expression heterosis
with microarray data where gene expression measurements were modeled as continuous
variables. They proposed a normal hierarchical model, which allows information to be
borrowed across genes for estimating mean and variance parameters. They applied an
empirical Bayes procedure to first estimate model hyperparameters, and then obtain the
posterior distributions for gene-specific parameters, based on which heterosis is evalu-
ated. Nowadays, RNA-seq technologies instead of microarray are widely applied for gene
expression studies. Generally, RNA-seq count data are modeled with a negative binomial
(NB) distribution [1,20]. Based on the work of [15], Niemi et al. [23] proposed an empir-
ical Bayes approach for estimating gene expression heterosis with RNA-seq count data
based on an NB hierarchical model in 2015, where heterosis was evaluated by compar-
ing one model parameter with the absolute value of another model parameter. In 2019,
Landau et al. [17] developed a general hierarchical model for RNA-seq count data and a
fully Bayesian analysis with parallelizedMarkovChainMonteCarlo (MCMC) algorithm to
improve the computational efficiency. They also showed that the empirical Bayes approach
can be an approximation of a fully Bayesian analysis if accurate hyperparameter estimates
can be obtained. Both methods [17,23] are based on the assumption that gene-specific
parameters are independent and arise from given parametric distributions. However, the
distributions of parameters across all genes are not guaranteed to follow the assumed para-
metric distributions in practice. Empirical distributions of parameters could be irregular
and vary between studies [18]. Therefore, under these circumstances, it is hard to model
the empirical distribution across all genes with given parametric methods. In addition,
both methods [17,23] did not assess the controlling of false discovery rate (FDR), which
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has been the choice of error criterion in RNA-seq data analysis, where tens of thousands
of hypotheses tests are simultaneously conducted.

To avoid unrealistic parametric assumptions and to take FDRcontrol into consideration,
we propose to use nonparametric Bayesian methods. The Dirichlet process (DP) mixture
model is one popular nonparametric Bayesian method, and such a modeling method has
been used for differential expression analyses when comparing two different conditions.
For instance, Do et al. [8] utilized DP mixtures to model the mean expression levels of
genes for each of two conditions with microarray data in 2005. Liu et al. [18] chose DP
mixtures for modeling the distribution of fold change parameters of a treatment con-
dition with respect to a reference condition for RNA-seq data in 2015. In 2019, Bi and
Liu [3] modified the base distribution of the DP prior used in [18], in order to guarantee
that the model is invariant regardless of which treatment group is set to be the reference
condition.

Building on the work of [18], we capture RNA-seq data with a Poisson-Gammamixture
that is equivalent to an NBmodel. We treat the hybrid offspring as the reference treatment,
as heterosis status is determined by comparing the hybrid genotypewith two parental lines.
In addition, we parameterize our model so that we have model parameters corresponding
to the fold changes between the mean expression levels of the hybrid offspring versus each
parental line separately. We then construct a semi-parametric Bayesian approach and use
posterior results for detection of gene expression heterosis while controlling FDR.

The rest of this manuscript is organized as follows. Section 2 introduces our proposed
semi-parametric Bayesian approach and prior models, then applies the MCMC sampling
scheme for posterior inference and FDR estimation. Section 3 provides an algorithm for
improving computational efficiency grounded on a division of the data. In Section 4, we
conduct several simulation studies with NB distributions and compare the results of our
approach to the method in [23]. In Section 5, we analyze a real maize dataset and iden-
tify heterosis genes with our proposed method. Section 6 provides a summary and some
discussion of our work.

2. Method

In this section, we first introduce our modeling framework, specify the prior models we
adopted, then provide the MCMC sampling method for posterior inference and FDR
estimation.

