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Abstract

Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver

disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxifica-

tion CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-

induced obesity with increased steatosis than wildtype mice. However, a putative mecha-

nism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with

a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a pref-

erence for metabolism of PUFAs at the 9- and 13-positions. To further study the role of

CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were

fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice

showed reduced weight gain and metabolic disease as measured by glucose tolerance

tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and

liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only

serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA

oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-

HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated

sexually dimorphic changes in gene expression related to nuclear receptor signaling, espe-

cially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα sig-

naling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but

probably to a lesser extent than murine Cyp2b’s. Therefore, the inhibition of CYP2B6 by

xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through

disrupted PUFA metabolism and the production of key lipid metabolites.
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Introduction

Obesity, in addition to insulin resistance and dyslipidemia, are the most important risk factors

for development of nonalcoholic fatty liver disease (NAFLD) [1]. The prevalence of obesity is

increasing in the United States, and the most recent 2017–2018 National Health and Nutrition

Examination Survey recorded 42.4% of adults are obese [2]. Interstingly, reduced human

hepatic CYP2B6 activity is associated with obesity [3]. Murine models also support a role for

Cyp2b members as anti-obesity CYPs. The constitutive androstane receptor (CAR) has been

identified as an anti-obesity transcription factor, and its activation in leptin-deficient mice

induced cytochrome P450 2b10 (Cyp2b10) and subsequently improved hepatic glucose and

fatty acid metabolism [4]. Additionally, a loss of hepatic CYP activity in hepatic P450 oxidore-

ductase (POR)-null mice led to steatosis and the induction of Cyp2b, including Cyp2b10, pri-

marily through CAR activation [5], indicating a role for CAR in recognizing and Cyp2b in

metabolizing hepatic lipids. Forkhead box protein A2 (Foxa2) regulates lipid metabolism and

ketogenesis genes in mice including Cyp2b9 [6, 7]. Three recent studies found Cyp2b9 exhib-

ited the highest increase in gene expression following a high-fat diet (HFD) in mice [8–10].

Our previously generated Cyp2b9/10/13-null (Cyp2b-null) mice are age- and diet-induced

obese (DIO) with increased NAFLD in males [10, 11]. Similarly, age-dependent lipid accumu-

lation was observed in RNAi-mediated Cyp2b-knockdown male mice [12]. These findings

implicate Cyp2b in hepatic fatty acid metabolism and obesity.

CYP2B6 is the only hepatic CYP2B isoform in humans; Cyp2b9, Cyp2b10, and Cyp2b13 are

the dominant hepatic Cyp2b genes in mice. In the liver, CAR followed by pregnane X receptor

(PXR) are the primary regulators of human and murine Cyp2b genes [13, 14]. CYP2B mem-

bers are also regulated by the glucocorticoid receptor (GR) and FOXA2, hepatocyte nuclear

factor 4α (HNF4α), and CCAAT/enhancer-binding protein α (C/EBPα) in humans and

rodents [6, 15–18]. Growth hormone-mediated regulation of these transcription factors results

in the female predominant expression of murine Cyp2b [17, 19]. Although there is large inter-

individual variation in human hepatic CYP2B6 expression, it is also primarily female

expressed, but to a much lesser degree than rodents [20]. It is hypothesized that changes in the

expression of transcription factors such as FOXA2 by fluctuations of steroids and hormones

may contribute to the interindividual variations of CYP2B6 expression in human populations

[15].

Human CYP2B6 has broad substrate specificity, playing a role in the metabolism of numer-

ous xeno- and endobiotic compounds [21]. The substrate selectivity of CYP2B6 includes over

60 clinical drugs such as artemisinin, propofol, ketamine, ifosfamide, nevirapine, efavirenz,

mephobarbital, bupropion, and tamoxifen [22], as well as many important environmental toxi-

cants including chlorpyrifos [23], carbaryl [24], parathion [25], triclosan [26], perfluorocar-

boxylic acids [27], and the insect repellant N,N-diethyl-m-toluamide (DEET) [24].

Endogenous compounds such as steroids, bile acids, and fatty acids are also metabolized by

CYP2B6 [22, 28].

Polyunsaturated fatty acids (PUFAs) may regulate Cyp2b transcription and act as Cyp2b

substrates. For example, the omega-6 fatty acid, linoleic acid (LA), activates CAR and induces

Cyp2b10 [5]. The omega-3 fatty acid, docosahexaenoic acid (DHA) inhibits CAR translocation

and subsequently inhibits Cyp2b transcription [29]. Arachidonic acid is metabolized by

Cyp2b19 (mouse) and CYP2B12 (rat) in keratinocytes, as well as CYP2B1/2 in rat hepatic

microsomes to anti-inflammatory epoxyeicosatrienoic acids (EETs) [30–32]. Human CYP2B6

also appears to play a role in the epoxidation of anandamide, an arachidonic acid-derived

endogenous cannabinoid to bioactive hydroxyeicosatetraenoic acid (HETE) and EET metabo-

lites [33], such as 5,6-EET-ethanolamide, a potent agonist of the peripheral cannabinoid
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receptor, CB2 [34]. However, the role of human CYP2B6 in the metabolism of most PUFAs is

not well-characterized or completely untested.

Murine Cyp2b enzymes are anti-obesogenic in males. Cyp2b-null mice are diet-induced

obese with an increase in NAFLD, white adipose tissue, serum cholesterol, leptin, and β-

hydroxybutyrate. Furthermore, Cyp2b-null males fed a normal diet show increased liver tri-

glycerides and a gene expression profile similar to WT mice fed a HFD, indicating progression

to NAFLD even without a high-fat diet [10]. In contrast, female weight gain was not signifi-

cantly different, nor was NAFLD; conversely, the lack of Cyp2b in female mice was moderately

protective from methionine and choline-deficient diet-induced non-alcoholic steatosis

(NASH) [35]. However, the role of CYP2B6 as an anti-obesity gene has not been assessed. The

purpose of this research is to determine the role of CYP2B6 in PUFA metabolism and test

whether CYP2B6 is an anti-obesity enzyme by comparing diet-induced obesity (DIO) between

Cyp2b-null mice and our newly produced humanized CYP2B6 mice to determine if human

CYP2B6 can reverse obesity and NAFLD in Cyp2b-null mice. Physiological (body, tissue

weights, glucose tolerance), biochemical (cholesterol, serum and liver lipids, PUFA metabo-

lites), and transcriptomic (RNAseq) changes were measured. PUFA metabolites of CYP2B6

were identified in vitro from CYP2B6 containing baculosomes by LC-MS/MS and in vivo

from serum and liver following high-fat diet treatment. Results indicate human CYP2B6 pri-

marily metabolizes PUFAs in the 9- and 13- positions and partially reverses diet-induced obe-

sity observed in Cyp2b-null mice potentially through peroxisome proliferator activated

receptor (PPAR) activation, but with unexpected sexually dimorphic effects.

