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IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Insect-borne diseases transmitted by mosquitoes, such as malaria, dengue, Zika, and lymphatic

filariasis, remain among the most prevalent infectious diseases worldwide [1]. For example,

the incidence of dengue infection has increased significantly in recent decades to more than

390 million cases per year, of which 96 million have clinical manifestations [2]. At the same

time, the remarkable progress in malaria control programs has now staggered, and, in 2021,

Plasmodium falciparum malaria incidence increased to more than 600,000 deaths [3]. While

the deployment of insecticide-based strategies dramatically reduced the toll of insect-borne

diseases in several regions, it resulted in widespread insecticide resistance in natural popula-

tions [4]. Thus, the development of new strategies to reduce disease transmission is greatly

needed.

The immune response of an insect vector against a pathogen is a major determinant of vec-

tor competence, defined as the ability of a vector to transmit disease. Insect immunity is regu-

lated by several different signaling pathways such as the JNK, JAK-STAT, Toll, IMD, and

RNAi, which activate final effectors that limit pathogen development and replication [5,6].

Thus, immune priming and other mechanisms of immune memory that result in long-term

enhancement of mosquito immunity have gained attention as important mechanisms to

reduce disease transmission [7]. Here, we review recent discoveries on the molecular mecha-

nisms mediating insect immune priming and its possible role in modulating the transmission

of vector-borne diseases.

Insects rely on an innate immune system that can activate a

priming response

Like other invertebrates, insect defenses rely on their innate immune system, which shares

some conserved features with that of vertebrates [8]. For decades, insects were thought to lack

the ability to “learn” from previous exposure to pathogens because they do not have a classic

adaptive immune system. However, this view has now been challenged by several studies dem-

onstrating that insects can enhance their immune competence by activating a priming

response. Immune priming has been defined as a functional state in which cells undergo long-

lasting changes that enhance their response to a subsequent infection [9]. One of the first

descriptions of innate immune priming in insects was in the cockroach Periplaneta americana
[10] where the authors showed that immunization with killed Pseudomonas aeruginosa pro-

tected against infection with live bacteria. Similar events were later reported in several other

insects (Table 1) [11–15], and in some cases, immune enhancement was shown to last for
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Table 1. Previous reports of insect immune memory have identified evidence for specific, nonspecific, transgenerational, and long-term immune memory depend-

ing on the insect and pathogen model.

Reference Invertebrate Species Pathogen Specific

Memory

Nonspecific

Memory

Transgenerational

Memory

Memory Across

Life Stages

[27] Aedes aegypti DENV Yes No No Yes

[24] Aedes aegypti Escherichia coli Yes No No Yes

[70] Anabrus simplex Metarhizium acridum Yes No No No

[71] Anopheles albimanus Plasmodium berghei No Yes No No

[26] Anopheles gambiae Escherichia coli Yes No No No

[37] Anopheles gambiae Plasmodium berghei No Yes No No

[72] Anopheles gambiae Escherichia coli, Enterobacter sp. and

Staphylococcus aureus
Yes Yes No Yes

[31] Apis mellifera Paenibacillus larvae Yes No Yes No

[15] Bombus terrestris Pseudomonas fluorescens, Paenibacillus alvei
and Paenibacillus larvae

