
EDUCATION

Ten simple rules and a template for creating

workflows-as-applications

Michael J. RoachID
1*, N. Tessa Pierce-Ward2, Radoslaw Suchecki3,

Vijini Mallawaarachchi1, Bhavya Papudeshi1, Scott A. Handley4, C. Titus Brown2, Nathan

S. Watson-HaighID
5, Robert A. Edwards1

1 Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, South Australia, Australia,

2 Department of Population Health and Reproduction, University of California, Davis, California, United

States of America, 3 CSIRO Agriculture and Food, Urrbrae, South Australia, Australia, 4 Department of

Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of

America, 5 Alkahest Inc., San Carlos, California, United States of America

* michael.roach@flinders.edu.au

This is a PLOS Computational Biology Software paper.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
As bioinformatics analyses increase in size and complexity, workflow managers are becoming

more popular for building pipelines [1–3]. Workflow managers, such as Snakemake [4], Next-

flow [5], and Cromwell [6] with WDL or CWL [7], empower researchers to build robust pipe-

lines that call a series of tools and scripts to perform a bespoke analysis. Workflow managers

enable non-bioinformaticians to run published pipelines with confidence, and workflow man-

agers with graphical user interfaces such as Galaxy [8] and BioWorkflow [9] have helped non-

bioinformaticians create their own simple pipelines. Earlier tools for workflow management

have been around for a while, including GNU Make, ruffus [10], doit [11], rake for ruby [12],

and Makeflow [13]. However, the integration of cluster and cloud computing support in Sna-

kemake, Nextflow, and Cromwell helped drive their current popularity. The use of workflow

managers facilitates following the FAIR (Findable, Accessible, Interoperable, Reusable) guid-

ing principles for open scientific research [14]. Interestingly, many existing bioinformatics

command line tools are wrappers for a series of other software, but since that is the goal of

workflow managers, they can be used instead. Examples of command line tools built on a

workflow manager include Hecatomb [15,16], ATLAS [17], VirSorter2 [18], spacegraphcats

[19], BlobToolKit [20], and PGAP [21]. These tools all consist of two key components: a conve-
nience launcher, which provides the command line interface for the tool and compiles the con-

figuration from user command line arguments, and the workflow pipeline and associated files,

which performs the actual analysis.

Developing bioinformatics software is much quicker and easier when not reinventing the

wheel. For instance, if a tool needs to parse a GenBank file, is it better to code that process

manually, or simply load a library that is designed to robustly parse and validate these files?

The same concept applies to how bioinformatics software runs. It is possible to write functions

to compare file timestamps to add reentrancy to the software, catch error codes, and throw

meaningful messages when system calls fail, validate and cleanup intermediate files, allow

interaction with a job scheduling system, and perform steps in isolated containers, etc. When

workflow managers were still in their infancy, the authors of several popular genome

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Roach MJ, Pierce-Ward NT, Suchecki R,

Mallawaarachchi V, Papudeshi B, Handley SA, et al.

(2022) Ten simple rules and a template for creating

workflows-as-applications. PLoS Comput Biol

18(12): e1010705. https://doi.org/10.1371/journal.

pcbi.1010705

Editor: Scott Markel, Dassault Systemes BIOVIA,

UNITED STATES

Published: December 15, 2022

Copyright: © 2022 Roach et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: MJR was supported by Flinders

University under an Impact Seed Funding for Early

Career Researchers grant. RAE was supported by

an award from the National Institutes of Health

(NIH) National Institute of Diabetes and Digestive

and Kidney Diseases RC2DK116713 and an award

from the Australian Research Council

DP220102915. NTP was supported by the National

Science Foundation under grant No.2018911 to

CTB. SAH was supported by an award from the

NIH NIDDK RC2DK116713. CTB was supported by

an award from the Gordon and Betty Moore

Foundation, GBMF4551. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

https://orcid.org/0000-0003-1488-5148
https://orcid.org/0000-0002-7935-6151
https://doi.org/10.1371/journal.pcbi.1010705
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010705&domain=pdf&date_stamp=2022-12-15
https://doi.org/10.1371/journal.pcbi.1010705
https://doi.org/10.1371/journal.pcbi.1010705
http://creativecommons.org/licenses/by/4.0/

assemblers [22,23] understood the value of such functionality and invested the time to manu-

ally incorporate them into their tools. However, we now have the ability to use dedicated work-

flow managers to reduce the burden of developers having to include these capabilities directly

within their end user software.