Materials and methods

CYP2B6 inhibition

The Vivid CYP2B6 Blue Screening kit with CYP2B6-containing baculosomes was obtained

from ThermoFisher (Waltham, MA, USA) and used to screen for PUFA inhibition of CYP2B6

at PUFA concentrations from 0.001–100 μM. Nonylphenol, a known CYP2B6 inhibitor, was

used as a positive control [36, 37]. Decreased fluorescence due to chemical inhibition was

quantified on a Gen5 microplate reader (Synergy H1 Hybrid Reader, BioTek, Winooski, Ver-

mont, USA) at 415/460 nm excitation/emission at 30-second intervals for 30 minutes in kinetic

assay mode in accordance with manufacturer’s protocol. IC50 values were determined as

described previously using GraphPad Prism 7.0 (Graphpad Software, San Diego, CA, USA)

[38, 39]. Briefly, chemical concentrations were log10 transformed, sigmoidal concentration-

response curves were fit using non-linear regression, log(inhibitor) vs normalized response—

variable slope model with least squares ordinary fit. Confidence intervals were produced

assuming asymmetrical distribution as recommended by GraphPad.

CYP2B6 fatty acid substrates

CYP2B6 containing and control baculosomesTM (Thermo Fisher) were incubated with 25 μM

arachidonic acid (AA), linoleic acid (LA), α-linolenic acid (ALA), or docosahexaenoic acid

(DHA) (n = 3) for two hours in VIVIDTM P450 reaction buffer and the NADPH-regeneration

system (Thermo Fisher). Following incubation, samples were stored at -80˚C and shipped on

dry ice to the Emory Integrated Metabolomics and Lipidomics Core (EIMLC). Oxidized lipids

were selectively extracted from the samples by solid phase extraction because of their low con-

centrations in comparison to other high abundance lipid species. This was done by depositing

homogenized samples into a C18 solid phase extraction cassette, rinsing with hexane to

remove nonpolar lipid species, and eluting with methyl formate. The recovered lipids were

analyzed via LC-MS/MS in a multiple reaction monitoring (MRM) based method that
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selectively targets oxylipins using an AB SCIEX QTrap5500 enhanced high performance

hybrid triple quadrupole/linear ion trap LC/MS/MS with a mass range of m/z 5 to 1250 in tri-

ple quadrupole mode and 5–1000 in LIT mode. The LC/MS/MS is paired with an ExionLC AC

HPLC/UHPLC system with an ExionLC column oven and autosampler along with a computer

workstation running LipidView software (AB SCIEX) [40, 41]. The concentration of the intra-

cellular oxylipins were calibrated against external standards.

High-fat diet treatment of Cyp2b-null mice and hCYP2B6-Tg

Animal care and associated procedures were approved by Clemson University’s Institutional

Animal Care and Use Committee. CYP2A13/CYP2B6/CYP2F1-transgenic mice from Dr. Qing

Yu and Dr. Xinxin Ding’s laboratory’s containing a bacterial artificial chromosome (BAC) of

210 kb from human chr19 containing CYP2A13, CYP2B6, and CYP2F1 genes [42] were bred

to Cyp2b9/10/13-null (Cyp2b-null) mice from our laboratory that lack the primarily hepatic

murine Cyp2b members, Cyp2b9, Cyp2b10, and Cyp2b13 [43] to produce humanized

CYP2B6-transgenic (hCYP2B6-Tg) mice lacking the hepatic murine Cyp2b members [37].

These mice also express CYP2A13, which is primarily expressed in the nasal mucosa and lung

and CYP2F1, which is primarily expressed in the lung [42]. Genotyping was performed by

extracting genomic DNA isolated from tails or ear punches using the QuantaBio (Beverly, MA

USA) AccuStart II Mouse Genotyping Kit according to the manufacturer’s instructions. Mice

were typically genotyped within three weeks so that nerve endings were not fully formed in the

tail and topical Emla cream was also used to as an anesthetic to reduce pain. Genotype was

then confirmed using a three step PCR genotyping process. First, mice were genotyped to con-

firm that the Cyp2b9/10/13 cluster on murine chromosome 7 was deleted using the F2/R2

primer set: (F2: 5’-gccagggtcagcatattcaccaa-3’/ R2: 5’-gcacagacatcatgaggttctggtg-3’; 59˚C),

which produces an approximately 1100 bp fragment in the absence of these three Cyp2b mem-

bers [43]. The absence of these three members was confirmed with a Cyp2b13 specific primer

set (F1: 5’-cagactcttgttagaccggaccat-3’ / R1: 5’-ccccaaggaataaaattctacatg-3’; 59˚C) that ensured

the mice were not heterozygous [43]. hCYP2B6-2A13-Tg primer set (F1: 5’-cctggacagatgcctt-

taactccg-3’ / R1: 5’-tggctttgcacctgcctgact-3’; 63˚C) then confirmed the presence of the human

BAC clone containing CYP2B6 and the CYP2B6/2A13/2F1 P450 cluster on human chromo-

some 19 [42].

Cyp2b-null and hCYP2B6-Tg female and male mice (10 weeks old; n = 8 per sex) were fed

a high-fat diet (HFD; Envigo TD.06414, 5.1 Kcal/g: 60.3% fat (37% saturated, 47% monounsat-

urated, 16% polyunsaturated fat), 18.4% protein, 21.3% carbohydrates; Madison, WI USA) for

16 weeks. The lipid composition is defined and contains 3.1g/kg myristic acid (14:0), 76.6 g/kg

palmitic acid (16:0), 41.5 g/kg stearic acid (18:0), 6.2 g/kg palmitoleic acid (16:1), 127.8 g/kg

oleic acid (18:1), 71.7 g/kg linoleic acid (18:2), and 5.5 g/kg alpha-linolenic acid (18:3). Weight

gain was monitored weekly and feed consumption was measured every other day. Glucose tol-

erance tests (GTT) were performed during week 13. At the end of the study, mice were anes-

thetized with isoflurane and blood collected by heart puncture prior to euthanasia confirmed

by carbon dioxide apyxiation and bilateral pneumothorax. Liver, kidney, inguinal white adi-

pose tissue (WAT), brown adipose tissue (BAT), and testes were excised and weighed. All tis-

sues were immediately snap frozen with liquid nitrogen and stored at -80˚C.