2.1. Model

We consider gene expression heterosis experiments that involve three genotypes: the
hybrid offspring genotype, and the two parental inbred lines. Although the offspring geno-
type is generated by crossing the twoparental lines, plants for the three genotypes are grown
together in the same environment to provide samples for gene expression heterosis studies.
Suppose that a completely randomized design with independent biological replicates for
each genotype has been used for the gene expression heterosis experiments. For RNA-seq
experimentswith biological replicates in each treatment (genotype) group, theNBdistribu-
tion has been commonly employed for modeling the RNA-seq count data [1,13,20]. Notice
that theNBdistribution has no conjugate prior and introduces computational difficulties in
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Bayesian hierarchical modeling. We re-parameterize the NB model with Poisson-Gamma
mixtures that make Bayesian hierarchical modeling much easier.

Consider an RNA-seq heterosis experiment that measures G genes. Let Ygij denote the
observation for gene g from biological replicate j of genotype i, where g = 1, . . . ,G, i = 1,
2, 3, (i = 1 denotes hybrid offspring, i = 2 denotes parental line 1, and i = 3 denotes
parental line 2), j = 1, . . . , ni, and ni is the number of biological replicates in treatment
i. Then count data Ygij can be modeled using a Poisson-Gamma mixture model as below,

Ygij|λgij ∼ Poisson(Sijλgij),

λg1j|αg ,βg ∼ Gamma(αg ,βg),

λg2j|αg ,βg , ρg1 ∼ Gamma(αg ,βgρg1),

λg3j|αg ,βg , ρg2 ∼ Gamma(αg ,βgρg2),

where Sij denotes a normalization factor accounting for nuisance technical effects such as
sequencing depths across the replicates [1], λgij is the conditional expression mean from
replicate j in treatment i for gene g, αg denotes the shape parameter that corresponds to
the reciprocal of the dispersion parameter in the NB model for gene g, βg refers to the rate
parameter for hybrid offspring, the product of βg and ρg1 is the rate parameter for parental
line 1, and the product of βg and ρg2 is for parental line 2. In fact, the marginal distribution
of Ygij is NB with dispersion parameter 1/αg and mean parameter αg/βg , αg/(βgρg1), and
αg/(βgρg2) for the hybrid, parental line 1, and parental line 2, respectively. Note that the
mean ratio of offspring over parental line 1 is ρg1, which is referred to as the fold change
parameter between hybrid offspring versus parental line 1 for gene g. Similarly, ρg2 denotes
the fold change parameter between hybrid offspring versus parental line 2.

With our parameterization, HPH genes are genes with

ρg1 > 1 and ρg2 > 1. (1)

Similarly, LPH genes are genes with

ρg1 < 1 and ρg2 < 1. (2)

As shown in (1) and (2), under our unique parameterization for heterosis detection, con-
ditions for HPH and LPH are expressed by comparing each of the two parameters with
a constant instead of comparing three means with each other, which simplifies the prob-
lem. In addition, using the fold change parameters ρg1 and ρg2 make interpretation more
straightforward.

2.2. Prior specification

Since our primary focus is the fold change parameters ρg1 and ρg2, it is crucial to choose
appropriate prior distributions for them. To provide maximal flexibility, we propose to
use nonparametric Bayesian modeling with DP to model the prior distributions for ρg1
and ρg2.

A DP is a family of stochastic processes whose realizations are probability distribu-
tions. In other words, a DP is a distribution over distributions. DP is specified by a base
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distribution F0 and a positive real number M called the concentration parameter. For a
given measurable set �, a random probability distribution F is drawn from a DP if for any
measurable finite partition of �, denoted by A1, . . . ,Ak, (F(A1), . . . , F(Ak)) has Dirich-
let distribution Dir(M · F0(A1), . . . ,M · F0(Ak)). We denote F as F ∼ DP(M, F0). The
base distribution represents the mean of the process, while the concentration parameter
illustrates how strong the discretization is.