Yes No No No

[14] Bombus terrestris Crithidia bombi No Yes Yes No

[14] Bombus terrestris Arthrobacter globiformis Yes No Yes No

[73] Bombus terrestris Arthrobacter globiformis No Yes Yes No

[18] Bombyx mori Photorhabdus luminescens Yes No No No

[74] Caenorhabditis elegans Pseudomonas aeruginosa Yes No No No

[28] Daphnia magna Pasteuria ramosa Yes No Yes No

[13] Drosophila melanogaster Streptococcus pneumoniae Yes No No No

[16] Drosophila melanogaster Sindbis virus Yes No No No

[35] Drosophila melanogaster Drosophila C virus Yes No No Yes

[32] Drosophila melanogaster,
Aedes aegypti

Sindbis virus, Drosophila C virus, cricket

paralysis virus, flock house virus

Yes No Yes No

[11] Galleria mellonella Photorhabdus luminescens Yes No No No

[20] Galleria mellonella Photorhabdus luminescens No Yes No No

[25] Gryllus campestris Serratia marcescens (LPS) Yes No No Yes

[23] Haliotis diversicolor Vibrio harveyi Yes No No No

[75] Litopenaeus vannamei Vibrio alginolyticus and Vibrio harveyi Yes Yes No No

[76] Litopenaeus vannamei Bacillus subtilis No Yes No No

[21] Manduca sexta Escherichia coli No Yes No No

[77] Manduca sexta Micrococcus luteus Yes No Yes No

[10] Periplaneta americana Pseudomonas aeruginosa Yes Yes No No

[30] Plodia interpunctella Plodia interpunctella granulosis virus Yes No Yes No

[78] Drosophila melanogaster Pseudomonas aeruginosa Yes No No No

[12] Tenebrio molitor LPS No Yes No No

[79] Tenebrio molitor Staphylococcus aureus, Bacillus thuringiensis,
Escherichia coli and Serratia entomophila

Yes No Yes No

[80] Tenebrio molitor LPS (Escherichia coli) Yes No Yes No

[81] Tenebrio molitor Arthrobacter globiformis, Bacillus subtilis,
Escherichia coli and Serratia entomophila

No Yes Yes No

[29] Tenebrio molitor Escherichia coli (LPS) Yes No Yes No

[17] Tribolium castaneum Bacillus thuringiensis Yes No No No

[82] Tribolium castaneum Bacillus thuringiensis and Escherichia coli Yes Yes Yes No

[19] Tribolium castaneum Escherichia coli, Bacillus thuringiensis
thuringiensis and Bacillus subtilis

Yes No No No

[83] Tribolium castaneum Bacillus thuringiensis No Yes Yes Yes

[84] Tribolium castaneum. Bacillus thuringiensis Yes No No No

[85] Tribolium confusum Gregarina minuta Yes No No Yes

https://doi.org/10.1371/journal.ppat.1010939.t001
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weeks [12]. For example, in P. americana, protection against P. aeruginosa was observed up to

14 days after priming [10], and a sublethal dose of Streptococcus pneumoniae also protected

Drosophila flies for 14 days [13]. In these systems, however, it was not possible to demonstrate

whether the observed protection was due to a long-lasting initial immune response or to the

ability to mount a stronger immune response to the second challenge.

Depending on the model, the effect of priming can be pathogen specific [13,15–19] or non-

specific [20–23]. In P. americana, the long-lasting (14 days) protection against P. aeruginosa
after priming with killed P. aeruginosa was reduced to 3 days when insects were challenged with

a different bacterial species [10]. Priming can also extend across different life stages. For exam-

ple, priming larvae can enhance adult immunity [24–27], and even transgenerational immune

priming (TGIP) has been described in several models [28–32]. Interestingly, stress such as that

inflicted by tissue injury [22], larval competition [33], or nutritional restriction [34] can also

result in priming-like phenotypes, suggesting that understanding the mechanisms of these

responses might provide further insights into the molecular regulators of immune priming. In

summary, a plethora of evidence (Table 1) has confirmed that insect immunity shares memory-

like components. However, the molecular mechanisms and immune pathways underlying these

responses have only been established in a very limited number of model systems.

Antiviral immune priming in Drosophila

Drosophila hemocytes enhance antiviral immunity in adult flies by taking up dsRNA and gen-

erating viral DNA (vDNA) that serves as a template to synthesize secondary viral siRNAs

(vsRNA), which are delivered to other tissues by exosome-like vesicles [16]. Oral infection of

fly larvae with Drosophila C virus (DCV) enhanced survival to a lethal challenge with the same

virus as adults, although there was no difference in viral load, suggesting that previous expo-

sure to the virus enhanced tolerance to infection in adult flies [35]. A strong TGIP was trig-

gered when adult female flies were infected with positive single-strand RNA viruses. This

enhanced antiviral immunity was passed to the offspring for up to five generations in a

sequence-specific and RNA-dependent manner. Interestingly, TGIP was not mediated by the

RNAi pathway [32]. Strong TGIP was also documented in the progeny of Aedes aegypti female

mosquitoes infected with the chikungunya virus [32]. vDNA was suggested to be an important

component of the antiviral immune memory, as it has been isolated in adult flies infected dur-

ing larval stages [35] and in the progeny of infected adult females [32]. However, the mecha-

nism of vDNA transfer and amplification and the cells involved remain to be determined.