Fasting blood glucose and glucose tolerance tests

Mice were fasted for 4.5 hours and fasting blood glucose was determined using an Alphatrak 2

(AlphaTRAK, Chicago, IL USA) blood glucose meter following tail bleed on week 13. Then

glucose tolerance was determined following an intraperitoneal injection of 1g/kg D-glucose
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(Sigma Ultra, St. Louis, MO USA) with blood glucose readings from tail bleeds every 20 min

for the first hour and every 30 min for the second hour as described previously [10, 44]. Results

are recorded over the time and as area under the curve (AUC). Data are presented as mean

blood glucose levels ± SEM. Statistical significance was determined by unpaired Student’s t-

tests using GraphPad Prism 7.0.

Serum biomarker panel

Serum parameters were measured as described previously [12]. Blood samples were collected

by heart puncture and incubated at room temperature for 30 min followed by centrifugation at

6000 rpm for 10 min. Serum from each sample was transferred into a fresh tube and aliquots

shipped on dry ice to Baylor College of Medicine’s Comparative Pathology Laboratory (Hous-

ton, TX USA) for determination of serum biomarker concentrations including alanine amino-

transferase (ALT), cholesterol, triglycerides (TAG), high density lipoprotein (HDL), low

density lipoprotein (LDL), and very low density lipoprotein (VLDL). Serum parameters were

determined using a Beckman Coulter AU480 chemistry analyzer (Atlanta, GA, USA) and the

appropriate Beckman Coulter biochemical kits according to the manufacturer’s instructions.

Liver triglycerides

Liver triglycerides were extracted and quantified as described previously [45] using colorimet-

ric kits from Cayman Chemical (Ann Arbor, MI). In addition, visual confirmation was per-

formed with Oil Red O. During necropsy, clean liver slices were snap frozen in liquid nitrogen

and stained with Oil Red O at Baylor College of Medicine’s Comparative Pathology Laboratory

using standard protocols [4].

Lipidomic analysis of polyunsaturated fatty acid (PUFA) metabolites

Serum and liver samples were shipped on dry ice to EIMLC for lipidomic analysis of lipid

metabolites from AA, LA, ALA, DHA, and eicosapentaenoic acid (EPA). Oxidized lipids were

selectively extracted from samples by solid phase extraction following EIMLC protocols [41].

Random forest analyses by MetaboAnalyst 3.6 [46] were performed on lipidomic data to

rank PUFA metabolite species as a prediction of how large of an effect each species has

between genotype [47]. The mtry parameter was set to 7, and the number of trees to be built

was set to 500 for each analysis to achieve the lowest out-of-bag (OOB) error. The larger the

mean decreased accuracy (MDA) value, the more important the lipid metabolites are for the

accuracy of the association between variable and response. Lipid metabolites with importance

scores less than or equal to zero are likely to have no predictive ability. Statistical significance

between genotypes was also determined by unpaired Student’s t-tests using GraphPad Prism

7.0. Data are presented as mean concentration ± SEM.

PPAR transactivation assays

PUFA and oxylipin PPAR agonist activity was measured (n = 2–3) using commercially avail-

able (Indigo Biosciences, State College, PA) murine and human PPARα (NR1C1), PPARδ
(NR1C2), and PPARγ (NR1C3) reporter assay systems according to the manufacturer’s direc-

tions. Oxylipins were purchased from Cayman Chemical Co (Ann Arbor, MI).

RNA sequencing (RNAseq)

Liver samples were stored in RNAlater Stabilization Solution (Invitrogen, Carlsbad, CA USA)

at -80˚C. Total RNA was extracted from mouse livers of each treatment group using TRIzol
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(Ambion, Carlsbad, CA USA) and quantified on a Qubit 2.0 Fluorometer. RNA integrity num-

ber (RIN) was determined with an Agilent 2100 Bioanalyzer (place) to assess RNA quality, and

samples with a RIN> 8.0 were determined to be of high quality and used for next generation

sequencing. Libraries were prepared using NEB Next Ultra RNA Library Prep kit. Samples

were sequenced to an average sequencing depth of 20,000,000 read pairs with a 2x150 paired-

end module using a NovaSeq 6000. Quality metrics were checked using FastQC on all samples

sequenced, and Trimmomatic was used to trim low quality bases. Trimmed reads were aligned

to the Mus musculus reference genome (GCF_000001635.25_GRCm38.p6) using GSNAP, and

100% of the trimmed reads aligned. Subread feature counts software found reads that aligned

with known genes. Raw read counts and EdgeR were used to determine differential gene

expression [48]. Series GSE148460 containing the RNAseq data has been uploaded to the Gene

Expression Omnibus (GEO).

DAVID functional annotation tool was used to perform the analysis of enriched gene ontol-

ogy (GO) terms from differentially expressed gene lists for female and male mice (adjusted p-

value < 0.05) [49]. Chord plots were generated in R using GOplot to display the relationship

between enriched GO terms and differentially expressed genes. Hierarchical cluster analysis

was performed on variables including total body weight, WSI, serum lipids, oxylipin species

from liver and serum, and differentially expressed genes (logFC> 1.0 or< 1.0) and visualized

in heatmaps with MetaboAnalyst 3.6 [46] to compare measured variables between genotypes.

MAGIC was used to estimate transcription factors involved in differential gene regulation

[50], and Enrichr was used to compare our differential gene expression set to other transcrip-

tomic gene sets [51].

Quantitative real-time PCR (qPCR)

RNA (2 μg) was used to prepare cDNA with 10 mM dNTPs, 200 units MMLV reverse tran-

scriptase, and 50 μg random hexamers (Promega, Madison WI, USA). Primers used were pre-

viously published [37, 45] and pimer sequences and annealing temperatures are provided in

Table 1. Samples were diluted 1:10 and amplified in triplicate using a 96-well CFX Real-Time

PCR (Bio-Rad, Hercules CA, USA) with 0.25X RT2 SybrGreen (Qiagen, Frederick MD, USA)

compared to the geometric mean of the reference genes, 18S and GAPDH. Standard curves

were used to determine efficiency using a mix of samples containing all cDNA samples diluted

at 1:1, 1:4, 1:16 1:64, 1:256, and 1:1024 and gene expression quantified using the modified Mul-

ler’s method [52, 53].

