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ABSTRACT
This article introduces a new distribution with two tuning param-
eters specified on the unit interval. It follows from a ‘hyperbolic
secant transformation’ of a random variable following the Weibull
distribution. The lack of research on the prospect of hyperbolic trans-
formations providing flexible distributions over the unit interval is a
motivation for the study. The main distributional structural proper-
ties of the new distribution are established. The different estimation
methods and two simulation works have been derived for model
parameters. Subsequently, we develop a related quantile regression
model for further statistical perspectives. We consider two real data
applications based on the educational measurements of both OECD
and some non-members of OECD countries. Our regression model
aims to relate the desire to get top grades on certain young students
in the OECD countries with some of their Education and School Life
Index such as reading performance, work environment at home, and
paidwork experience. It is shown that the elaboratedquantile regres-
sionmodel has a better fitting power than famous regressionmodels
when the unit response variable possesses skewed distribution as
well as two independent variables are significant in the statistical
sense at any standard significance level for the median response.
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1. Introduction

Education is themost important phenomenon that develops a country. In order to adapt to
the ever-changing and developing world, countries use education as a tool and, in parallel,
work to improve the quality of education. For this last aspect, all the important outcomes
are examined. While the evaluation of education provided in formal education institu-
tions at the national level and success rates in national exams are the most important
factors, the results obtained in international exams are considered among the significant
outputs. Countries that read both national and international outputs correctly make an
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important investment for their education systems and the development of their countries.
In this context, suitable analysis and correct interpretation of the educational data sets
have a very important place in terms of inferences. For these inferences, educational data
sets can be related to various statistical models such as regression models (ordinary least
squares), probabilistic models and advanced statistical models. Thesemodels make impor-
tant contributions to the education data of countries. They can also provide important
information to those concerned about how to achieve more success in various situations
and what aspects of countries should pay attention to their educational development. For
instance, the educational measurements can be explained by quantile regression models
to relate a dependent (response) variable with independent (covariates, regressors) vari-
ables. The quantile regression has been introduced by Koenker and Bassett [25] to obtain
more robust inferences than classic regression models. In the literature, there are many
studies related to educational data, which have been modeled with quantile regression.
For example, Reference [13] has used the quantile regressions to decide whether the rela-
tionship between school quality and performance on standardized tests differs at some
point in the conditional distribution of test score gains. Reference [33] has analyzed the
dispersion of returns to education in various Western countries in the mid-1990s, aim-
ing to address the link between schooling and intra-level inequalities. Reference [42] has
studied school composition effects in Denmark from the Program for International Stu-
dent Assessment (PISA) 2000 data using quantile regression. Reference [43] has studied
gender gaps in math, science, and reading in several countries among 15-year-old students
using a quantile regression approach. Reference [19] has assessed the socio-demographic
characteristics that affect student mathematics performance in the context of equal educa-
tional opportunity for a sample of PISA 2012 Turkey conducted with quantile regression
analysis. Reference [30] has related the measure of the educational attainment of OECD
countries with some of their Better Life Index such as life satisfaction, homicide rate, and
voter turnout based on the quantile regression with the new unit probability model. In
addition, Reference [2] has associated the educational attainment values of OECD coun-
tries with homicide rate and labor market insecurity variables via regression of the mean
response.

Recently, the work on the unit distribution has increased with great interest in many
different fields. This is mainly motivated by the practitioner’s dissatisfaction with the clas-
sic unit distributions. For instance, the beta distribution can be inadequate in order to
both model and predict based on the real data phenomena. The beta distribution does
not take into account the events of the end zone or more flexibility in specifying the vari-
ance. For this aspect, we may refer to [6]. In light of this, the existing unit distributions
have generally been elaborated by transforming well-known probability distributions. The
main interest of using the transformation based on these distributions is that they do not
add new parameters to them on the unit interval. To transform a positive random variable
(rv) into new unit rvs, the most used transformation is centered on the negative exponen-
tial function. For instance, the Kumaraswamy [31], log-Lindley [17], unit-Weibull [37],
unit Gompertz [35], log-xgamma [4], unit inverse Gaussian [16], unit generalized half
normal [27], log-weighted exponential [2] and log-extended exponential geometric [22]
distributions have been obtained via this method. One may see [3,18,20,26,34] for other
unit models that were obtained with other transformation methods. These proposed unit
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distributions can present more flexible density shapes on the (0, 1) interval than those of
their baseline distribution.

In another aspect, classical regressionmodels are related to themean response as a func-
tion of certain values of the covariates. If the response variable is set to the standard unit
interval, the beta-by-regression model invented by Ferrari and Cribari-Neto [14] comes to
mind in the first place for this purpose. Further, some alternative unit regression models
can be found in [2,3,6,17,24,34]. In the case where the response variable has a skewed dis-
tribution or outliers, the classical regression model is useless since the mean is precisely
affected by these situations. Quantile regression modeling can be used to solve the above
problem [25]. Therefore, the regression parameters are interpretable in terms of quantile
response. In particular, modeling the median response is a more robust estimate for this
situation. For more details on the regression modeling of the unit median response, see
[5,22,29,36]; articles on unit response quantile regression are rather rare.