Writing bioinformatics software using a workflow manager is a very good idea. However,

shipping the software as the native workflow script is probably a very bad idea. Workflow

managers have a large, and often bewildering, number of command line arguments for con-

trolling many aspects of how a workflow runs. Furthermore, setting up a run is usually a multi-

step process often requiring some or all of the following: copying the workflow repository,

creating a configuration file, installing the workflow manager and dependencies, coming up

with a suitable run command and scheduler interaction for your system, and executing the

analysis. This can be overwhelming for users, especially those who may have no experience

with the workflow manager. It is best to make using the bioinformatics tool as easy as possible

in order to improve the user experience. As an added bonus, this will help maximise the user

base and subsequent citations. In all of the above examples, the bioinformatics tools hide the

workflow manager backend behind a simple and focused interface that is much more appeal-

ing for the end user. This simple interface helps the user to define the settings that actually

matter, such as the required file inputs, instead of manually generating a configuration file

with this information. Modifying the configuration file is no longer necessary but remains an

option for advanced customisation. This interface also lets the user run your tool in as little as

two steps: install with a package manager, run the tool.

Example running a workflow script
git clone https://github.com/gituser/my_tool.git
cd my_tool
conda install --file requirements.txt
cp config/config.yaml.
nano config.yaml
mv /home/user/my_data.
snakemake --cores 16 --configfile config.yaml
--rerun-incomplete --printshellcmds --show-failed-logs
--use-conda --conda-frontend mamba

Example workflow as an application
conda install my_tool
my_tool run --input /home/user/my_data --threads 16

Snakemake and Nextflow are two increasingly popular workflow management systems. They

make it relatively easy to create high-quality, scalable, and reproducible bioinformatics pipelines,

and they have many features that make them powerful frameworks for bioinformatics. The invit-

ingly simple syntax makes for highly readable code and relatively quick and painless code develop-

ment. The mountain of functionality they add for validating inputs, outputs, directories,

reentrancy, resource management, etc. would take an exorbitant amount of time to code manually.

We present these ten simple rules for developers to follow which will facilitate their user

communities in adopting and executing their workflows with fewer barriers, using examples

with Snakemake and Nextflow. These rules are not intended to outline general best practices

for workflow managers nor for writing command line programs. Nevertheless, you should fol-

low any best practices outlined in the documentation for your chosen workflow manager,

which will make for better, more reliable, and readable workflows. For the command line

script, there are guidelines you should follow that discuss best practices for command line

applications [24–26], and the resulting tool itself should be workflow ready [27].

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 2 / 9

Competing interests: The authors declare that they

have no conflicts of interest.

https://doi.org/10.1371/journal.pcbi.1010705

We provide Cookiecutter [28] templates to help developers get started with adapting their

own workflows for command line execution. Cookiecutter takes information about the user

and their project and populates a collection of template files with this information. Our tem-

plates also double as fully functioning examples of our ten simple rules and are available for

both Snakemake (github.com/beardymcjohnface/Snaketool) and Nextflow (github.com/

beardymcjohnface/Nektool).

Rule 1: Empower users to troubleshoot a workflow

No matter how much time and effort is put into making the pipeline steps robust and reliable,

there will still be things that fail on different user systems, data, and use-cases. You and the end

user need to be able to troubleshoot the issue as quickly and painlessly as possible. Workflow man-

agers support defining log files for capturing standard error messages. These will help keep the ter-

minal window clear of jargon and will save the error messages for troubleshooting. Furthermore,

it is usually possible to print the location of an error log for a step that has failed, as well as display

the contents of the log for failed steps. Lastly, you could write a small function to create a crash

report that collects the relevant error logs and run settings information for failed steps.