Table 1. Primer sequences for determining hepatic gene expression of insulin, Srebf, and Ppar regulated genes involved in lipid uptake, storage, and metabolism.

Gene Forward sequence Reverse sequence Annealing temperature (˚C)

Gapdh CCTTCATTGACCTCAACTA CTGGAAGATGGTGATGG 50

18S ATGGCCGTTCTTAGTTGGTG ATGCCAGAGTCTCGTTCGTT 64

Fasn ATTGCATCAAGCAAGTGCAG GAGCCGTCAAACAGGAAGAG 54.2

Pparg TGGGTGAAACTCTGGGAGATTC AATTTCTTGTGAAGTGCTCATAGGC 60.1

Ppard ATCCTCACCGGCAAGTCCA CCTGCCACAGTGTCTCGATG 60

Cyp4a14 GAGCCGTCAAACAGGAAGAG GAGTCCATAGGCCTGAGTTATTT 59

Pepck1 GTCAACACCGACCTCCCTTA CCCTAGCCTGTTCTCTGTGC 60.6

Srebf1 ACGAAGTGCACACAAAAGCA GCCAAAAGACAAGGGGCTAC 58

Cd36 GCTTGCAACTGTCAGCACAT GAGCTATGCAGCATGGAACA 60

Cpt1a TTGATCAAGAAGTGCCGGACGAGT GTCCATCATGGCCAGCACAAAGTT 60

https://doi.org/10.1371/journal.pone.0277053.t001
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Results

Inhibition of CYP2B6 by endogenous compounds

The concentration-dependent inhibition of the PUFAs AA, ALA, DHA, and LA were deter-

mined using CYP2B6 containing baculosomes (Fig 1) with the plasticizer, nonylphenol, as a

Fig 1. Fatty acid inhibitors of CYP2B6. Concentration-response curves of CYP2B6 containing baculosomes treated with polyunsaturated fatty

acids (PUFAs) or nonylphenol (positive control). Data are generated as described in the Materials and Methods using GraphPad Prism 7.0 and

presented as mean ± SEM in the graph with IC50s and 95% Confidence Intervals included.

https://doi.org/10.1371/journal.pone.0277053.g001
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positive control [37]. In concurrence with recently performed screening results of multiple

endobiotic and xenobiotic inhibitors [36], AA and DHA had the lowest IC50s (1.51 μM and

2.40 μM, respectively) compared to the other PUFAs, LA (2.90 μM) and ALA (4.48 μM) (Fig

1). It should be noted that all of the PUFAs had overlapping 95% CI except AA and ALA.

However, even the strongest endogenous inhibitors have almost 10X times less affinity / inhib-

itory capacity to CYP2B6 than the known xenobiotic inhibitor, nonylphenol [37]. Because of

dietary sources the PUFAs probably reach much greater hepatic concentrations than xenobiot-

ics and therefore it is expected that these PUFAs are effective inhibitors and potential sub-

strates for CYP2B6; at least following a HFD or a diet high in these PUFAs. Percent inhibition

of CYP2B6 along with IC50s and Hillslopes by multiple PUFAs, pesticides, and other xenobi-

otics in comparison to CYP3A4 was recently published and available for comparison [36].

Preferential metabolism of ALA to 9-HOTrE by CYP2B6-containing

baculosomes

Oxylipins of AA, LA, DHA, and ALA produced by CYP2B6 were measured by LC-MS/MS to

further investigate the role of CYP2B6 in PUFA metabolism. Surprisingly few AA, LA and

DHA metabolites were formed considering their IC50s (Fig 2). Instead, the n-3 PUFA, ALA,

was the most prominently metabolized PUFA with metabolite concentrations almost 20X

greater than other PUFA metabolites. 9-hydroxy-10E,12Z,15Z-octadecatrienoic acid

(9-HOTrE) and 13-HOTrE were the primary oxylipins produced. Such high concentrations

suggest that CYP2B6 has a specific PUFA substrate and products, potentially as key signaling

molecules. Interestingly, in addition to ALA, other n-3 and n-6 based oxylipins were also pri-

marily metabolized at the 9 or 13 position, indicating that CYP2B6 preferentially metabolizes

PUFAs, such as ALA and LA, in these positions.

Fig 2. PUFA metabolites of CYP2B6. LC-MS/MS was used to measure production of oxylipid metabolites formed by CYP2B6 containing

baculosomes compared to control baculosomes incubated with 25 μM arachidonic acid, linoleic acid, docosahexaenoic acid, and α-linolenic

acid (n = 3).

https://doi.org/10.1371/journal.pone.0277053.g002
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Humanized-CYP2B6-Tg mice have increased glucose sensitivity and

decreased body mass in comparison to Cyp2b-null mice following 16 weeks

of HFD treatment

Female hCYP2B6-Tg mice gained significantly less weight than their Cyp2b-null counterparts

after 16 weeks of a HFD. Changes in body mass were similar until about week 11 and contin-

ued to separate by genotype for the duration of the study (Fig 3A). In contrast, male

Fig 3. Genotypic differences in body weight gain and glucose sensitivity during 16 weeks of high-fat diet treatment. (A) Change in

body weight gain over 16 weeks of HFD treatment. (B) Glucose tolerance tests (GTT) performed during week 13 on Cyp2b-null and

hCYP2B6-Tg female and male mice. Results are represented as area under the curve. Data are presented as mean ± SEM. Statistical

significance was determined by unpaired Student’s t-tests (n = 7–8). � indicates a p-value< 0.05 and �� indicates a p-value< 0.01.

https://doi.org/10.1371/journal.pone.0277053.g003
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hCYP2B6-Tg mice showed no significant differences in body mass compared to Cyp2b-null

mice over the 16 weeks of HFD treatment; although male hCYP2B6-Tg mice tended to gain a

little less weight than their Cyp2b-null counterparts during the second half of the study (Fig

3A). Both genotypes in female and male mice consumed similar amounts of calories through-

out the duration of the 16-week HFD study (S1 File); therefore, caloric consumption does not

explain the differences in body mass. The reduced weight gain in hCYP2B6-Tg female mice

may be partly attributed to lower tissue weights as inguinal WAT was decreased 27% although

not significantly; only kidney weights were significantly decreased (S2 File). No differences

were observed in tissue weights between Cyp2b-null and hCYP2B6-Tg male mice (S2 File).