In view of the foregoing, the purpose of this paper is to suggest a new unit distribution
as well as quantile regression modeling for it. For scenarios when the response variable
is described as rates or proportions, i.e. on the support (0, 1), we will give a very flexi-
ble unit distribution and its quantile regression mode. In this case, we employ a new and
simple transformation of the Weibull distribution. In terms of data modeling, our sug-
gested unitWeibull distributionwill havemore variable probability density and hazard rate
shapes than the usualWeibull distribution. This transformation is based on the hyperbolic
secant function or its inverse, the inverse hyperbolic secant function, also called the ‘arc-
sech’ function. To our knowledge, this direction of research remains almost unexplored
in the area of unit distributions, despite the interest of hyperbolic functions in various
branches of probability and statistical modeling (see [15]). ‘Almost’ because, to our knowl-
edge, in this framework, only the arsech normal distribution by Korkmaz et al. [29] and
the logitSHASHo distribution by Nakamura et al. [40] use such a hyperbolic transforma-
tion approach. Here, we motivate the fact that the considered hyperbolic transformation
is able to carry the applicability of the Weibull distribution to the unit interval. Hence, we
confer into the different probability density function (pdf) and hazard rate function (hrf)
characteristics that the Weibull distribution does not possess over the unit interval. The
motivations of the study also includes a new quantile regression modeling since the quan-
tile function (qf) of the proposed distribution can be obtained with a closed form. Thus,
its pdf and cumulative distribution function (cdf) can be easily re-parameterized in terms
of any of its quantiles. This re-parameterization is applied like those of Refs. [6,36,39]. It
is also to show its modeling ability with its applications based on the proportion of the
educational measurements.

The paper has been set as follows. Section 2 contains the definition of the newmodel. Its
basic distributional structural properties were obtained by Section 3. Diverse parametric
estimationmethods are derived by Section 4. The simulation studies and the univariate real
data modeling are given in Section 5. Section 6 is devoted to the new quantile regression
model. Finally, the article ends with the conclusion in Section 7.

2. Definition of the new unit Weibull type distribution

The proposed unit distribution has a special random structure which is described below.
First, let us introduce a rv T having the Weibull distribution with parameters α > 0
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and β > 0, that is T ∼ W(α,β) with cdf given as H(t,α,β) = 1 − e−αtβ for t>0, and
H(t,α,β) = 0 for t ≤ 0. Now, we introduce the rv

X = sechT,

where sechy = 2/(ey + e−y) = 2ey/(e2y + 1) ∈ (0, 1) for y ∈ R. The taking into account
of this hyperbolic transformation to define an unit distribution is an originality of the study,
even if its use is not so rare in other domains of probability, as discussed in [15], for instance.

The main distributional functions of X are given in the following result.

Proposition 2.1: For x ∈ (0, 1), the cdf and pdf of the proposed distribution are given as

F(x,α,β) = e−α(arcsech x)
β

(1)

and

f (x,α,β) = αβ

x
√
1 − x2

(arcsech x)β−1e−α(arcsech x)
β

, (2)

respectively, where arcsech x = log[(1 + √
1 − x2)/x] ∈ (0,+∞) for x ∈ (0, 1).

In the Supplemental file, the verification of this proposition, as well as those of all the
subsequent results, is postponed.

In the special case where β = 1, note that the cdf and pdf are reduced to

F(x,α,β) = xα

(1 + √
1 − x2)α

, f (x,α,β) = α√
1 − x2

xα−1

(1 + √
1 − x2)α

,

for x ∈ (0, 1), which are new in the literature.
In full generality, we call the new distribution as arc-secant hyperbolic Weibull distri-

bution and denote the distribution of X with ASHW or ASHW(α,β)when the showing of
α and β is needed. Identifiability is an important property of the statistical distributions to
satisfy the precise inference for the model parameters. The following proposition is given
to prove the identifiability property of the ASHW distribution.

Proposition 2.2: The ASHW distribution is identifiable.

Based on Equations (1) and (2), the hrf of the ASHW distribution is indicated as

h(x,α,β) = αβ

x
√
1 − x2

(arcsech x)β−1[eα(arcsech x)
β − 1]−1. (3)

From Equation (2), the possible mode(s) of the ASHW distribution is obtained as the
solution(s) of the following nonlinear equation:

−1
x

+ x
1 − x2

− (β − 1)
(x

√
1 − x2)−1

arcsech x
+ αβ(x

√
1 − x2)−1(arcsech x)β−1 = 0.

The set of solution(s) of this equation is complicated to determine via an analytical
approach. This high level of complexity still holds for the analysis of the possible shapes
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Figure 1. Possible shape regions of the pdf (left panel) and hrf (right panel).

Figure 2. Curves of the pdf (left panel) and hrf (right panel).

of f (x,α,β) and h(x,α,β), motivating a graphical work in this regard. Figure 1 presents
the reachable shape regions of the pdf and hrf of the ASHW distribution. Figure 2 also
supports shapes of these regions.

According to these figures, both parameters of the new model are the shape parameters
since they play a role for the model shapes. In addition, the shapes of the pdf can be seen as
various shapes such as U-shaped, increasing, decreasing, unimodal and N-shaped as well
as its hrf shapes can be bathtub, increasing and N-shaped.

Moreover, the linear transformation Z = (κ − θ)X + θ transports the domain of X to
other bounded interval (θ , κ), with θ < κ for θ , κ ∈ R. Thus, its pdf and hrf flexibility can
be extended to the different domains. Consequently, the new unit model has distinguished
density and hrf shapes such as N-shaped, its modeling ability is very flexible beyond the
unit interval.

3. Properties

This section examines some characteristics and properties of interest satisfied by the
ASHW distribution. Discussions on some aspects of the new distribution and well-
established distributions take place.

3.1. Some stochastic ordering results

The behavior comportment of the cdf with respect to the parameters is studied below.
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Proposition 3.1: The following properties hold for x ∈ (0, 1).

• The cdf F(x,α,β) is decreasing and convex with respect to the parameter α.
• The cdf F(x,α,β) is decreasing with respect to β if x ∈ (0, 2e/(e2 + 1)), and increasing

with respect to β if x ∈ (2e/(e2 + 1), 1).

In particular, the first item in Proposition 3.1 shows that the following first-order
stochastic dominance of the ASHW distribution is satisfied: for any α1 ≤ α2, we have
F(x,α2,β) ≤ F(x,α1,β).