Similarly, benchmarking files can be helpful for the end users, especially if they are running

into steps that are taking longer than expected to finish or have to adhere to service unit

requirements on high-performance computing (HPC) clusters. It is also extremely useful for

test runs when trying to gauge the computational resources you will need when scaling up to

larger datasets. Workflow managers are usually able to save benchmarking information for all

steps to their own benchmarking files or generate run reports at the end of a run.

Snakemake example
rule prinseq:
input: inDir + "/{sample}.fq"
output: outDir + "/prinseq/{sample}.trimmed.fq"
log: logDir + "/prinseq/{sample}.stderr"
benchmark: logDir + "/prinseq/{sample}.bench"
shell: "prinseq++ -fastq {input} -out_good {output} &> {log}"

// Nextflow example
process prinseq {
tag "${fq.baseName}"
input: path(fq)
output: path(’�.fq’)
"echo prinseq++ -fastq $fq -out_good ${fq.baseName}.trimmed.fq"

}
// Failed job’s directory and stdout & stderr will be printed to
// the screen and also available in job’s work directory as
//.command.out and.command.err files, respectively.

Ensure benchmarking is recorded in report.html & trace.txt
nextflow run <pipeline name> -with-report -with-trace

Rule 2: Utilise flexible configuration stacking for parsing

configuration settings

Workflow pipelines often require many different configuration settings. The user may be

allowed to tweak some settings, they might have to supply others, and there may be settings

that the user should not touch. For workflow managers, there are usually several different ways

of supplying configurations that can yield a great deal of control when building applications.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 3 / 9

http://github.com/beardymcjohnface/Snaketool
http://github.com/beardymcjohnface/Nektool
http://github.com/beardymcjohnface/Nektool
https://doi.org/10.1371/journal.pcbi.1010705

For convenience, the launcher should accept any settings that the user must supply for each

run via command line arguments. This can be saved to a configuration file and supplied to the

workflow manager on the command line. For optionally customisable settings, the simplest

implementation is to copy a default configuration file to the working directory for the user to

modify if they wish. In our examples, we copy the default configuration file to the working

directory, which the user can tweak. The launcher then updates this file with the command

line arguments before supplying it to the workflow manager. The primary benefit for the end

user is that their run-time configuration is stored in a directory with their data and is also in a

file that can be placed under version control, increasing the reproducibility of the analysis.

While user-customised configurations can be passed via the command line, immutable set-

tings should be read directly by the workflow script (this is possible in both Snakemake and

Nextflow). This prevents the user from adjusting things that should be left alone but lets the

developer keep configuration in a separate file rather than hardcoding these settings.

user-customisable settings (config in working directory)
input: myReads.fastq
output: myTrimmedReads.fastq
prinseqParams: "-min_len 90 -min_qual_mean 25 -ns_max_n 1”

immutable settings (config in installation directory)
databaseDownload:
mirror:
"ftp.ncbi.nlm.nih.gov"
files:
- blast/demo/MH168512.fsa
- blast/demo/Plasmids_562.fsa

Rule 3: Allow flexible execution of workflows

It is quite common for a bioinformatics tool to come with utility scripts for things like install-

ing databases, preparing input files, etc. For these utility scripts, we suggest creating separate

workflow scripts that are launched using positional bareword argument subcommands.

% my_tool run. . .

% my_tool install. . .

For some workflow managers, it is possible to define individual stages within a workflow

that can be run separately. For instance, if the tool performs both preprocessing and assembly,

a user might only want to run the preprocessing steps. If possible, you should allow users to

define these specific stages to run. In our example, we implement this functionality in Snake-

make as additional bareword arguments, and in Nextflow by using the -entry flag.

Run preprocessing only (Snakemake)
% my_tool run. . . preprocessing

Snakefile example
rule all:
input: preprocessing_targets, assembly_targets

rule preprocessing:
input: preprocessing_targets

rule assembly:
input: assembly_targets

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 4 / 9

https://doi.org/10.1371/journal.pcbi.1010705

Run preprocessing only (Nextflow)
% my_tool run. . . -entry preprocessing_workflow

// Nextflow example
// preprocessing step(s) only
workflow preprocessing_workflow {
preprocess()

}
// default workflow
workflow {
preprocess | assembly

}

Rule 4: Embrace the real-time feedback that workflow managers

provide

Command line tools that provide meaningful real-time feedback on the progress of a run gives

the user confidence that a run is progressing correctly or allows them to intervene if it has

stalled or is not running as expected. For this reason, black box applications that do not print

anything to the terminal can be frustrating for users. Conversely, some users might prefer min-

imal terminal messages in which case an option to reduce terminal output would also be bene-

ficial, for instance, via the “quiet” flags that are available for both Snakemake and Nextflow.