Next we will utilize a DP formodeling the fold change parameters. Here we illustrate the
DPmodeling procedure for ρg1 (fold change between hybrid offspring and parental line 1)
as an example, the same procedure is applied to ρg2. Following [18], a mixture of a point
mass at one and a Gamma distribution is used as the base distribution of the DP prior for
ρg1. This can be written as

ρg1|F i.i.d.∼ F,

F ∼ DP(M, F0),

F0 ∼ p0δ{1} + (1 − p0)Gamma(α0,β0),

(3)

for gene g, g = 1, . . . ,G, where p0 is the proportion of equivalently expressed genes
between the hybrid and parent 1, δ{x} represents point mass at x. Throughout this
manuscript, we set p0 = 0.5 so that no prior preference is given to either differential expres-
sion or equivalent expression between hybrid offspring and parental line 1. We set the
concentration parameterM = 1, a common choice in applications [8,12,16].

We assign an exponential distribution for the prior of αg , and a Gamma distribution for
the prior of βg ,

αg ∼ Exp(r), (4)

βg ∼ Gamma(a0, b0), (5)

where r, a0, b0 and α0, β0 are hyperparameters. Also, we set r = 0.01, a0 = 0.1, b0 = 0.1,
α0 = 0.1, β0 = 0.1 to have non-informative priors so that the inference for αg and βg
primarily relies on the observed data. All priors for αg , βg , ρg1 and ρg2 are set to be
independent. Because we apply nonparametric priors for the fold change parameters and
parametric priors for other parameters, the method we propose is a semi-parametric
Bayesian approach.

2.3. Markov ChainMonte Carlo simulation

With the priors specified, the posterior distributions can be derived viamultiplying the pri-
ors by the likelihood function. We adopt an MCMC [29] based sampling method to draw
samples from the posterior distribution. More specifically, we utilize the Gibbs algorithm
to perform MCMC when conjugate priors are utilized.

In DP mixture modeling procedure, MCMC sampling methods are generally based
on integrating F over its DP prior (3), where the sequence of ρg1’s follows a Pólya urn
scheme [4,9], that is,

ρg1|ρ−g1 ∼ 1
G − 1 + M

∑
k�=g

δ{ρk1} + M
G − 1 + M

F0, (6)
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where ρ−g1 is the vector (ρ11, . . . , ρG1) after deleting ρg1.
Then, the most straightforward way to draw samples from our model is to update ρ11

through ρG1 iteratively. However, this approach is inefficient. Since in RNA-seq experi-
ments, it is likely that many genes share the same or very similar ρg1, but this method
cannot change ρg1 for multiple genes simultaneously. A change to the ρg1 for genes in
such a group occurs with a low probability. Thus, converging to the posterior distribu-
tion may take a long time [21]. Due to this computational efficiency issue of the MCMC
algorithm, configuration indicators are used here as in [18]. Suppose K is the number of
distinct values in (ρ11, . . . , ρG1) and let the distinct values be denoted byρ∗

1 , . . . , ρ
∗
K . Define

ξ = (ξ1, . . . , ξG) as the configuration indicators by

ξg = k if and only if ρg1 = ρ∗
k = ρ∗

ξg
.

Then, the prior model for ρg1 is re-parameterized with ρ∗
k and ξg as below,

ρ∗
k

i.i.d.∼ F0,

F0 ∼ p0δ{1} + (1 − p0)Gamma(α0,β0),

(ξ1, . . . , ξG)|M ∼ CRP(M),

where ρ∗
k and ξg have independent priors and CRP stands for Chinese Restaurant Process,

which is a random distribution with the full conditional distribution of ξg written as

ξg |ξl,M ∼
K(−g)∑
k=1

n(−g)
k

G − 1 + M
δ{k} + M

G − 1 + M
δ{K(−g)+1},

where K(−g) is the number of unique values in (ρ11, . . . , ρG1) after deleting ρg1, and n
(−g)
k

is the number in (ρ11, . . . , ρG1) who equal ρ∗
k after deleting ρg1.