The proposition below refined this result through the concept of likelihood order (see
[44] for further details).

Proposition 3.2: For α1 ≤ α2, theASHW(α2,β) distribution dominates theASHW(α1,β)
distribution in the likelihood ratio order, that is the following ratio function:

q(x,α1,α2,β) = f (x,α1,β)
f (x,α2,β)

is decreasing with respect to x.

The consequences of Proposition 3.2 are numerous, implying diverse important
stochastic orders, including the first-one involving the cdf. We again refer to [44] in this
regard.

The following result compares the stochastic behavior of the ASHW distribution and
one of the most famous unit distributions of the literature: the unit-Weibull distribution
by Mazucheli et al.[37].

Proposition 3.3: The ASHW distribution first-order stochastically dominates the unit-
Weibull, that is, for any x ∈ R, we have

F(x,α,β) ≤ F∗(x,α,β),

where F∗(x,α,β) = e−α(− log x)β for x ∈ (0, 1), F∗(x,α,β) = 0 for x ≤ 0 and F∗(x,α,β) =
1 for x ≥ 1.

In the sense described in Proposition 3.3, the ASHW distribution can be viewed as an
alternative to the unit-Weibull distribution.

3.2. Percentiles and randomnumber generation

The percentiles of the ASHWdistribution are defined by the inverse function of F(x,α,β).
It is specified in the result above. By inverting Equation (1), we obtain

xu(α,β) = sech[(−α−1 log u)1/β] (4)

for u ∈ (0, 1). In the special case β = 1, we have xu(α,β) = 2/(u−1/α + u1/α). In full gen-
erality, the qf is quite manageable, which is a real plus for the practical use of the ASHW
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distribution in various applications, including statistical analyses. As an immediate mea-
sure, one can derive the median of the ASHW distribution given as M = x1/2(α,β) =
sech[(α−1 log 2)1/β]. Furthermore, for a rv U following the unit uniform distribution,
the rv V = xU(α,β) ∼ ASHW(α,β). Consequently, one can easily generate values from
V based on generated values of U; if u1, u2, . . . , un are observed values from U, then
v1, v2, . . . , vn with vi = xui(α,β) are observed values for V. This result will be used later
in the study for simulation purposes.

3.3. Moments and extensions

Since the domain of the ASHW distribution is (0, 1), for any continuous function ψ(x)
with x ∈ (0, 1) and X ∼ ASHW(α,β), E(ψ(X)) exists. In particular, for any integer r, the
rth ordinary and central moment of X exist and are given as

mr = E(Xr), m◦
r = E[(X − m1)

r].

The variance of X corresponds to V = m◦
2, and the skewness and kurtosis coefficients of X

to

Cs = m◦
3

(m◦
2)

3/2 , Ck = m◦
4

(m◦
2)

2 ,

respectively.
Mathematically, there are several ways to express these measures. The most direct way

remains the integral forms. For instance, by applying the transfer theorem, we have

mr =
∫ +∞

−∞
xrf (x,α, θ) dx = αβ

∫ 1

0

xr−1
√
1 − x2

(arcsech x)β−1e−α(arcsech x)
β

dx,

which can be evaluated by using integral numerical procedures.
The following result proposes an alternative analytic expression through infinite sums

involving the famous gamma function.

Proposition 3.4: Let X ∼ ASHW(α,β) distribution. Then, the rth ordinary moment of X
can be expressed as

mr =
+∞∑
k,�=0

u[r]k,��
(
�

β
+ 1

)
,

where

u[r]k,� = 2r
(−r

k

)
(−1)�

�!
(r + 2k)�α−�/β , (5)

and �(x) denotes the useful gamma function.

Via Proposition 3.4, mr can be investigated numerically through the following series
approximation:

mr ≈
K∑

k,�=0

u[r]k,��
(
�

β
+ 1

)
,

where K designates any arbitrary large integer.
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Table 1. Some means, variance, skewness and
kurtosis coefficient values of the ASHW distribu-
tion for selected parameter values.

(α,β) m1 V Cs Ck

(0.5,0.5) 0.4351 0.1825 0.2454 1.2723
(1,1) 0.6931 0.0903 −0.7692 2.2923
(1,2) 0.7049 0.0392 −0.4902 2.3828
(1,0.5) 0.6684 0.1498 −0.7287 1.8443
(0.5,1) 0.4875 0.1293 0.0607 1.4730
(2,0.5) 0.8736 0.0599 −2.2485 7.0555
(0.5,2) 0.5639 0.0597 −0.0332 1.9522
(2,5) 0.7460 0.0076 0.1023 2.5731
(2,10) 0.7038 0.0027 0.5894 3.3482
(2,2) 0.8174 0.0199 −0.9050 3.3163
(0.05,5) 0.3812 0.0184 0.9135 3.7404
(0.05,0.5) 0.0573 0.0431 3.7727 15.9425
(0.05,0.05) 0.0492 0.0458 4.1595 18.7880
(10,10) 0.7689 0.0019 0.5097 3.2001

As a numerical illustration, various moment measures of the ASHW distribution are
determined in Table 1.

Table 1 attests that the ASHW distribution can be skewed in all the directions since Cs
can be negative or positive, with a varying kurtosis coefficient. These features are desirable
for modeling aims.

As an useful extension of the ordinary moment, one can discuss the incomplete
moment. For t ∈ (0, 1), let us consider the rv Yt as X if {X ≤ t} holds and 0 otherwise.
Based on this truncated rv, the rth incomplete moment of X is defined by

mr(t) = E(Yr
t ) =

∫ t

−∞
xrf (x,α, θ) dx = αβ

∫ t

0

xr−1
√
1 − x2

(arcsech x)β−1e−α(arcsech x)
β

dx.