Displaying the workflow command and runtime settings tells the user exactly what their

system will be doing. For the configuration, a function in either the launcher or the Workflow

script can print the configuration settings to the terminal. The runtime configuration, includ-

ing all file locations, software versions, etc., should also be included in the log to create a record

of the data when the analysis was performed. This will also assist with subsequent debugging

of any issues that arise.

% my_tool run
Runtime config settings:
input: /path/to/infile
output: my_tool_output/
Snakemake command:
Snakemake -j 8 --configfile my_tool_output/config.yaml
-s /path/to/my_tool/Snakefile

Rule 5: Ship software using a package manager to simplify

installation

Manually installing software is an unnecessary hurdle for users. Package managers such as

Conda and the package installer for Python (pip) will automatically download and install soft-

ware and represent the easiest avenue for accessing command line applications. Package man-

agers are also an excellent way to help make a tool workflow ready [27], allowing them to be

used like any other tool. Conda and pip are two popular cross-platform package managers

used in bioinformatics for command line applications. Additional advantages are the ability to

install software without root permissions, specify a precise version of the software to use, and

create isolated software environments.

Most command line bioinformatics applications are already available to install with Conda

from the Bioconda [29] channel and often support both Linux and Mac OSX operating sys-

tems. Conda also has the advantage of being a language-agnostic package manager. Python-

based tools are usually submitted to the Python Package Index, PyPI, for installation with pip;

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 5 / 9

https://doi.org/10.1371/journal.pcbi.1010705

however, the command line interface can be written in any language and submitted to the

package manager for that language (e.g., RubyGem for Ruby, Cargo for Rust, CPAN for Perl).

For workflows-as-applications, submitting to a package manager is especially important as

they may require multiple dependencies such as the workflow manager, a command line inter-

face library, and a library to read and write the configuration files. Cross-platform support is

also very beneficial but requires careful evaluation across the supported platforms and operat-

ing systems. There are many guides available for adding a tool to a package manager reposi-

tory, and tutorials are usually available in official documentation such as for Python

(packaging.python.org) and Conda (docs.conda.io/). For convenience, our Python-based

templates generate files to facilitate building and submitting packages to both PyPI and

Bioconda.

Rule 6: Isolate environments and containers for individual steps

Workflows can have many dependencies, and many dependencies increase the chances of con-

flicts between them. To minimise conflicts and ease reproducibility and maintenance, work-

flow managers can generate isolated Conda environments or Singularity containers for

individual tools and steps, rather than having them already installed. An added advantage of

this is that adding the tool to the package manager is easier as it greatly reduces the number of

dependencies that must be shipped with the tool. This feature is easy to implement in both

Snakemake and Nextflow. In our templates, we include command line options for utilising

Conda and some sensible defaults for the Conda settings.

Snakefile example
rule prinseq:
conda: "../envs/prinseqpp.yaml"

prinseq.yaml
name: prinseq
channels:
- conda-forge
- bioconda
- defaults

dependencies:
- prinseq-plus-plus=1.2.4

// Nextflow example
process prinseq {
conda "bioconda::prinseq-plus-plus=1.2.4"

}

Rule 7: Clearly identify software environment and database

locations

When creating software environments, many workflow managers will save these within sub-

folders in the working directory. This facilitates reproducibility by keeping everything within a

single subdirectory. As a result, every new analysis will generate a whole new set of environ-

ment files, which can be wasteful, especially if there are limits on the number of files and fold-

ers that can be created on a HPC cluster. Likewise, users may want to specify the installation

locations, especially if databases or environments will take up a considerable amount of disk

space. Having centralised locations for your environments and databases and allowing these

locations to be customised by the user can alleviate this issue. Caution is advised, however, as

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 6 / 9

http://packaging.python.org
http://docs.conda.io/
https://doi.org/10.1371/journal.pcbi.1010705

specifying a location outside of the working or installation directories may have unforeseen

consequences, such as files being moved or deleted. As such, many users will prefer to keep

environments and databases in the working directory. In our templates, we use the installation

directory of the command line tool as the default for both conda environments and databases

as this represents the safest centralised location for these files, but users can specify the working

directory if they prefer.