The MCMC sampling scheme uses Gibbs sampling algorithm to update each of the fol-
lowing parameters: (1) λgij’s, (2) βg ’s, (3) αg ’s, (4) ρg1’s and (5) ρg2’s, where the update of
ρg1’s and ρg2’s utilizes the configuration indicators as shown above.

The detailed derivations of the full conditionals for each parameter are provided inWeb
AppendixA. The posterior samples for bothρg1 andρg2 are then used for further inference.

2.4. Bayesian FDR estimation

In gene expression heterosis studies, a massive number of hypotheses tests are con-
ducted, each related to a gene. Therefore, the number of false significant results needs
to be controlled for such multiple testing procedure. As in other genomic studies, we
choose to control FDR, defined as the expected proportion of false positives among the
discoveries [2], in RNA-seq data analysis. In a Bayesian framework, we are able to con-
struct procedures for estimating FDR through Bayesian FDR [11,22] by using posterior
probability.

Given gene g, g = 1, . . . ,G, the posterior probability that this gene exhibits HPH is
denoted by P(ρg1 > 1, ρg2 > 1|Yg), while the posterior probability that the gene exhibits
LPH is denoted by P(ρg1 < 1, ρg2 < 1|Yg). P(ρg1 > 1, ρg2 > 1|Yg) and P(ρg1 < 1, ρg2 <
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1|Yg) can be estimated as the proportion of posterior samples drawn fromMCMC for gene
g that satisfy the HPH or LPH conditions, i.e.

HPH : v̂g = P̂(ρg1 > 1, ρg2 > 1|Yg) = 1
N

N∑
m=1

I(ρm
g1 > 1, ρm

g2 > 1|Yg),

LPH : v̂g = P̂(ρg1 < 1, ρg2 < 1|Yg) = 1
N

N∑
m=1

I(ρm
g1 < 1, ρm

g2 < 1|Yg),

where N denotes the total number of posterior samples used for inference. We conclude
the gene exhibits HPH or LPH when the estimated 1 − v̂g is less than a critical value c∗,
which can be chosen based on a desired level of FDR, γ ,

c∗ = sup{c : F̂DR(c) < γ },
where

F̂DR(c) =

G∑
g=1

(1 − v̂g)I(1 − v̂g < c)

G∑
g=1

I(1 − v̂g < c)

.

Then the Bayesian FDR controlled at γ can be estimated by

̂BFDR(γ ) =

G∑
g=1

(1 − v̂g)I(1 − v̂g < c∗)

G∑
g=1

I(1 − v̂g < c∗)

.

3. Data division

The method we proposed is based on the MCMC sampling scheme that updates parame-
ters iteratively among genes. Not surprisingly, such a procedure is quite time consuming,
especially when the total number of genes is huge. In order to improve the computational
efficiency, we consider a strategy that divides the raw dataset into several small datasets,
applies our proposed method independently to the smaller datasets using parallel com-
puting and then combines the posterior samples together for further inference. Assume
we have G genes, and we randomly divide them into m groups, so that each group has an
approximately equal number of genes. We assess our proposed method with and without
this data division strategy in simulation studies.

4. Simulation studies

In this section, we carry out several simulation studies to evaluate our proposed semi-
parametric approaches, SBA (without data division) and SBA_div (with data division), and
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compare them to the empirical Bayes method in [23] (eBayes_Laplace and eBayes_Normal,
depending on the parametric prior assumption). Landau et al. [17] proposed a fully
Bayesian analysis and also showed that their fully Bayesian method could be well approx-
imated by the empirical Bayes method in [23]. In addition, the fully Bayesian method is
more time consuming and requiresmore computational resources than the empirical Bayes
method.Hence, we only include the empirical Bayesmethod [23] but not the fully Bayesian
method [17] in our simulation studies. Converting RNA-seq count data into continuous
data and applying the approach proposed in [15] is also an option, but Niemi et al. [23]
have already demonstrated in their simulation studies that such approach had inferior per-
formance to their method, thus we also omit the comparison with the method developed
in [15].