The incomplete moments are involved in the determination of various mean deviations,
conditional moments, various curves and reliability functions. In this regard, see [7].

The next proposition offers a manageable series expansion for these incomplete
moments.

Proposition 3.5: Let X ∼ ASHW(α,β) distribution. Then, the rth incomplete moment of
X evaluated at t can be expressed as

mr(t) =
+∞∑
k,�=0

u[r]k,��
(
�

β
+ 1,α(arcsecht)β

)
,

where u[r]k,� is defined as in (5) and �(x, v) denotes the standard upper incomplete gamma
function.

An approximation of mr(t) follows from Proposition 3.5 by substituting +∞ by any
large number. Also, Proposition 3.5 generalizes Proposition 3.4; Proposition 3.4 follows by
taking t = 1.
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3.4. Order statistics

The notion of order statistics is one of most useful in probability and statistics, from both
the theoretical and practical sides. This motivates the discussion of crucial features of the
order statistics of the ASHW distribution. Some fundamental formulas in [11] are used.
Let us consider n rvs denoted by X1,X2, . . . ,Xn following the ASHW(α,β) distribution,
and X(1),X(2), . . . ,X(n) be their ordered statistics. Then, for any j = 1, . . . , n, based on
Equations (1) and (2), X(j) has the following pdf:

fX(j) (x,α,β) = ci,n
αβ

x
√
1 − x2

(arcsech x)β−1e−αj(arcsech x)
β

[1 − e−α(arcsech x)
β

]n−j,

for x ∈ (0, 1), where ci,n = n!/[(j − 1)!(n − j)!] and fX(j) (x,α,β) = 0 for x �∈ (0, 1).
For x ∈ (0, 1), in the special case where j = 1, we get

fX(j) (x,α,β) = n
αβ

x
√
1 − x2

(arcsech x)β−1e−α(arcsech x)
β

[1 − e−α(arcsech x)
β

]n−1,

and in the special case where j = n, it comes

fX(j) (x,α,β) = n
αβ

x
√
1 − x2

(arcsech x)β−1e−αn(arcsech x)
β

.

One can notice that this last pdf corresponds to the one of the ASHW(αn,β) distribution.
Thanks to the simplicity of the ASHW distribution, the moments of the order statistics

are quite manageable, as developed in the next result.

Proposition 3.6: For any integer s, the sth ordinary moment of X(j) is obtained as

m∗
s,(j) = E(Xs

(j)) =
n−j∑
k=0

vj,km
†
j,k,s

where

vj,k = ci,n
(
n − j
k

)
(−1)k

k + j

and m†
j,k,s = E(Ws

j,k) denoting the sth ordinary moment of Wj,k is a rv following the
ASHW(α(j + k),β) distribution, as described in Proposition 3.4.

Proposition 3.6 is useful for studying various characteristics of X(j), including its central
and dispersion parameters. Some simple parameters of them will be used in our coming
estimation procedures.

3.5. Reliability

Here, we derive a reliability parameter related to the ASHW distribution that can appear
in many applications based on the engineering concepts. It is defined by

τ = P(X2 ≤ X1), (6)

when X1 and X2 are two independent rvs following two ASHW distributions, possibly the
same. It appears in a random system when we need to measure the chance that a certain



140 M. Ç. KORKMAZ ET AL.

characteristic with unit value modeled by X1 is greater than another comparable char-
acteristic modeled by X2. Details on the notion of reliability parameter can be found in
[32,38].

The proposition below gives a closed-form expression of τ under a precise configuration
on the parameter.

Proposition 3.7: Suppose that X1 ∼ ASHW(α1,β) and X2 ∼ ASHW(α2,β). Then, the
reliability parameter given in Equation (6) is expressed as

τ = α1

α1 + α2
.

The simple expression of τ allows further investigations on it, like its estimation via the
maximum likelihood procedure, as performed in [32] for theWeibull distribution, among
others.

4. Model parameters estimation

Here, we describe six well-reputed parametric estimation methods employed in the con-
text of the ASHW model. The maximum likelihood estimations (MLEs) of the model
parameters have been pointed out firstly. We start by a random sample denoted by
X1,X2, . . . ,Xn from an rv following the ASHW distribution and with observed values
denoted by x1, x2, . . . , xn. Then, the log-likelihood function related to
 = (α,β)T is given
by

�(
) = n logα + n logβ −
n∑

i=1
log

[
xi

√
1 − x2i

]

+ (β − 1)
n∑

i=1
arcsechxi − α

n∑
i=1

(arcsechxi)β . (7)

Based on this function, themaximum likelihood estimations (MLEs) of α and β , say α̂ and
β̂ , respectively, are specified by

�̂1 = (α̂, β̂)T = argmax
�

{�(
)}.

In theory, their solving equations and profile log-likelihood (PLL) function of the β have
been given in the Supplemental file.

Since theoretic equations for the MLEs contain a non-linear function according to the
parameters they have to be obtained via numerical methods. After it is obtained, the MLE
α̂ follows by using β̂ . We point out the existence of the MLEs in the Supplemental file.