Rule 8: Include a simple test dataset

After installing a new command line tool, users will want a way to quickly and easily verify

that a command line tool is working correctly. Often, developers will have a tiny dataset on

hand that was used for testing during development. This can be added as an inbuilt test. Add-

ing a function to the launcher can be something as simple as having a “test” argument that

updates the input files with the test dataset and then launches the workflow manager like nor-

mal. You can even run an md5 checksum on the output files to confirm that the expected

results are generated. Another benefit is that this test dataset example can be combined with

information to illustrate what the user can expect from the pipeline’s output. While this is not

a replacement for unit testing, it is a useful feature to quickly check for issues during develop-

ment, and users will be grateful for a quick and easy way to test their installations.

% my_tool test
Running the test dataset

Rule 9: Follow conventions for HPC cluster support with profiles

Many analyses require lots of computation, which means HPC clusters and schedulers. Work-

flow managers can submit jobs to a scheduler, usually via a workflow profile. A profile differs

from a configuration file in that the latter contains settings used in the analysis, whereas a pro-

file contains workflow manager settings. Profiles are a convenient way of running workflow

managers on an HPC scheduler. You can also use profiles to specify a set of sensible defaults

for the workflow manager, rather than passing them as command line arguments. While pro-

files can be difficult to set up, there are official examples and templates for running workflow

managers across different schedulers (Snakemake: github.com/snakemake-profiles/doc; Next-

flow: nf-co.re/docs/usage/tutorials/step_by_step_institutional_profile). The profiles map the

resource declarations—such as CPUs, runtime, and memory—in the workflow scripts with the

required settings for the HPC’s scheduler. As such, you should ensure your pipeline is compat-

ible with any official or example profiles by using conventional names for declaring resources.

You then only need to have your tool optionally accept a declaration for a profile to allow sup-

port for both running locally and on an HPC cluster.

run locally
% my_tool run --threads 8. . .

run on a cluster
% my_tool run --profile slurm. . .

Rule 10: Encourage interaction with the workflow manager

You should set some sensible default command line arguments for the workflow manager to

make running your tool as easy as possible for all users. However, more experienced users may

want to pass their own command line options to the workflow manager, and you should let

them do so. In our examples, the launcher achieves this by simply forwarding any unrecog-

nised options to Snakemake or Nextflow. This includes bareword arguments that can be used

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 7 / 9

http://github.com/snakemake-profiles/doc
http://nf-co.re/docs/usage/tutorials/step_by_step_institutional_profile
https://doi.org/10.1371/journal.pcbi.1010705

to specify alternative output files to run specific parts of a workflow (see Rule 3) and is very

easy to implement with Python’s Click command line interface. If you are using argparse,

you can instead explicitly forward workflow arguments. Snakemake and Nextflow have many

command line options and users should be encouraged to investigate these options for their

situations.

implicitly pass workflow commands (Python Click)
% my_tool run. . . --dry-run
Snakemake command:
snakemake. . . --dry-run

explicitly pass workflow commands (Python argparse)
% my_tool run. . . –-next-arg=-with-docker
Nextflow command:
nextflow run. . . -with-docker

Conclusions

Building workflows-as-applications is beneficial to both developers and end users. These ten

simple rules will help address many problems encountered when developing command line

tools that are built upon workflow managers and will create a better user experience and a bet-

ter developer–user relationship. The templates will save even more time in this process as well

as offering complete working examples of these ten simple rules for both Snakemake and

Nextflow.

Acknowledgments

The support provided by Flinders University for HPC research resources is acknowledged.

The content is solely the responsibility of the authors and does not necessarily represent the

official views of the NIH.