Plasmodium infection primes the Anopheles immune system

Plasmodium-induced enhanced immunity in Anopheles is a well-characterized model that pro-

vides some insights into the mechanism of insect priming. Briefly, Plasmodium infection

results in a hemocyte-dependent state of enhanced immunity to subsequent infections [36].

Early work established that an increase in the proportion of circulating granulocytes—

dynamic phagocytic hemocytes—mediates antiplasmodial immune memory [37]. This

response is permanent, and the gut microbiota is required both to establish and recall the

priming response, demonstrating that it is not due to a long-lasting immune response to the

initial infection [37]. Later studies revealed remarkable coordination of insect immunity

involving several different tissues and cell types, with eicosanoid lipids (prostaglandins and

lipoxins) as key systemic signaling molecules.

Plasmodium infection induces the expression of two heme-peroxidases (HPX)—HPX7 and

HPX8—which mediate prostaglandin E2 (PGE2) synthesis by the midgut, when the micro-

biota comes in contact with midgut cells during ookinete midgut invasion (Fig 1A) [38]. This
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Fig 1. Immune priming in An. gambiae mosquitoes. (A) Plasmodium infection induces the expression HPX7 and

HPX8 that mediate PGE2 synthesis by the midgut following microbiota contact with epithelial cells during ookinete
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systemic PGE2 release triggers the production of a hemocyte differentiation factor (HDF), that

promotes hemocyte differentiation into granulocytes. HDF is a complex of lipoxin A4 (LXA4)

bound to Evokin, a lipid carrier of the lipocalin family [39]. More recently, LXA4 synthesis

was shown to require the activity of a third HPX—double-peroxidase (DBLOX)—produced by

oenocytes, a subpopulation of fat body cells that proliferates in primed mosquitoes (Fig 1A)

[40]. DBLOX and Evokin expression remain high after infection. The observation that a single

systemic injection of PGE2 also triggers a long-lasting increase in DBLOX expression, and

HDF release, suggested that epigenetic factors could be important mediators of immune prim-

ing. A functional screening in which all mosquito histone acetyltransferase (HATs) were

silenced revealed that the HAT Tip60 is, indeed, essential for priming [40].

Ookinete invasion causes irreversible damage and invaded cells activate a strong nitration

response as they undergo apoptosis [41,42]. Mosquito hemocytes are attracted to the basal sur-

face of the midgut by PGE2, and undergo apoptosis when they come in contact with a nitrated

surface, releasing microvesicles that promote mosquito complement-mediated elimination of

ookinetes [43]. A mosquito hemocyte atlas was recently established using single-cell transcrip-

tomics, and it identified new subpopulations of granulocytes that express specific markers

[44]. Studies are underway to define the role of different hemocyte subpopulations in antiplas-

modial responses and how priming affects hemocyte differentiation.

Trained immunity as a memory feature of innate immunity

Recently, the concept of immune training (or trained immunity) has emerged as a key compo-

nent of vertebrate innate immunity [45]. Like immune priming, trained immunity enhances

the immune response to a second challenge. In trained immunity, transcription of immune

effectors returns to a basal state after the primary challenge, but the final effector cells respond

better to subsequent infections [9].

Immune training of monocytes by fungi infection comprises one of the best-studied models

of trained immunity. Briefly, the presentation of fungal β-glucans induces an epigenetic repro-

gramming that increases cytokine release in response to a second exposure [46]. Similar to

immune priming models, immune training lacks specificity, as exposure to fungal molecules

also results in a protection against bacterial infections [47]. Similarly, bacille Calmette-Guérin

(BCG) vaccines offer nonspecific protection against several different infections [48], and a role

of BCG vaccine-induced trained immunity against SARS-COV-2 has been proposed [49]. At

the molecular level, trained immunity is characterized by a shift in energy metabolism, includ-

ing an increased rate of glycolysis. This metabolic shift is dependent on the mevalonate-

induced TOR-HIF1α pathway [47,50]. Accordingly, inhibition of the TOR pathway during in

vivo Candidamice infection prevented immune training and resulted in increased mortality

during a subsequent immune challenge [47].