To imitate the real RNA-seq data, gene-specific mean and dispersion parameters were
estimated from a real maize dataset [28]. We conducted two simulation studies, A and
B, which differed in how fold change parameters were simulated. For each simulation
study, 32 datasets were generated independently, and test performance for each method
under comparison was assessed by averaging results over the 32 datasets. Each dataset
contained 3000 genes, 3 genotypes and 3 replicates per genotype, and was simulated based
on NB models with estimated pairs of mean and dispersion parameters. For our SBA and
SBA_div methods, posterior probabilities were estimated by 5000 posterior samples after
3000 iterations burn-in. Convergence was checked by Gelman-Rubin criteria [10].

4.1. Simulation A

We estimated the gene-specific mean from one treatment group in [28]’s maize dataset,
as well as the dispersion parameters across two treatments. We randomly sampled 3000
out of 27,819 pairs of mean and dispersion parameters without replacement, to use as
geometric means across three genotypes (μg) and dispersion parameters (φg) for gene
g = 1, . . . , 3000. The RNA-seq count data for the hybrid offspring were generated from
NB(μg

∗,φg) for gene g. Then, 1500 out of the 3000 genes were randomly selected, and ρg1
for these genes were set to be 1, which means that count data for parental line 1 were also
drawn from NB(μg

∗,φg). The remaining 1500 genes were simulated to have fold change
parameters ρg1 set to be 0.125, 0.25, 4, or 8, thus we had 375 genes for each value of ρg1.
Then RNA-seq count data for parental line 1were drawn fromNB(μg

∗/ρg1,φg). The count
data for parental line 2 were generated similarly while ρg2 was generated independently of
ρg1. Note that μ∗

g = μg(ρg1ρg2)
1/3 such that the geometric mean of the hybrid and two

parental lines is μg .

4.2. Simulation B

Similar to Simulation A, 3000 genes were drawn from NB(μg ,φg), where pairs of μg and
φg were sampled from the estimates from the same maize data. Again, 1500 out of 3000
genes were randomly selected to have fold changes ρg1 = 1 between hybrid and parental
line 1. For the remaining 1500 genes, we simulated ρg1 from the following distribution,

log(ρg1) ∼ 0.5Normal(− log(4), 1) + 0.5Normal(log(4), 1).
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Figure 1. ROC curves for Simulations A and B. Given each FPR level, the TPRs were averaged over 32
simulateddatasets. Thepartial AUCvalueswere calculatedby averaging thepercentages of the total area
in the plotted region where FPR is below 0.1, and reported in the legends, with the standard deviations
in parentheses.

The fold change parameters between the hybrid and parent 2, ρg2, were generated in the
same way independently of ρg1.

4.3. Simulation results for detecting gene expression heterosis

Different normalization methods may affect the performance of the methods under com-
parison. To avoid the impact of different normalization methods, we set normalization
factor Sij = 1 for all methods in both simulation studies.

We first evaluate the performances of different methods with the receiver operating
characteristic (ROC) curve, which is the plot of the true positive rate (TPR) against the false
positive rate (FPR). For each simulated dataset, TPR and FPR were calculated by ranking
heterosis genes via posterior probabilities. Then, given each FPR level, the average TPRs
over 32 simulated datasets were calculated, leading to the ROC curves shown in Figure 1.
We only plotted the ROC curves within the region where FPR is below 0.1, which is often
of primary interest in practice. The partial area under curve (AUC) values were calculated
as well, which is the proportion of the total area in the region where FPR is no larger than
0.1. The average AUC values and the standard deviations across simulated datasets are
presented in the legends.