References
1. Wratten L, Wilm A, Göke J. Reproducible, scalable, and shareable analysis pipelines with bioinformat-

ics workflow managers. Nat Methods. 2021; 18:1161–1168. https://doi.org/10.1038/s41592-021-

01254-9 PMID: 34556866

2. Reiter T, Brooks PT, Irber L, Joslin SEK, Reid CM, Scott C, et al. Streamlining data-intensive biology

with workflow systems. Gigascience. 2021:10. https://doi.org/10.1093/gigascience/giaa140 PMID:

33438730

3. Perkel JM. Workflow systems turn raw data into scientific knowledge. Nature. 2019; 573:149–150.

https://doi.org/10.1038/d41586-019-02619-z PMID: 31477884

4. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012.

Available from: https://academic.oup.com/bioinformatics/article-abstract/28/19/2520/290322.

5. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nat Biotechnol. 2017; 35:316–319. https://doi.org/10.1038/nbt.3820

PMID: 28398311

6. Van der Auwera GA, O’Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra.

O’Reilly Media, Inc.; 2020.

7. Amstutz P, Crusoe MR, TijanićN, Chapman B, Chilton J, Heuer M, et al. Common workflow language,

v1. 0. 2016. Available from: https://www.research.manchester.ac.uk/portal/en/publications/common-

workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html

8. Jalili V, Afgan E, Gu Q, Clements D, Blankenberg D, Goecks J, et al. The Galaxy platform for accessi-

ble, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020; 48:

W395–W402. https://doi.org/10.1093/nar/gkaa434 PMID: 32479607

9. Welivita A, Perera I, Meedeniya D, Wickramarachchi A, Mallawaarachchi V. Managing Complex Work-

flows in Bioinformatics: An Interactive Toolkit With GPU Acceleration. IEEE Trans Nanobioscience.

2018; 17:199–208. https://doi.org/10.1109/TNB.2018.2837122 PMID: 29994533

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 8 / 9

https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
http://www.ncbi.nlm.nih.gov/pubmed/34556866
https://doi.org/10.1093/gigascience/giaa140
http://www.ncbi.nlm.nih.gov/pubmed/33438730
https://doi.org/10.1038/d41586-019-02619-z
http://www.ncbi.nlm.nih.gov/pubmed/31477884
https://academic.oup.com/bioinformatics/article-abstract/28/19/2520/290322
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html
https://doi.org/10.1093/nar/gkaa434
http://www.ncbi.nlm.nih.gov/pubmed/32479607
https://doi.org/10.1109/TNB.2018.2837122
http://www.ncbi.nlm.nih.gov/pubmed/29994533
https://doi.org/10.1371/journal.pcbi.1010705

10. Goodstadt L. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics. 2010;

26:2778–2779. https://doi.org/10.1093/bioinformatics/btq524 PMID: 20847218

11. Schettino EN. pydoit/doit: task management & automation tool (python). 2021. https://doi.org/10.5281/

zenodo.4892136

12. Weirich J. ruby/rake: A make-like build utility for Ruby. GitHub. Available from: https://github.com/ruby/

rake

13. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: a portable abstraction for data intensive computing

on clusters, clouds, and grids. Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow

Execution Engines and Technologies. New York, NY, USA: Association for Computing Machinery;

2012. p. 1–13.

14. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018. https://doi.org/

10.1038/sdata.2016.18 PMID: 26978244

15. Roach MJ, Beecroft S, Mihindukulasuriya K, Wang L, Lima LFO, Dinsdale EA, et al. Hecatomb: An

End-to-End Research Platform for Viral Metagenomics. bioRxiv. 2022; 2022.05.15.492003.

16. Roach M, Cantu A, Vieri MK, Cotten M, Kellam P, Phan M, et al. No Evidence Known Viruses Play a

Role in the Pathogenesis of Onchocerciasis-Associated Epilepsy. An Explorative Metagenomic Case-

Control Study. Pathogens. 2021:10. https://doi.org/10.3390/pathogens10070787 PMID: 34206564

17. Kieser S, Brown J, Zdobnov EM, Trajkovski M, McCue LA. ATLAS: a Snakemake workflow for assem-

bly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics. 2020;

21:257. https://doi.org/10.1186/s12859-020-03585-4 PMID: 32571209

18. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-

classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021; 9:37.

https://doi.org/10.1186/s40168-020-00990-y PMID: 33522966

19. Brown CT, Moritz D, O’Brien MP, Reidl F, Reiter T, Sullivan BD. Exploring neighborhoods in large meta-

genome assembly graphs using spacegraphcats reveals hidden sequence diversity. Genome Biol.