Under conditions of moderate regularity, the bivariate normal distribution is useful for
establishing certain statistical tools or procedures. It is well known that the MLEs have
bivariate normal distribution N2(
, I−1), where I denotes the 2 × 2 observed informa-
tion matrix whose components are given in the Supplemental file. Therefore, asymptotic
100(1 − ϑ)% confidence intervals (CIs) for α and β are [α̂ ± zϑ/2sα̂] and [β̂ ± zϑ/2sβ̂],
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respectively, where zϑ/2 refers to the (ϑ/2)th upper percentile of the standard normal dis-
tribution, and sα̂ and s

β̂
are the standard errors (SEs) of α̂ and β̂ , respectively, defined by

the square root of first and second diagonal elements of I−1, respectively.
Now, for the unknown model parameters, we focus on the different type estimation

methods such as the maximum product spacing estimation (MPSE) [8], least squares esti-
mation, (LSE), weighted least squares estimation (WLSE), Anderson–Darling estimation
(ADE) and Cramér–von Mises estimation (CVME). Let us define the following functions
which are used to define the these different type of estimators:

QMPSE(
) = 1
n + 1

n+1∑
i=1

log[F(x(i),α,β)− F(x(i−1),α,β)],

QLSE(
) =
n∑

i=1

(
F(x(i),α,β)− i

n + 1

)2
,

QWLSE(
) =
n∑

i=1

(n + 2)(n + 1)2

(n − i + 1)i

(
F(x(i),α,β)− i

n + 1

)2
,

QADE(
) = −n −
n∑

i=1

2i − 1
n

{log[1 − F(x(n+1−i),α,β)] + log[F(x(i),α,β)]},

and

QCVME(
) = 1
12n

+
n∑

i=1

[
F(x(i),α,β)− 2i − 1

2n

]2
,

where x(1), x(2), . . . , x(n) are the ordered values of x1, x2, . . . , xn. Then MPSE, LSE, WLSE,
ADE, and CVME of � are given by

�̂2 = argmax
�

{QMPSE(�)}, (8)

�̂3 = argmin
�

{QLSE(�)}, (9)

�̂4 = argmin
�

{QWLSE(�)}, (10)

�̂5 = argmin
�

{QADE(�)}, (11)

�̂6 = argmin
�

{QCVME(�)}. (12)

respectively. It is noted that onemay see these estimation procedures in [18,26–29].Most of
the above equation systems have no explicit solutions. Therefore, they need to be solved via
standard numerical methods. In addition, Equations (7), (8), (9), (10), (11) and (8) may be
optimized in a direct way by employingmathematical software such as R, Python, andMat-
lab; the numerical optimization of the functions �(
), QMPSE(�), QLSE(�), QWLSE(�),
QADE(�) and QCVME(�) is always possible.
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Figure 3. Results regarding α (top level) and β (bottom level) for the first simulation.

5. Empirical results for the comparing estimationmethods

This section offers simulation studies and univariate data modeling for the proposed
distribution. The details are provided below.

5.1. Simulation studies

We now perform two complementary graphic simulation studies to evaluate the efficiency
of the above estimates compared to variable sample size n. Our methodology is as fol-
lows. First, we getN = 1000 samples of size n = 20, 25, . . . , 1000 from an rv following the
ASHW distribution with parameter values α = 1, β = 2 and α = 0.5, β = 5 for the first
and second simulation studies, respectively. The needed random numbers are obtained by
using the classical qf technique. All the estimates are obtained by using the R software and,
more precisely, the constrOptim function. Further, we determine the average estimates
(or empirical mean), bias, and mean square error (MSE) of the estimates. By setting � = α

or β , the formulas are

AE�(n) = 1
N

N∑
i=1

�̂i, Bias�(n) = 1
N

N∑
i=1
(� − �̂i), MSE�(n) = 1

N

N∑
i=1
(� − �̂i)

2,

respectively, where the sums are taken over all the samples, the ith sample being symbolized
by the index i. The obtained results are collected in Figure 3.

Figures 3 and 4 indicate that all the underlying estimators are consistent since the MSE
and the bias decrease to zero with increasing n. The estimators are also asymptotic with-
out bias. The quantity of the biases and MSEs of the MPS, CVM and MLE methods are
initially larger than the other methods, but they are very close as n increases. parameter
settings.
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Figure 4. Results regarding α (top level) and β (bottom level) for the second simulation.

Table 2. Some summary statistics of the data set.

Minimum Mean Median Maximum Variance Skewness Kurtosis n

0.4330 0.6881 0.6770 0.9450 0.0160 −0.0332 2.5009 48

5.2. Real data applicationwith univariate data

In this subsection, we analyze a real data set to see modeling ability of the ASHW dis-
tribution model. We obtain the data set from OECD.Stat with the following electronic
link: https://stats.oecd.org/. It contains data forOECD countries and selected non-member
economies. The OECD.Stat consists of themes such as Agriculture, Demography, Educa-
tion and Training, Health, Finance, Labour, and Social Protection and Well-being. Each
theme is divided into topics. Used data set consists of the percentage of the teachers aged 50
and below for the 48 countries which are the OECD countries and selected non-member
of OECD economies. Data set can be found in an indicator of the TALIS (Teaching and
Learning International Survey) in the Education and Training theme of the OECD.Stat.
The reference year is 2018 for the data set.

Table 2 presents a statistical summary of the data.
Based on Table 2, the data are clearly skewed to the left and have a lower kurtosis than

the normal kurtosis. The total time test (TTT) plot [1] is an important graphical approach
to verify whether the data can be applied to a specific distribution or not. According to
Aarset [1], the empirical version of the TTTplot is given by plottingT(r/n) = [

∑r
i=1 y(i) +

(n − r)y(r)]/
∑n

i=1 y(i) against r/n, where r = 1, . . . , n and y(i) are the order statistics of
the sample for i = 1, . . . , n. Aarset [1] showed that the hrf is constant if the TTT plot is
graphically presented as a straight diagonal, the hrf is increasing (or decreasing) if the TTT
plot is concave (or convex). The hrf is U-shaped if the TTTplot is convex and then concave.
If not, the hrf is unimodal. The TTT plot for the data set is displayed in Figure 5. It can be
said that the empirical hrf of the data set is increasingly shaped.

https://stats.oecd.org/
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Figure 5. TTT plot for data set.

Table 3. MLEs, SEs put in parentheses, �̂ and goodness-of-fits statistics for the considered data set.