GTTs were performed to determine if HFD-fed hCYP2B6-Tg mice respond better than

HFD-fed Cyp2b-null mice to a glucose challenge, a biomarker of metabolic disease. Female

hCYP2B6-Tg mice performed slightly better than their Cyp2b-null counterparts, but only at

the last time point, suggesting that this may be an outlier. However, male hCYP2B6-Tg mice

exhibited a significantly faster response to a glucose challenge than Cyp2b-null males even

though there was no change in weight between the genotypes (Fig 3B), suggesting some other

physiological change is protecting hCYP2B6-Tg mice from metabolic disease.

Hepatic and serum lipids in HFD-fed hCYP2B6-Tg mice

Differences in hepatic lipid accumulation between Cyp2b-null and hCYP2B6-Tg mice were

examined to determine if the presence of hCYP2B6 provided protection from NAFLD as do

murine Cyp2b members in male mice [5, 10]. Surprisingly, male but not female hCYP2B6-Tg

mice showed increased hepatic triglycerides compared to Cyp2b-null mice (Fig 4A); the oppo-

site of what was predicted and observed in wildtype compared to Cyp2b-null male mice [10].

Histological analysis of Oil Red O staining was performed to confirm the chemical analysis of

lipid accumulation in the liver. Although steatosis increased as a result of HFD treatment, dif-

ferences observed between genotypes were relatively small when confirmed by Oil Red O

staining (Fig 4B). There were also no significant differences in serum lipids between Cyp2b-

null and hCYP2B6-Tg mice (S3 File). Overall, the increase of inert liver triglycerides in

hCYP2B6-Tg mice may paradoxically be protective based on increased glucose sensitivity

although other measured physiological and biochemical parameters are equivocal [54, 55].

Hepatic and serum oxylipin metabolites produced in HFD-fed

hCYP2B6-Tg mice

Concentrations of serum and hepatic lipid metabolites from LA, AA, ALA, DHA, and EPA

were compared between HFD-fed Cyp2b-null and hCYP2B6-Tg mice to identify lipid metabo-

lites metabolized by human CYP2B6 in vivo. The oxylipin species most predictive of differ-

ences between Cyp2b-null and hCYP2B6-Tg mice in serum or liver tissue are primarily AA

and LA-species as determined by random forest analysis and are almost always produced at

higher concentrations in the hCYP2B6-Tg mice, presumably due to the presence of CYP2B6

(Fig 5).

The anti-inflammatory signaling molecule, AA 14,15-EET was ranked the most predictive

lipid metabolite in hepatic tissue in female and male hCYP2B6-Tg mice (Fig 5). Interestingly,

AA 14,15-EET was the only statistically different oxylipin by unpaired Student’s t-tests

between Cyp2b-null and hCYP2B6-Tg female mice in liver, and there were no significant

changes in oxylipin concentrations between HFD-fed Cyp2b-null and hCYP2B6-Tg mice in

the liver. While individual hepatic oxylipin differences were rarely significant, the total average

concentration of oxylipins in the liver significantly increased in male hCYP2B6-Tg mice

(S4 File).
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Hepatic pro-inflammatory response metabolites, LA 9-hydroxyoctadecadienoic acid (LA

9-HODE) (females) and AA 12-hydroxyeicosatetraenoic acid (AA 12-HETE) (males), followed

by LA 13-HODE derivative, 13-keto-9Z,11E-octadecadienoic acid (LA 13-KODE), were iden-

tified as the most predictive lipid metabolites in serum of female and male mice (Fig 5). With

Fig 4. Comparison of steatosis markers in hCYP2B6-Tg and Cyp2b-null mice. (A) Total liver triglycerides were

measured in Cyp2b-null and hCYP2B6-Tg female and male mice. Data are presented as mean + SEM. Statistical

significance was determined by unpaired Student’s t-tests (n = 5). � indicates a p-value< 0.05. (B) Fatty liver

histopathological changes were evaluated by Oil red O staining in female and male mice. Images were taken at 100x

(0.2 mm) and 400x (0.05 mm) magnification.

https://doi.org/10.1371/journal.pone.0277053.g004
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the exception of AA 12-HETE, these metabolites and others were also different by Student’s t-

tests (S5 and S6 Files). LA 9,10-dihydroxyoctadec-12-enoic acid (DiHOME) a hydrolase

metabolite of 9,10-epoxy-12Z-octadecenoic acid (EpOME), LA 9-HODE and LA 13-KODE, as

well as AA 14,15-epoxyeicosatrienoic acid (AA 14,15-EET) and ALA isoprostane all increased

in the serum of female hCYP2B6-Tg mice (S5 File; Fig 5). These PUFA metabolites also

increased in the serum of male hCYP2B6-Tg mice but not significantly. The only lipid metabo-

lite to significantly increase in the presence of CYP2B6 in the serum of male mice was AA

thromboxane B2 (TXB2) (S5 File). Total average oxylipin concentrations in serum samples

increased, but not significantly, in both female and male hCYP2B6-Tg mice compared to

Cyp2b-null mice (S4 File).

Fig 5. Random forest analysis of lipid metabolites by tissue type in female and male mice. Important lipid metabolites identified by

random forest analysis between Cyp2b-null and hCYP2B6-Tg mice in serum or liver tissue.

https://doi.org/10.1371/journal.pone.0277053.g005
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Gene expression differences between HFD-fed Cyp2b-null and

hCYP2B6-Tg mice

RNAseq was performed on liver samples to examine the effect of CYP2B6 on global hepatic

gene expression compared to Cyp2b-null mice during HFD treatment (S7 File). Gene ontol-

ogy (GO) enrichment chord plots were used to display the relationship between differentially

expressed genes and enriched biological process GO terms (S7 File). Several circadian

rhythm-associated genes were up-regulated in HFD-fed hCYP2B6-Tg mice compared to

Cyp2b-null mice (Fig 6). Circadian regulation plays an important role in liver metabolism and

metabolic disease [56]. Female and to a lesser extent, male hCYP2B6-Tg mice had several per-

turbed protein processing and phosphorylation associated genes. Previous RNAseq data gen-

erated in our lab determined Cyp2b-null mice have increased endoplasmic reticulum stress

compared to wild-type mice [10]. Consistent with these results, female and to a lesser extent,

male hCYP2B6-Tg mice had several perturbed protein processing and phosphorylation associ-

ated genes compared to Cyp2b-null mice. In addition, female hCYP2B6-Tg mice had several

down-regulated genes involved in lipid synthesis, notably Angptl8, a critical modulator of

serum triglyceride levels [57] (Fig 6).

