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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Established guidelines describe minimum requirements for reporting algorithms in health-

care; it is equally important to objectify the characteristics of ideal algorithms that confer

maximum potential benefits to patients, clinicians, and investigators. We propose a frame-

work for ideal algorithms, including 6 desiderata: explainable (convey the relative impor-

tance of features in determining outputs), dynamic (capture temporal changes in physiologic

signals and clinical events), precise (use high-resolution, multimodal data and aptly complex

architecture), autonomous (learn with minimal supervision and execute without human

input), fair (evaluate and mitigate implicit bias and social inequity), and reproducible (vali-

dated externally and prospectively and shared with academic communities). We present an

ideal algorithms checklist and apply it to highly cited algorithms. Strategies and tools such

as the predictive, descriptive, relevant (PAU : PleasenotethatforPDRðabbreviationÞ; bothpredictive; descriptive; andrelativeandpredictive; descriptive; relevantdefinitionshavebeenusedinconsistentlywithinthearticle:Sopredictive; descriptive; relevanthasbeenusedthroughoutforconsistency:Pleasecheckandcorrectifnecessary:DR) framework, the Standard Protocol Items: Rec-

ommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) extension, sparse

regression methods, and minimizing concept drift can help healthcare algorithms achieve

these objectives, toward ideal algorithms in healthcare.

Introduction

The breadth and complexity of human disease confer unique challenges in clinical decision-

making. The 10th revision of the International Statistical Classification of Diseases and Related
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Health Problems (ICD) classification system includes approximately 68,000 diagnostic codes.

Patients can have nearly any combination of these diagnoses managed with nearly any combi-

nation of relevant therapies whose efficacy hinges on underlying behavioral, social, and genetic

determinants of health. Patients and clinicians face shared clinical decision-making tasks while

under time constraints and high cognitive loads from high volumes of information [1,2]. The

average person generates more than 1 million gigabytes of healthcare data during their lifetime

or approximately 300 million books; these massive volumes of data far exceed human cognitive

capacities, which allow for approximately 5 to 10 facts per decision [3,4]. Abnormal or unex-

pected data are typically applied to hypothetical-deductive reasoning and heuristic processes

that are highly variable and error prone; when collected data are within normal limits, they are

often discarded to reduce cognitive load [5,6]. Unsurprisingly, clinical decision-making errors

are common and associated with mortality and morbidity [7,8].

By contrast, high-complexity and high-volume data can be parsed by machine learning

applications with relative ease. Published algorithms supporting clinical decisions have become

ubiquitous. Hundreds of retrospective studies are classified as artificial intelligence (AAU : PleasenotethatAIhasbeendefinedasartificialintelligenceinthesentenceHundredsofretrospectivestudiesare::::Pleasecheckandcorrectifnecessary:I) clini-

cal trials, but few are methodologically rigorous [9,10]. Experts have described important com-

ponents of algorithm-based and AI-enabled decision support and reporting guidelines; the

minimum information about clinical artificial intelligence modeling (MI-CLAIM) checklist,

Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence

(SPIRIT-AI) extension, and Consolidated Standards of Reporting Trials-Artificial Intelligence

(CONSORT-AI) guidelines facilitate consistent reporting, interpretation, and validation of AI

applications by establishing minimum requirements [11–15]. We believe that it is equally

important to objectify the characteristics of ideal algorithms that confer maximum potential

benefits to patients, clinicians, and investigators. To this end, we propose a framework for

ideal algorithms consisting of 6 desiderata. This framework is supported by a checklist, which

we apply to prominent healthcare algorithms.

The ideal algorithm framework

Ideal algorithms are explainable, dynamic, precise, autonomous, fair, and reproducible, as

illustrated in Fig 1. These desiderata are independent. Therefore, the degree to which an algo-

rithm achieves maximum potential benefits to patients, clinicians, and investigators can be

conceptualized as a continuum ranging from 0 desiderata (least ideal) to all 6 (most ideal).

Desiderata may have unique applications for different algorithms types; our framework is

designed to apply broadly to any algorithm type using objective criteria. A checklist of criteria

for ideal algorithms is provided in Table 1. Each desideratum is evaluated as being met, par-

tially met, not met, or not applicable by 1 or more objective criteria, which are each evaluated

as being met, not met, or not applicable.

Ideal algorithms are explainable

Explainable algorithms convey the relative importance of features in determining outputs.

Informed patients, diligent clinicians, and scrupulous investigators want to know how algo-

rithm predictions are made. We recommend the predictive, descriptive, relevant (PDR) frame-

work for achieving optimal explainability. PDR standardizes discussions regarding machine

learning explanations according to predictive accuracy, descriptive accuracy (i.e., the ability of

explainability mechanisms to describe objectively what the model has learned), and relevancy

as judged by the algorithm’s target human audience for its ability to provide insight into a cho-

sen problem [16].