invasion. The release of PGE2 triggers the production of the HDF by DBLOX-positive fat body oenocytes that

proliferate following a Tip60-dependent mechanism. At the hemolymph, HDF induces the proliferation of circulating

granulocytes, which are attracted to the midgut during reinfection following the PGE2 signal. Granulocyte release

microvesicles (HdMv) at the site of recruitment, which mediates complement-like activation and Plasmodium
elimination. Thus, the intensity of the mosquito immune response to Plasmodium can be enhanced by a previous

infection. (B) Upon PGE2-dependent priming, the production of HDF in response to ookinete midgut invasion is

constitutively enhanced following the first challenge, and this induces a constitutive increase in the proportion of

circulating granulocytes. After the initial challenge, hemocyte association with the mosquito midgut goes back to basal

levels. However, reprogramming of hemocytes during this first exposure results in enhanced hemocyte recruitment

and a stronger immune response to a subsequent infection [37–40,43]. DBLOXAU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrect:, double-peroxidase; FB, fat body; HDF,

hemocyte differentiation factor; HdMv, hemocyte-derived microvesicle; PGE2, prostaglandin E2.

https://doi.org/10.1371/journal.ppat.1010939.g001
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While the distinctive features of trained immunity are yet to be better described in insect

models, insects also undergo some metabolic shifts following infection, like those in immune-

trained vertebrate cells. For example, Drosophila macrophages switch to aerobic glycolysis

when mounting an antibacterial defense [51]. Furthermore, this metabolic switch is also

HIF1α dependent and is required for the survival of infected flies [51]. Interestingly, while

HDF production and the proportion of circulating granulocytes remain constitutively elevated

following an initial Plasmodium infection (Fig 1B), the ability of hemocytes to mount a more

effective response to a second Plasmodium challenge is dependent on the presence of the bac-

terial gut microbiota both at the time when priming response is established and to elicit a

stronger response to the second challenge [37]. Overall, this indicates that hemocytes do not

remain constantly activated after the initial challenge, but rather mount a stronger response to

a second ookinete midgut invasion in the presence of the gut microbiota (Fig 1B). This is in

agreement with the observation that hemocyte mRNAs (TEP1, LRIM1) associated with the

midgut went back to basal levels 7 days after the first infection, before the second challenge,

but reach reached very high levels 24 hours after the second challenge, indicative of enhanced

hemocyte recruitment to the midgut surface [37].

Can immune memory impact vector-borne disease transmission?

Despite its remarkable plasticity, activation of vector immunity often restricts infection under

tolerable levels, instead of completely eliminating the pathogen [52]. Nevertheless, refractory

or quasi-refractory populations are observed worldwide [53], and experimental infections of

field-caught mosquitoes reveal remarkable variability between individuals. While stochastic

variations [54] and genetic components [55,56] are important factors driving this heterogene-

ity, differences in individual life histories also shape host immunological status [57–60].

Immune priming, immune tolerance, and immune training are likely to be important mod-

ulators of individual vector competence. Recently, features of trained immunity were

described in nonimmune vertebrate cells, such as epithelial and mesenchymal cells [61], and

the role of the gut microbiota has been proposed [62]. Interestingly, the vector gut microbiota

is also a major driver of mosquito immunity [63]. It remains to be established whether insect

immune priming and trained immunity share some regulatory signaling pathways, such as

those activated by the gut microbiota.

Thus, priming the immune system of insect vectors is a potential strategy to reduce disease

transmission. Manipulation of larvae would be an interesting strategy to reduce vectorial

capacity, as infection or immune challenge of larvae, nutritional manipulation, and intraspe-

cific competition have been shown to enhance immunity in adult stages [26,27,64] and logis-

tics to target larval breeding sites are well established [65–67]. While the epigenetic regulation

of immunometabolism is an important factor driving susceptibility in vertebrates (and a target

for therapeutics), it has only recently started to be investigated in models of disease vectors

[40,68,69]. Further identification of molecular markers will make it possible to establish the

frequency and intensity of such events in natural populations.
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