As indicated in Figure 1, our proposed methods (SBA and SBA_div) generated higher
ROC curves and greater AUC values than the empirical Bayes method proposed in [23],
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Figure 2. FDR plots for Simulations A and B. Given each nominal level of FDR, the actual observed FDRs
were estimated by averaging the proportion of false discoveries among declared heterosis genes across
32 simulated datasets. The gray dash-dotted lines represent the Y = X line.

under both simulation settings A and B. To implement SBA_div, we randomly divided the
3000 genes into 5 groups, with 600 genes in each group, then applied our SBAmethod inde-
pendently to the 5 groups. Therefore, Figure 1 demonstrates that our proposed methods
outperformed the empirical Bayes method in terms of the ability to correctly ranking true
heterosis genes.

We also evaluated the FDR estimation method described in Subsection 2.4 using the
posterior probabilities for each method. FDR plots for Simulations A and B are pre-
sented in Figure 2. Given each nominal level of FDR, the actual observed FDRs were
estimated by averaging the proportion of false discoveries among declared heterosis genes
across 32 simulated datasets. A well-performing method would control the FDR close
to or below nominal level. As shown in Figure 2, our proposed methods (SBA and
SBA_div) controlled FDR, while FDR was not controlled for the empirical Bayes method
in [23].

In Figure 2, the FDR curves for our proposed methods are below the Y = X line, indi-
cating that ourmethods are conservative. For further study of the FDR control, we checked
the actual FDR, the number of declared heterosis genes, and the number of truly declared
heterosis genes for each nominal level of FDR. The results for HPH or LPH in Simulations
A and B are presented in Table 1 andWeb Tables 1-3 inWeb Appendix B respectively. The
empirical Bayes methods identifiedmore true heterosis genes than ourmethods. However,
they also generated many more false positives than desired and resulted in liberal actual
FDR.
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Table 1. Results for HPH in Simulation A.

Nominal level Actual Number of declared Number of declared truly Total number of
of FDR Method FDR heterosis genes heterosis genes heterosis genes

0.01 SBA 0.0018 495 494 613
SBA_div 0.0021 494 493

eBayes_Laplace 0.0175 567 557
eBayes_Normal 0.0228 576 563

0.05 SBA 0.0129 562 555 613
SBA_div 0.0116 561 555

eBayes_Laplace 0.1004 657 591
eBayes_Normal 0.1145 672 595

0.1 SBA 0.0420 609 583 613
SBA_div 0.0405 607 583

eBayes_Laplace 0.1829 736 601
eBayes_Normal 0.2018 756 604

0.2 SBA 0.1305 694 603 613
SBA_div 0.1297 692 602

eBayes_Laplace 0.3150 889 609
eBayes_Normal 0.3352 917 610

Based on the simulation results, our proposed methods generated higher ROC curves
compared with the empirical Bayes method in [23]. Furthermore, our methods controlled
FDR, and hence provided a reliable list of genes exhibiting HPH or LPH at a desired level
of FDR. All in all, our proposed methods worked better than the empirical Bayes method
proposed in [23] under both simulation settings.

4.4. Number of groups

In this subsection, we studied how the SBA_div method works as the number of groups,
m, varies. If we randomly divide the G = 3000 genes intom groups, m = 5, 10, or 25, the
ROC curves and FDR plots are shown in Figures 3 and 4. In Simulation A, the results
based on differentm’s did not differ too much, indicating that we could choose a relatively
largem to receive more computational efficiency. In Simulation B, smallerm led to slightly
better results, which was as expected. All choices of divisions controlled FDR well across
all simulation settings.

4.5. Computational time

Table 2 provides the computational time needed for eachmethod. The computational time
for each simulation was calculated on a cluster node that was equipped with two 8-core
2.6GHz Intel Haswell E5-2640 v3 processors. Our SBA method with random division
(SBA_div) and the empirical Bayes methods [23] (eBayes_Laplace and eBayes_Normal)
could be parallelized to increase efficiency, and the parallelizationwas done across 16 cores.
We could notice that the computational time based on the data division of our proposed
method (SBA_div) was comparable to the empirical Bayesmethods. As the number of divi-
sions increased, the computational time decreased. However, as indicated in Figures 1 and
3, a larger number of divisions led to slightly worse results but was still better than the
empirical Bayes methods.
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Figure 3. ROC curves for different data divisions under Simulations A and B. Given each FPR level, the
TPRs were averaged across the 32 simulated datasets. The partial AUC values were calculated by averag-
ing the percentages of the total area in the plotted region where FPR is below 0.1, and reported in the
legends, with the standard deviations in parentheses.