Interestingly in males, Cyp2b10 was the second highest induced gene (logFC = 6.19) in

HFD-fed hCYP2B6-Tg compared to Cyp2b-null mice (S7 File). Cyp2b10 is the murine ortho-

log to human CYP2B6 and 74% identical. Based on alignment program settings and sequenc-

ing variation (i.e. number of SNPs), CYP2B6 reads were aligned to Cyp2b10 on the reference

genome (S8 File). Furthermore, the epidermal growth factor receptor (Egfr) was down-regu-

lated (logFC = -1.34) in male hCYP2B6-Tg mice compared to Cyp2b-null mice. The down-

regulation of EGFR provides a mechanism for the activation of the constitutive androstane

receptor (CAR) and subsequent induction of Cyp2b10/CYP2B6 [58]. Conversely, Cyp2b10
was not differentially expressed in females, probably because Egfr was up-regulated

(logFC = 0.77) in female hCYP2B6-Tg mice.

Our differentially expressed gene set was compared to others using Enrichr [51] with simi-

larities most strong to CAR-null > PPARa-null = AhR-null > BHLHA15-null = HNF1-null >

STAT3-null = ESRRA-null mice. Several different experiments with CAR-null mice appeared

indicating that the gene expression patterns observed were most closely related to CAR-null

mice with PPARa and AHR-null mice not far behind. Individual genes were run through

MAGIC [50] to verify the results of Enrichr. The three transcription factors that regulate the

most differentially expressed genes are FoxA2, PPARs, and sterol regulatory element binding

transcription factor 1 (SREBF1). ESRRA and NRF2 were also represented. Estrogen related

receptors (ESRRA) are often associated with PPAR related processes [59]. CAR was not well

represented in MAGIC and even CYP2B6 did not show CAR regualation in MAGIC. PPAR-

gene confirmed the regulation of several genes by the PPARs [60].

To determine associations between physiological parameters, serum lipids, serum and liver

oxylipin species, and differentially expressed genes between HFD-fed Cyp2b-null and

hCYP2B6-Tg mice, hierarchical cluster analysis was performed using the top 50 measured var-

iables from female and male mice (Fig 7). There was clear separation by genotype in females,

with hierarchical clustering showing that in addition to differentially expressed genes, serum-

associated variables make up the most distinguishing factors between genotypes in female

mice (Fig 7A). HFD-fed hCYP2B6-Tg female mice were associated with an increase in several

serum oxylipins, LDL, and HDL as well as more differentially expressed genes than Cyp2b-

null females. Fewer serum parameters, TAG, VLDL, and two AA serum oxylipin species

(AA-TBX2; AA-PGE2) (role in inflammation) were increased in HFD-fed Cyp2b-null female

mice (Fig 7A).
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Fig 6. Chord plots displaying relationships between RNAseq gene expression data and gene ontology. Chord plots were used to

display the relationship between enriched GO terms and differential gene expression data in female (A) and male (B) mice.

https://doi.org/10.1371/journal.pone.0277053.g006
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Samples also clustered by genotype in male mice, but with more variability than females

and a clear indication that some serum and liver oxylipin concentrations were inversely related

(Fig 7B). Interestingly, HFD-fed Cyp2b-null males were associated with an increase in serum

cholesterol and HDL and only one liver oxylipin metabolite. Conversely, hCYP2B6-Tg coun-

terparts were correlated with an increase in WSI, LDL, and numerous serum and liver oxylipin

species (Fig 7B).

Overall, this data indicated the importance of changes in expression and activity of nuclear

receptors with CAR, PPARα, PPARγ, Rev-Erbβ, GR, ESSRA, and SHP all as potential contrib-

utors to changes in the regulation of key genes involved in circadian rhythms, cholesterol and

lipid metabolism in female and male mice based on the literature (Fig 7)[61–63]. Because

PPARs are involved in hepatic circadian rhythms, lipid metabolism, previous data indicates

PPARγ activation by the oxylipin 13-KODE [64], and PPARs are common targets based on

the Enrichr and MAGIC databases, we evaluated PPARα/δ/γ activation by oxylipins produced

by CYP2B6. The primary oxylipins produced in vitro and in vivo in the 9-positions from lino-

lenic and linoleic acid (9-HOTre and 9-HODE, respectively) by CYP2B6 are strong PPARα
activators at 6 μM (Fig 8A and 8B). None of the oxylipins tested activated PPARδ (Fig 8C and

8D). 13-KODE, (also known as 13-oxo-ODE) moderately activated PPARγ at a relatively low

concentration of 0.6 μM (Fig 8E and 8F), confirming previous results [64]. This work indicates

that the oxylipins produced by CYP2B6 could activate PPAR pathways crucial in the distribu-

tion and utilization of fatty acids.

Targeted gene expression differences between HFD-fed Cyp2b-null and

hCYP2B6-Tg mice as measured by qPCR

Changes in the expression of genes involved in energy metabolism (lipid uptake, storage, and

metabolism) and primarily regulated by insulin, SREBF1, and PPARs [37, 45] were measured

by qPCR. Few of the genes were differentially expressed; however there were some trends in

genes primarily regulated by PPARγ including Fasn, Pparγ, Pepck, and Srebf1 [60, 65, 66], of

which Fasn and Pparγ were significant (Fig 9). Pparδ was also increased as determined by

Fisher’s LSD only. Key biomarker genes regulated primarily by PPARα such as Cd36 and

Cyp4a14 were not altered [67, 68]. SREBF1 also induces Pparγ and itself similar to PPARγ, but

down-regulates Fasn [65, 69]. Therefore, qPCR profiles most closely aligned with activation of

PPARγ.

Discussion

Female hCYP2B6-Tg mice gained less weight than Cyp2b-null counterparts after 16 weeks of

HFD treatment. The difference in weight was not as great and the duration of the study was

longer than previously conducted when comparing Cyp2b-null and WT mice [10]. This sug-

gests that similar to murine hepatic Cyp2b members, human CYP2B6 is an anti-obesity

enzyme but not with the efficacy of the murine Cyp2b enzymes. In addition, the sexual dimor-

phic effects of human CYP2B6 and murine Cyp2bs were flipped, as Cyp2b-null male mice

weighed more than WT mice [10], but it was Cyp2b-null female mice that weighed more than

hCYP2B6-Tg mice (Fig 3).