2020; 21:164. https://doi.org/10.1186/s13059-020-02066-4 PMID: 32631445

20. Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. BlobToolKit—Interactive Quality Assessment of

Genome Assemblies. 2020; G3(10):1361–1374. https://doi.org/10.1534/g3.119.400908 PMID:

32071071

21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic

genome annotation pipeline. Nucleic Acids Res. 2016; 44:6614–6624. https://doi.org/10.1093/nar/

gkw569 PMID: 27342282

22. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-

read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017; 27:722–736.

https://doi.org/10.1101/gr.215087.116 PMID: 28298431

23. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome

assembly with single-molecule real-time sequencing. Nat Methods. 2016; 13:1050–1054. https://doi.

org/10.1038/nmeth.4035 PMID: 27749838

24. Ten ST. recommendations for creating usable bioinformatics command line software. Gigascience.

2013; 2:15.

25. Taschuk M, Wilson G. Ten simple rules for making research software more robust. PLoS Comput Biol.

2017; 13:e1005412. https://doi.org/10.1371/journal.pcbi.1005412 PMID: 28407023

26. Jiménez RC, Kuzak M, Alhamdoosh M, Barker M. Four simple recommendations to encourage best

practices in research software. F1000Res. 2017. https://doi.org/10.12688/f1000research.11407.1

PMID: 28751965

27. Brack P, Crowther P, Soiland-Reyes S, Owen S, Lowe D, Williams AR, et al. Ten simple rules for mak-

ing a software tool workflow-ready. PLoS Comput Biol. 2022; 18:e1009823. https://doi.org/10.1371/

journal.pcbi.1009823 PMID: 35324885

28. Cookiecutter: A command-line utility that creates projects from cookiecutter project templates. GitHub.

Available from: https://github.com/cookiecutter/cookiecutter

29. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable

and comprehensive software distribution for the life sciences. Nat Methods. 2018; 15:475–476. https://

doi.org/10.1038/s41592-018-0046-7 PMID: 29967506

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010705 December 15, 2022 9 / 9

https://doi.org/10.1093/bioinformatics/btq524
http://www.ncbi.nlm.nih.gov/pubmed/20847218
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://github.com/ruby/rake
https://github.com/ruby/rake
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.3390/pathogens10070787
http://www.ncbi.nlm.nih.gov/pubmed/34206564
https://doi.org/10.1186/s12859-020-03585-4
http://www.ncbi.nlm.nih.gov/pubmed/32571209
https://doi.org/10.1186/s40168-020-00990-y
http://www.ncbi.nlm.nih.gov/pubmed/33522966
https://doi.org/10.1186/s13059-020-02066-4
http://www.ncbi.nlm.nih.gov/pubmed/32631445
https://doi.org/10.1534/g3.119.400908
http://www.ncbi.nlm.nih.gov/pubmed/32071071
https://doi.org/10.1093/nar/gkw569
https://doi.org/10.1093/nar/gkw569
http://www.ncbi.nlm.nih.gov/pubmed/27342282
https://doi.org/10.1101/gr.215087.116
http://www.ncbi.nlm.nih.gov/pubmed/28298431
https://doi.org/10.1038/nmeth.4035
https://doi.org/10.1038/nmeth.4035
http://www.ncbi.nlm.nih.gov/pubmed/27749838
https://doi.org/10.1371/journal.pcbi.1005412
http://www.ncbi.nlm.nih.gov/pubmed/28407023
https://doi.org/10.12688/f1000research.11407.1
http://www.ncbi.nlm.nih.gov/pubmed/28751965
https://doi.org/10.1371/journal.pcbi.1009823
https://doi.org/10.1371/journal.pcbi.1009823
http://www.ncbi.nlm.nih.gov/pubmed/35324885
https://github.com/cookiecutter/cookiecutter
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/10.1371/journal.pcbi.1010705