Table 2. Computational time needed for each method.

Method Simulation A Simulation B

SBA 90.6mins 163.1mins
SBA_div5 45.2mins 56.5mins
SBA_div5_parallel 9.9mins 12.0mins
SBA_div10 39.8mins 43.8mins
SBA_div10_parallel 4.6mins 5.3mins
SBA_div25 37.0mins 39.1mins
SBA_div25_parallel 3.4mins 3.7mins
eBayes_Laplace 40.5mins 40.7mins
eBayes_Laplace_parallel 3.8mins 3.7mins
eBayes_Normal 39.8mins 39.7mins
eBayes_Normal_parallel 3.0mins 3.0mins

5. Real data analysis

We applied our proposed methods to a real RNA-seq heterosis dataset published by [24].
This data studies gene expression heterosis between parental lines, B73 andMo17, and the
hybrid genotype (B73×Mo17). We used the same criterion as in [23] to filter genes with
low abundance. More specifically, we kept genes with an average count equal to or greater
than one and with no more than two zero read counts within the four biological replicates
for each genotype, and 28,943 genes were left for gene expression heterosis analysis.
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Figure 4. FDR plots for different data divisions under Simulations A and B. Given each nominal level of
FDR, the actual observed FDRs were estimated by averaging the proportion of false discoveries among
declared heterosis genes across 32 simulated datasets. The gray dash-dotted lines represent the Y = X
line.

Table 3. Number of heterosis genes detected when controlling FDR at different levels.

Heterosis FDR SBA SBA_div5 SBA_div10 SBA_div16 eBayes_Laplace eBayes_Normal

HPH 0.1 27 31 30 30 28 35
HPH 0.05 12 13 12 14 8 9
LPH 0.1 7 9 6 10 75 82
LPH 0.05 0 4 0 4 23 12

Table 3 provides the number of heterosis genes detected by different methods when
controlling FDR at 0.1 or 0.05. The eBayes_Laplace and eBayes_Normalmethods detected
more LPH genes than our proposed methods. However, based on our simulation results
that FDR control was very liberal for the empirical Bayes methods, the list of declared
heterosis genes may include more false positives than desired.

Although the eBayes_Laplace and eBayes_Normal methods detected nearly the same
number of HPH genes when controlling FDR at 0.1 or 0.05, the lists of HPH genes detected
by the empirical Bayes method [23] were different from what our method identified. Venn
diagrams of detectedHPH and LPH genes when controlling at different FDR levels are pre-
sented inWeb Figures 1–2 inWebAppendix C respectively. Again, theHPHgenes detected
from [23] might not be reliable due to their failure of FDR control based on our simula-
tion results. Without knowing the true heterosis genes at the moment, more biological
experiments are needed to validate these results.
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6. Discussion

Gene expression heterosis has been hypothesized to help account for phenotypic hetero-
sis, such as grain yields increment. Thus, identifying heterosis genes is a crucial issue, and
may have a strong impact on biology and genetics. Existing methods for detecting gene
expression heterosis with RNA-seq data require parametric assumptions [17,23]. We pro-
posed a novel model within a semi-parametric Bayesian framework so that heterosis is
directly modeled by our model parameters. We adopted an MCMC sampling scheme to
provide posterior inference for detecting gene expression heterosis. Our method provides
a more flexible way that avoids the dependence on parametric assumptions. From the sim-
ulation studies, we demonstrated that our proposed method outperformed the empirical
Bayes method in [23], in terms of ranking heterosis genes and FDR control. Therefore, our
method offers a reliable way to detect gene expression heterosis for RNA-seq experiments.