Fig 7. Hierarchical cluster analysis comparing measured variables between HFD-fed hCYP2B6-Tg and Cyp2b-

null mice. Hierarchical cluster analysis determining the top 50 measured variables associated with HFD-fed Cyp2b-

null or hCYP2B6-Tg female (A) or male (B) mice visualized in heatmaps. Variables include serum lipids, WAT

somatic index (WSI), body weight, serum and liver oxylipin species, and differentially expressed genes (logFC>1.0 or

<1.0).

https://doi.org/10.1371/journal.pone.0277053.g007
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Fig 8. Transactivation assays reveal some CYP2B6-produced oxylipins activate PPARs. Mouse and human (A/B)

PPARα, (C/D) PPARδ, and (E/F) PPARγ are activated by oxylipins primarily oxidized in the 9 and 13 positions. Data

are presented as mean ± SEM. Statistical significance was determined by unpaired Student’s t-tests (n = 2–3). �

indicates a p-value< 0.05 and �� indicates a p-value< 0.01.

https://doi.org/10.1371/journal.pone.0277053.g008
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Fig 9. qPCR confirms changes in gene expression of energy metabolism genes regulated by PPARγ in males. Data

are presented as mean + SEM. Statistical significance was determinedy by ANOVA followed by Fisher’s LSD as the

post-hoc test (n = 5). � indicates a p-value< 0.05.

https://doi.org/10.1371/journal.pone.0277053.g009
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In addition to body weight, hCYP2B6-Tg females decreased inguinal WAT mass 27% when

compared to Cyp2b-null mice. While 27% is not statistically significant, a 27% drop in WAT

mass is biologically impressive. Genes that play a role in adipocyte lipid accumulation, Angptl8,

[57] and differentiation (Slc16a1) [70] were concurrently down-regulated in hCYP2B6-Tg

female mice, as well as acyl-coA synthetase short chain family member 2 (Acss2), which has

been found to promote the systemic storage of fats under HFD conditions in mice [71]. Previ-

ous studies have found serum TAG, VLDL and Angptl8 expression to be positively correlated

in humans and mice [72, 73]. These variables were also increased and grouped together by

hierarchical cluster analysis in HFD-fed Cyp2b-null female mice. Female RNAseq results also

indicate disruption of circadian rhythm genes, which often regulate lipid distribution [74] as

well as effects on lipid metabolism/cholesterol/bile acid pathways (Insig2) [75] and energy uti-

lization (Sgk1) [76]. Several of these genes are consistent with activation of circadian nuclear

receptor pathways such as PPARα, PPARγ, and Rev-Erb [61–63, 77, 78], and PPARα and Rev-

Erb are directly regulated by BMAL1, a circadian rhythm transcription factor [79].

Concentrations of specific oxylipin metabolites were significantly increased in the serum of

hCYP2B6-Tg females, which corresponds well with their signaling role and obesity-associated

effects observed in the physiological and transcriptomic results of HFD-fed hCYP2B6-Tg

female mice. These altered oxylipin species do not share one specific role, as AA-14,15-EET is

anti-inflammatory [80], while LA-9-HODE and 13-HODE are PPARα agonists (Fig 8) and as

such also potentially anti-inflammatory [81]. Interestingly, 9-HODE and 13-KODE are also

agonists of the pain receptor, transient receptor potential vanilloid 1 (TRPV1); 9-HODE, but

not 13-HODE, is an agonist for G-protein coupled receptor, G2A/GPR132, and as such would

likely be inflammatory [82, 83]. However, TRPV1 is primarily found in the nervous system

and skin and unlikely to be involved in actions observed in this study [84].

Hierarchical cluster analysis showed changes in AA-14,15-EET are associated with genes

involved in proliferation (Ccno, Frs3, Junb) [85–87]. 9-HODE and 13-KODE (a PPARγ ago-

nist), which are in the same cluster, are associated with genes involved in insulin signaling

[88]. Several differentially regulated genes in female hCYP2B6-Tg mice are associated with

insulin such as Irs2, Sgk1, Inhbb, Slc16a1, and Angptl8 [89, 90]. This insulin pathway is also

known to activate PPARγ [91]. We did not observe activation of PPARγ by 9-HODE or

13-HODE; however, other laboratories have shown evidence that FABP4 is likely induced by a

9-HODE-PPARγ interaction and both 9-HODE and 13-HODE bind the ligand binding pocket

of PPARγ [83, 92]. Another study suggests that 13-HODE induces PPARγ activity through

repression of PPARδ [93]. We observed activation of PPARγ by 13-KODE (also known as

13-oxo-ODE) at a low concentration of 0.6 μM. Any of these oxylipins may alter insulin signal-

ing or more likely incease PPARγ signaling. Ultimately, these changes in hepatic gene expres-

sion and serum oxylipin concentrations between HFD-fed hCYP2B6-Tg and Cyp2b-null

female mice suggest CYP2B6 could affect lipid distribution.

Although AA and DHA had the lowest IC50 values compared to the other PUFAs mea-

sured by concentration-dependent response curves, ALA was the predominant substrate

metabolized by CYP2B6 in vitro followed by LA and AA when adequate substrate was pro-

vided. CYP2B6 oxylipin metabolites were produced in the 9- and 13- positions at high concen-

trations, especially 9-HOTrE followed by 13-HOTrE. The oxylipin 13-HOTrE is known for its

role in suppression of inflammation [94, 95], and although the biological effect of the previ-

ously determined lipoxygenase product 9-HOTrE [74] is not established, it is predicted to

share a similar anti-inflammatory role [96].

Conversely, important or significantly altered PUFA metabolites from liver and serum sam-

ples of HFD-fed hCYP2B6-Tg mice suggests CYP2B6 primarily metabolizes the n-6 PUFAs,

LA and AA in vivo, in the 9- and 13- positions. This change in substrate preference compared
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to the in vitro data is most likely attributed to the available concentrations of the different

PUFAs and their affinity for CYP2B6 (Fig 1). The HFD provided to the mice has nearly 15X

more n-6 than n-3 PUFAs and the main source of PUFAs in the HFD treatment was soybean

oil, which is approximately 55% LA and only 7% ALA [97]. In addition, ALA had a slightly

lower affinity to CYP2B6 compared to AA according to concentration-dependent response

curve results, indicating more ALA would need to be present for metabolism to occur. Overall,

several oxylipins are produced from CYP2B6 and preferentially present in hCYP2B6-Tg mice,

indicating that CYP2B6, at least under high-fat conditions, metabolizes PUFAs to several oxy-

lipins with preference in the 9- and 13-positions.