Model α̂ β̂ �̂ AIC BIC A∗ W∗ KS

ASHW 0.9363 3.8416 32.2902 −60.5805 −56.8381 0.3527 0.0562 0.0899
(0.1448) (0.4309)

Beta 8.0508 3.6189 31.1669 −58.3337 −54.5913 0.4740 0.0736 0.0869
(1.4352) (0.6412)

Johnson SB −1.2827 1.4566 29.7690 −55.5380 −51.7956 0.7137 0.1134 0.0999
(0.1949) 0.1487

Kw 5.2872 4.0389 30.3267 −56.6534 −52.9110 0.6132 0.1003 0.0955
(0.7289) (0.9837)

UG 0.2025 3.8275 30.4142 −56.8284 −53.0860 0.7640 0.1274 0.1228
(0.0949) (0.6830)

Now, we aim to compare the adjustment power of the ASHW distribution according to
the maximum likelihood method with those of referenced unit distributions. These com-
peting distributions are described in the Supplemental file with their respective pdfs. They
are the beta, Kumaraswamy (Kw), Johnson SB distribution by [23], and unit Gompertz
(UG) distribution by Mazucheli et al. [35].

Classically, the �̂ values, the following classical criteria: Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), as well as Cramér–von-Mises, (W∗),
Anderson–Darling (A∗) and Kolmogorov–Smirnov (KS) goodness of-fit statistics are cal-
culated based on all distribution models to define the optimum model. It can be chosen
as the optimal model which has the smallest values of AIC, BIC,W∗, A∗ and KS with the
largest values of �̂. The calculations are obtained by the maxLik (see [21]) and goftest
functions of the R software.

Results of the data analysis based on all competitor models in Table 3. Table 3 indicates
that the ASHWmodel is the best; it has the lowest values of AIC, BIC,A∗ andW∗ statistics
with a higher �̂ value.

Figure 6 displays the estimated pdfs, cdfs of all distributions, and Quantile–Quantile
(QQ) plots of the ASHW distribution to see the suitability of the fittings graphically. The
proposed distribution has captured the skewness and kurtosis quite successfully. Also, the
estimated cdf is near to empirical cdf. The QQ plot indicates the acceptable fitting of the
ASHW distribution for the data set. The fitted hrf also deals with results of the TTT plot.
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Figure 6. Estimated pdfs, cdfs, QQ plot, and hrf of the ASHW distribution for the used data.

Figure 7. PP plots for the fitted models based on the data set.

Figure 8. The plots of the PLL functions for the data set.

Figure 7 indicates that the plotted lines of the probability–probability (PP) plot of the
ASHW distribution is closer to the diagonal reference line than those of the other models.
Hence, its fitting performance is remarkable.

The fact that the likelihood equations have unique solutions can be shown wit the PLL
functions of the parameters. This is illustrated in Figure 8.

From Figure 8, the uniqueness of MLEs is demonstrated.

6. Related quantile regressionmodel

6.1. Quantile ASHWdistribution

The principle of regressionmodeling is to connect a response variable to a set of the regres-
sor (independent variables or covariates). It is a statistical procedure that is generally aimed
to explain themean of the response variable via independent variables. However, the mean
of the ASHW distribution is not a closed form (see Section 3.3). Despite this drawback, its
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qf given as (4) is very tractable. For this reason, we emphasize with the quantile regres-
sion modeling, also thanks to its nice features recalled below. First, the quantile regression
model explains the conditional median or other quantiles of the response variable via set of
the regressors. It is a strong and robust alternative model to the regular LSE model, which
estimates the conditional mean of the response variable, when the response variable has
outliers in the measures.

Also, regressionmodels can be introduced based on unit distributions for unit response
variables. For instance, Ferrari and Cribari-Neto [14] has proposed the beta regression
model using the beta distribution, which has a simple mean based on its parameters, to
model the mean of the unit response variable. In addition, as examples of the model-
ing quantiles of the unit response variable, there are the Kumaraswamy (see [5,39]), unit
Weibull (see [36]), and log-extended exponential-geometric (LEEG) (see [22]) quantile
regressionmodels. It is noticed that the baselinemodels of these quantile regressionmodels
have no moments with a closed form.

Now, we focus on introducing an alternative quantile regression based on the ASHW
distribution. First, we recall that the qf of the ASHW distribution is given by Equation (4).
Now, the pdf of the quantile ASHW (QASHW) distribution can be given with re-
parameterized based on the qf of the ASHW distribution. Let μ = xu(α,β) and α =
− log u/(arcsechμ)β . Then, under this configuration, the pdf and cdf of the QASHW
distribution are given by

g(y,α,μ) = β(− log u)
(arcsechμ)βy

√
1 − y2

(arcsech y)β−1u
(

arcsech y
arcsechμ

)β
(13)

and

G(y,α,μ) = u
(

arcsech y
arcsechμ

)β
, (14)

respectively, where β > 0, μ ∈ (0, 1), and u ∈ (0, 1) are known. We call it as quantile
ASHW distribution and denote it as QASHW(β ,μ, u). A sample of the possible shapes
of the QASHW distribution is presented in Figure 9. We see that it can be bathtub shaped
and decreasing.

Let, Y1,Y2, . . . ,Yn be n rvs from the QASHWdistribution such that, for i = 1, 2, . . . , n,
Yi ∼ QASHW(β ,μi, u), where μi and α are unknown parameters, and u is known. Now,
let y1, y2, . . . , yn be observed values of Y1,Y2, . . . ,Yn. Then, for i = 1, 2 . . . n, the QASHW
quantile regression model is obtained as

g(μi) = xiδT,

where δ = (δ0, δ1, δ2, . . . , δp)T and xi = (1, xi1, xi2, xi3, . . . , xip) are the unknown regres-
sion parameter vector and the known ith vector of the covariates, respectively. The function
g(x) corresponds to the link function. For example, when u = 0.5, the covariates are con-
nected to the conditional median of the response variable. A wide variety of link functions
can be employed to link covariates to the response variable. In the next, we use the logit-link
function specified by

g(x) = logit(x) = log
(

x
1 − x

)
.
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Figure 9. The possible pdf shapes of the QASHW distribution.