Throughout the process of building our semi-parametric Bayesian modeling frame-
work, we considered the two inbred parents to be independent, and modeled the fold
change parameters between the hybrid offspring and each parental line, ρg1 and ρg2, sepa-
rately. Consider parental line 1 as an example: we set the hybrid offspring as the reference
condition, and modeled the distribution of gene-specific fold change parameters between
the hybrid and parental line 1 using a DP prior. In a typical heterosis study containing two
parents and one hybrid, the hybrid offspring is naturally selected as reference, thus fold
changes ρg1 and ρg2 can be viewed as effects of each parental line on the hybrid. If there
is biological knowledge that ρg1 and ρg2 may be correlated, the two parameters may be
modeled jointly.

Our proposedmodel assumes that the hybrid offspring and two inbred parents share the
same dispersion parameter, which aligns with popular methods for RNA-seq data analysis
such as edgeR [20,25],DESeq [1] andDESeq2 [19]. Our method can be extended to a more
flexiblemodel that assumes different dispersion parametersαgi for the hybrid offspring and
two parental lines, where i = 1, 2, 3 denotes hybrid offspring, parental line 1, and parental
line 2 respectively. Then the full conditional distributions for λgij, βg , αgi, ξg and ρ∗

k can
be modified easily. However, adding more parameters would introduce additional steps in
the MCMC sampling scheme and hence increase computational complexity.

The DP priors depend on the base distribution F0 and the concentration parameterM.
We used a mixture of two components as F0: a point mass at one and a Gamma distribu-
tion. The choice of the point mass component is due to the high frequency of estimated
fold changes that lie in the small range around 1 based on real data. The choice of the
Gamma distribution as the second component is because the Gamma distribution ensures
conjugacy that facilitates computation. In the DP priors, the concentration parameter M
is commonly chosen asM = 1 in applications [8]. We also checked the simulation results
with various values ofM (M = 0.2, 0.5, 2, 5, 10 or 20), where the results remained nearly
the same for differentM.

We specified p0 = 0.5 so that no prior preference is given to either differential expression
or equivalent expression between hybrid offspring and either parental line. To investigate
the robustness of setting p0 = 0.5 under different simulation scenarios, we conductedmore
simulations by varying the proportion of genes having fold change 1 between hybrid off-
spring and each parental line. Simulation results (presented in Web Appendix D) show
that using this prior of p0 is robust under all settings. Our proposed methods (SBA and
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SBA_div) performed better than the empirical Bayes method in terms of both ROC curves
and FDR control under all simulation scenarios.

Although our proposed semi-parametric Bayesian method provides a reliable approach
for the detection of gene expression heterosis, computational complexity might be an
issue. In order to improve the efficiency, we also provided an algorithm based on a divi-
sion of the data. The choice of number of groups, m, is a trade-off between efficiency
and accuracy. According to the simulation results, a larger number of divisions m led to
lower accuracy, but still outperformed the current empirical Bayes methods with compa-
rable computational time. Additional discussion about data division can be found in Web
Appendix D.

When performing our proposed method on the real data, the heterosis genes detected
with different number of divisions are not exactly the same. Part of the reason is due to
the randomness of MCMC. If we run another MCMC using a different seed, the heterosis
genes detected by the two MCMCs are not necessarily the same. In addition, whether the
Markov chains are long enough to get accurate results could also be a potential problem.We
checked the effective sample size for each gene. Genes that were detected to be heterosis
genes by all numbers of divisions had effective sample sizes greater than genes that had
different declared heterosis status by different numbers of divisions. So for those genes
with a low effective sample size, we may need to run longer chains. Based on simulation
checking, running the Markov chains longer do increase the percentage of overlapping
genes, as expected. However, running longer chains is more time consuming. Therefore, it
is also a trade-off between efficiency and accuracy, and we will let the users decide which
one is more important for a practical application.
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