In contrast to females, there was no change in weight between genotypes in HFD-fed male

mice, although male hCYP2B6-Tg mice exhibited increased glucose sensitivity and higher

liver triglyceride levels compared to Cyp2b-null males. High fat diets often cause a shift from

normal triglyceride synthesis to bioactive lipid intermediates that can induce endoplasmic

reticulum (ER) stress and cause lipotoxicity [98]; however, lipotoxic ER stress was not

observed in male hCYP2B6-Tg mice. We suspect that the increase in inert hepatic triglycerides

provided lipotoxic protection from other fatty acid-derived species [99]. Additionally, the

downregulation of Egfr in male hCYP2B6-Tg provides a mechanism for the up-regulation of

Cyp2b10 through CAR activation [58] and potentially explains the physiological and lipid

metabolism differences between male and female hCYP2B6-Tg mice, as Egfr was up-regulated

in females.

Differences are also potentially due to the differing roles of human versus murine CYP2B,

as CAR activation in murine models inhibits gluconeogenesis, lipogenesis and fatty acid synthe-

sis, but in human hepatocytes CAR was only found to inhibit gluconeogenesis [100], and RNA-

seq suggests the potential for CAR activation based on decreased Egfr and Cyp7a1, and

increased CYP2B6/Cyp2b10 [58], as well as gstm3, sgpl1, por, sdf2l1, insig2, hspb1, and sgk1 [51].

Interestingly, decreased Egfr and Cyp7a1 were associated with decreased serum cholesterol and

HDL in hCYP2B6-Tg males. Furthermore, the most important oxylipin in the livers of HFD-

fed hCYP2B6-Tg mice as determined by random forest, AA-14,15-EET, and other CYP-derived

EETs contribute positively to insulin sensitivity [101]. Taken together, there appears to be sev-

eral pieces of evidence that suggest a positive role for CYP2B6 in glucose tolerance.

Observed differences between male hCYP2B6-Tg and male Cyp2b-null mice were predom-

inantly liver-based effects such as increased liver triglycerides and a change in glucose toler-

ance. HFD-fed hCYP2B6-Tg males also presented with increased total average concentrations

of hepatic oxylipin species compared to their Cyp2b-null counterparts with PPARα and

PPARγ activators, 9-HODE and 13-KODE considered key increased oxylipins as determined

by Random Forest (Fig 5). Increased levels of oxylipin metabolites of ALA and LA have been

previously associated with soybean oil-induced fatty liver and obesity in mice [102]. Similar to

females, hCYP2B6-Tg male mice also experienced perturbations in circadian rhythm-associ-

ated genes that are important mediators of hepatic lipid homeostasis [56].

In humans, excess intrahepatic fat and visceral adipose tissue (VAT) have been associated

with perturbed glucose and lipid metabolism. VAT is highly lipolytic and increases levels of

free fatty acids in the liver, causing enhanced gluconeogenesis and hepatic insulin resistance

[103]. It has been shown that adults and children with NAFLD have impaired glucose toler-

ance in equal proportions to the degree of steatosis [104]. However, in this study HFD-fed

hCYP2B6-Tg male mice simultaneously increased hepatic triglycerides and glucose tolerance

compared to Cyp2b-null mice, which is unusual but not unprecedented [105] as other studies

have shown that acute NAFLD can be protective [106].

PPARγ activation is one of the few mechanisms that can explain an association between

increased liver steatosis and improved glucose tolerance. PPARγ activation in diabetic patients
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improves whole-body insulin sensitivity [107] at the same time increasing steatosis [108].

Therefore, targeting PPAR for improving diabetes comes with conern for potential side effects

allowing for greater NAFLD [108]. In this study, we observed increased liver triglycerides

along with improved glucose tolerance in the hCYP2B6-Tg mice in association with increased

oxylipins that activate PPARs and changes in gene expression associated with PPAR activation.

qPCR confirmation of key biomarker genes showed increased Pparγ and Fasn expression with

no change in Cyp4a14 and Cd36 expression, indicating PPARγ activation; and not likely

PPARα activation. Overall, our data is consistent with CYP2B6 expression leading to increased

oxylipins that are associated with increased PPARγ activity and improved glucose sensitivity at

the cost of increased steatosis.

Differences are also potentially due to the differing roles of human versus murine CYP2B,

as CAR activation in murine models inhibits gluconeogenesis, lipogenesis and fatty acid syn-

thesis, but in human hepatocytes CAR was only found to inhibit gluconeogenesis [100], and

RNAseq suggests the potential for CAR activation based on decreased Egfr and Cyp7a1, and

increased CYP2B6/Cyp2b10 [58], as well as gstm3, sgpl1, por, sdf2l1, insig2, hspb1, and sgk1
[51]. Interestingly, decreased Egfr and Cyp7a1 were associated with decreased serum choles-

terol and HDL in hCYP2B6-Tg males. Furthermore, the most important oxylipin in the livers

of HFD-fed hCYP2B6-Tg mice as determined by random forest, AA-14,15-EET, and other

CYP-derived EETs contribute positively to insulin sensitivity [101]. Taken together, there

appears to be several pieces of evidence that suggest a positive role for CYP2B6 in glucose

tolerance.

In conclusion, the data presented indicates CYP2B6 is an anti-obesity enzyme in human-

ized mice, which verifies epidemiological data [3]. CYP2B6 metabolizes PUFAs in vitro and in
vivo preferentially in the 9- and 13- positions on LA and ALA, with more limited metabolism

of AA and DHA. Previous research indicates that several of these oxylipins are anti-inflamma-

tory mediators of metabolic disease, however some are inflammatory oxylipins. In addition,

several of the CYP2B6-produced 9- and 13-position oxylipins are PPARα and PPARγ activa-

tors, providing a putative mechanism for CYP2B6 as an anti-obesity enzyme. HFD-fed

hCYP2B6-Tg male and female mice were less susceptible to the development of metabolic dis-

ease compared to Cyp2b-null mice through different mechanisms as female mice showed

reduced body weight and males increased glucose sensitivity consistent with PPARγ activity.

Overall, this study provides a putative mechanism by which CYP2B6 acts as an anti-obesity/

anti-metabolic disease enzyme under HFD conditions and suggests how chemical inhibition

or polymorphic loss of CYP2B6 activity could increase diet-induced obesity and metabolic dis-

ease through reduced production of important oxylipins or changes in circadian-mediated

regulation of lipid metabolism and distribution.
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