6.2. MLEmethod for themodel parameters

Therefore, we consider

g(μi) = log
(

μi

1 − μi

)
= xiδT. (15)

From Equation (15), we get

μi = exiδ
T

1 + exiδT
. (16)

Inserting Equation (16) in Equation (13), the log-likelihood function of the QASHN
quantile regression model is given by

�(�) = n logβ + n log(− log u)− β

n∑
i=1

log(arcsechμi)−
n∑

i=1
log

(
yi

√
1 − y2i

)

+ (β − 1)
n∑

i=1
log(arcsech yi)+ log u

n∑
i=1

(
arcsech yi
arcsechμi

)β
, (17)

where � = (β , δ) is the unknown parameter vector. The derivatives of the Equation (17)
with respect to model parameters β and δ are given in the Supplemental file.

If we take u = 0.5, this quantile regression modeling is equivalent to the conditional
median modeling. Under conditions of mild regularity, the asymptotic distribution of �̂ is
multivariate normal Np+1(�, I−1), where I−1 is the expected information matrix, which
can be replaced by the observed information matrix. The elements of this matrix can be
calculated numerically by any software. In this study, we use the avalaiblemaxLik function
[21] of the software R, which allows us to maximize without effort Equation (17). The
asymptotic SEs are also deduced.
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6.3. Residual analysis

Residual analysis may be necessary to verify if the regression model is suitable. There exist
several kinds of residuals. Here, we emphasize with the randomized quantile residuals
developed by Dunn and Smythe [12] and the Cox–Snell residuals proposed by Cox and
Snell [9].

For i = 1, . . . , n, we define the ith randomized quantile residual by

r̂i = −1[G(yi, β̂ , μ̂i)],

where G(y,β ,μ) is given by Equation (14),−1(x) refers to the qf of the standard normal
distribution, and μ̂i is obtained as Equation (16) with δ̂ instead of δ. The rule is the follow-
ing: If the underlying distribution of the randomized quantile residuals are in adequateness
with the standard normal distribution, then the fitted model successfully processes the
data.

Alternatively, for i = 1, . . . , n, we list the ith Cox and Snell residual as

êi = − log[1 − G(yi, β̂ , μ̂i)].

In the case where the model fits to data accordingly, the distribution of the êi’s will
distribute the unit scale parameter exponential distribution.

6.4. Data set analysis

In this subsection, a real data application is performed to show the applicability and effi-
ciency of the proposed quantile regression model. Three competitor regression models
also have been considered for comparing the fitting result. They are beta regression by the
Ferrari and Cribari-Neto [14] model as well as Kw and LEEG quantile regression models,
[22,39], respectively. Their pdfs are recalled in the Supplemental file.

The OECD.Stat, which is pointed out in Section 5.2, is used for the data sets again.
We consider as variables the proportion of the adolescents (15-year-olds) who want top
grades at school, reading performance at age 15 (PISA), proportion of the adolescents with
a desk and a quiet place to study at home, and proportion adolescents who do paid work
in the extra school time, of the education and school life sub-indicator of the Child Well-
Being indicator in the Social Protection and Well-being theme of the OECD.Stat as data
set. The reference year is 2015 for all variables. Thus, the variables represent values of the
OECD countries. For the first time, PISA 2015 asked students to indicate whether they
worked for pay and/or worked from home in the extra school time on the most recent day
they attended school. On average in the OECD country, 23% of students reported working
for pay and 73% reported working at home before or after school. Note that 15-year-olds
and/or 15-year-olds are used as a shortcut for the PISA target population. PISA covers
students aged 15 years at the time of assessment who are enrolled in school and have com-
pleted at least 6 years of formal education, regardless of the type of institution they belong
to, whether they study full-time or part-time, whether they follow university or profes-
sional programs and whether they attend public or private schools or foreign schools in
the country.

In this application, we use the proportion of the adolescents who want top grades at
school percentage of the 37 OECD countries as the response variable. More precisely,
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Table 4. Summary statistics of the used data sets.

Variable Minimum Mean Median Maximum Variance Skewness Kurtosis n

y 0.6060 0.8375 0.8520 0.9660 0.0101 −0.5054 2.2943 37
x1 423.3000 490.2000 498.0000 526.7000 695.3056 −1.0763 3.7353 37
x2 0.4930 0.8546 0.9020 0.9320 0.0095 −2.0060 7.1513 37
x3 0.0590 0.2394 0.2310 0.4530 0.0079 0.1641 2.5454 37

the response variable is the percent of 15-year-old students who report that they agree
or strongly agree with the statement I want top grades in most or all of my courses. The
reference year is 2015 for the data set.

The goal is to relate the response values y with covariates x1, x2, and x3, where

• y: adolescents who want top grades at school (%);
• x1: reading performance at age 15 (PISA);
• x2: adolescents with a desk and a quiet place to study at home (%);
• x3: adolescents who do paid work, before or after school (%).

The regression model based on μi is given by

logit(μi) = δ0 + δ1xi1 + δ2xi2,+δ3xi3 i = 1, 2, . . . , 37,

where μi is the mean for the beta model, whereas it denotes the median for the LEEG, Kw,
and QASHW quantile regression models.

A statistical summary of the data set is given in Table 4. Based on this table, the unit
response variable is left skewed and has a lower kurtosis than normal kurtosis. Hence, the
use of the quantile regression is conceptually better for its inferences. For this reason, we
use the unit median response modeling based on QASHW quantile regression modeling
to obtain more informative and robust estimates.

Table 5 displays the results of our regression analysis. From this table, we see that the
QASHW regression model presents lower values of the AIC and BIC with upper log-
likelihood values than those of other regressionmodels. Therefore, in this context, it can be
decided that the proposed regressionmodel is the best. Further, all parameters except δ1 are
significant in the statistical sense at standard level for the QASHW regression model. The
reading performance variable is not statistically significant for the median response vari-
able. The parameter δ2 has affected negatively themedian response, whereas the parameter
δ3 has affected positively the median response. It is noticed that the statistically significant
parameters are obtained only for the QASHW regression model at any significant usual
level. Thus, the desire for success of adolescents, who do paid work in the extra school
time, is high. However, the desire for success among adolescents, who have quiet places to
study at home, remains low.

Further, Figures 10 and 11 show theQQ and PP plots of some residuals for all regression
models, respectively. It can be said that the fitted points of the QASHWquantile regression
model are close to the diagonal line for both the PP and QQ plots. Hence, these figures
show a good fit of the QASHW regression model to the data set.

The results of the KS, A∗ andW∗ goodness-of-fits statistics are given in Table 6.
From Table 6, we observe that the QASHW quantile regression model possesses the

more convincing randomized quantile residuals.



150
M
.Ç

.KO
RKM

A
Z
ET

A
L.

Table 5. The results of fitted regression models with the considered criteria.

Beta Kw LEEG QASHW

Parameters Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

δ0 3.4354 2.4048 0.1531 6.9321 4.2948 0.1065 1.0516 3.5265 0.7656 3.8843 1.9562 0.0471
δ1 −0.0003 0.0049 0.9482 −0.0054 0.0072 0.4504 0.0088 0.0072 0.2219 0.0006 0.0043 0.8858
δ2 −2.5946 1.4085 0.0655 −3.2836 1.9815 0.0975 −5.1747 1.9184 0.0070 −3.7594 1.3076 0.0040
δ3 2.6277 1.2799 0.0401 1.5631 1.3811 0.25787 3.5001 1.8891 0.0639 3.2190 1.1611 0.0055
β 18.2200 4.2340 < 0.0001 9.6263 1.6283 < 0.0001 11.8175 2.5005 < 0.0001 3.7775 0.4919 < 0.0001
�̂ 43.3294 40.4710 41.3005 46.2727
AIC −76.6588 −70.9420 −72.6010 −82.5455
BIC −68.6042 −62.8874 −64.5464 −74.4909
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Figure 10. The QQ plots of the randomized quantile residuals.

Figure 11. The PP plots of the Cox–Snell residuals.

Table 6. The goodness-of-fit results of the randomized quantile
residuals for the regression models.

Models KS p-Value A∗ p-Value W∗ p-Value

QASHW 0.0678 0.9913 0.1461 0.9989 0.0184 0.9985
Beta 0.0914 0.8890 0.2624 0.9633 0.0383 0.9437
LEEG 0.0952 0.8597 0.2788 0.9529 0.0407 0.9317
Kw 0.1214 0.6037 0.3936 0.8542 0.0712 0.7472

7. Conclusions

We define a new alternative unit distribution model designed for the analysis of propor-
tions and percentages of the educational measurements for OECD countries. The new
quantile regressionmodel is also developed.We have compared the results of the proposed
quantile regression with those of the well-known regression models in the literature based
on a data set which is related to the educational measurements for OECD countries.

The findings obtained in this study provide important suggestions for all stakeholders
of education, especially those who determine educational policies, school administrators,
and teachers. At the same time, the new quantile regression model constitutes a model
example for future researchers.

It has been also aimed to relate the desire to get the top grades of the students with 15
year olds in the OECD countries with their reading performance, their quiet working envi-
ronment at home and their situation paid work before or after school via median quantile
regression modeling. The results introduce important results about how these covariates
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affect the response variable entitled the desire to get top grades of the students. The most
surprising of these is the result that, according to the estimated regression coefficients,
there is no significant relationship between reading performance and students’ desire for
top marks, statistically in any usual significance level. That is reading performance is not
affected by the reading performances. In addition, in any usual significance level, when the
percentages of the students who have a quiet working environment at home increase, the
desire to get the top grades of the students decreases surprisingly.

As the rates of those who do paid work before or after school, which is another variable
of the study, their desire to get the top grades also increases. Hence, it can be said that their
desire to get top grades is higher than students who do not work with paid work before or
after school. When the PISA 2015 result report is analyzed, it is seen that data have been
collected for the first time in 2015 on this response variable. On average across OECD
countries, 23% of students reported working for pay and 73% reported working at home
before or after school [41]. This situation can be interpreted as the fact that students living
in difficult conditions want to be more successful. The results of a study examining the
differences between the career attitude and career knowledge of working and non-working
students for a wage support our finding. Students with work experience showed a higher
career attitude than those without [10].

In summary, the following findings have been obtained by this paper.

(i) A new alternative unit distribution and its quantile regression model for the analysis
of measures of proportions and percentages have been proposed.

(ii) The desire to get the top grades with 15 year old students in the OECD countries has
been related to covariates, which are their reading performance, their quiet work-
ing environment at home, and their situation paid work before or after school. Two
covariates were considered statistically significant at any level of usual significance
for the median response.

(iii) For describing themedian of the data, the quantile regression analysis application has
indicated that the proposed model has provided better fits than the famous beta and
Kumaraswamy regression models based on a skewed unit response variable.

(iv) It has been seen that the proposed modeling strategy is suitable for illustrating its
potential usages.

The results based on real measurements reveal that the ASHW model produces better
fits than popular unit probability distributions,mainly for their quantile regressionmodels.
The ASHW distribution is expected to attract attention both in education and in many
other disciplines in demand for unit models.
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