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 2 / 16

Disorders and Stroke (NIH/NINDS). PR was

supported by National Science Foundation CAREER

award 1750192, 1R01EB029699 and

1R21EB027344 from the National Institute of

Biomedical Imaging and Bioengineering (NIH/

NIBIB), R01GM-110240 from the National Institute

of General Medical Science (NIH/NIGMS),

1R01NS120924 from the National Institute of

Neurological Disorders and Stroke (NIH/NINDS),

and by R01 DK121730 from the National Institute

of Diabetes and Digestive and Kidney Diseases

(NIH/NIDDK). A.B. was supported R01 GM110240

from the National Institute of General Medical

Sciences (NIH/NIGMS), R01 EB029699 and R21

EB027344 from the National Institute of Biomedical

Imaging and Bioengineering (NIH/NIBIB), R01

NS120924 from the National Institute of

Neurological Disorders and Stroke (NIH/NINDS),

and by R01 DK121730 from the National Institute

of Diabetes and Digestive and Kidney Diseases

(NIH/NIDDK). The content is solely the

responsibility of the authors and does not

necessarily represent the official views of the

National Institutes of Health. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pdig.0000006


Algorithm predictive accuracy is commonly described and easily interpreted by most clini-

cians and scientists. Yet, one underappreciated aspect of predictive accuracy can affect the

explainability of model outputs: In some cases, prediction error varies substantially by class.

When applying an algorithm to a patient in a class with disproportionately high prediction

error, one should have less confidence that model outputs are accurate and deemphasize algo-

rithm outputs in the decision-making process. Descriptive accuracy, or objective indicators of

what the model learned (e.g., coefficients in a regression model or weights in a neural net-

work), is less commonly described and is difficult to achieve with complex, “black box” models

such as deep neural networks. By contrast, the odds ratios produced by simple logistic regres-

sion are relatively easy to interpret, allowing clinicians to understand and mentally simulate

the model’s process for generating predictions. Despite the greater descriptive accuracy of sim-

ple models, complex models are often needed to solve complex, nonlinear problems for which

simple models suffer from poor predictive accuracy. Therefore, algorithm explainability meth-

ods have focused on complex machine and deep learning models. We note, though, recent

studies showing no great superiority of deep learning over regression in this field of classifying

illness severity of individual patients using readily available clinical data [15,17]. Descriptive

accuracy can be improved by choosing a simple, highly explainable model or performing post

Fig 1. Ideal algorithms in healthcare have 6 desirable characteristics: explainable, dynamic, precise, autonomous, fair, and

reproducible.

https://doi.org/10.1371/journal.pdig.0000006.g001
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hoc analyses on a trained, complex model to understand what relationships the model has

learned [18]. Finally, the PDR framework holds that relevancy is context specific, i.e., the use-

fulness of model explainability mechanisms depends on criteria that are unique to different

people groups. Therefore, relevancy should be graded by the intended human audience and

their intended use of predictions generated by the model.

Examination of relevancy can resolve trade-offs between predictive and descriptive accu-

racy [16]. Consider an algorithm that is predicting the risk for complications after surgery. To

target researchers who seek the greatest predictive accuracy, explainability mechanisms could

be used to optimize feature engineering. To target patients who are planning to undergo elec-

tive surgery, explainability mechanisms could be used to identify the most important modifi-

able risk factors for complications (i.e., modifiable predictors of wound infection could

include poor blood glucose control and ongoing tobacco use). Notably, the PDR framework

(intentionally) does not address causal inference or methods for determining the degree to

which altering one variable changes another. In its purest form, explainability describes gen-

eral relationships and does not distinguish between causal and noncausal effects. Therefore,

Table 1. Checklist for ideal algorithms in healthcare.

Desiderata Criteria Yes Location No N/A

Explainable

Yesa

Partiallyb

Noc

N/Ad

Feature importance: conveys the relative importance of features in determining algorithm outputs

Descriptive accuracy: describes what the algorithm has learned (e.g., weights in a neural network)

Simulatability: clinicians can understand and mentally simulate the model’s process for generating predictions

Relevance: describes relevancy as judged by the algorithm’s target human audience

Dynamic

Yesa

Partiallyb

Noc

N/Ad

Temporality: captures temporal changes in physiologic signals and clinical events

Continuous monitoring: performance is reassessed at several time points, including the point at which performance is

expected to plateau

Precise

Yesa

Partiallyb

Noc

N/Ad

Data frequency: rate of data collection matches the rate of physiologic changes

Complexity: algorithm complexity matches the complexity of the prediction or classification task

Autonomous

Yesa

Partiallyb

Noc

N/Ad

Efficiency: the algorithm executes without the need for time-consuming, manual data entry by the end user (i.e., patient,

provider, or investigator)

Fair

Yesa

Partiallyb

Noc

N/Ad

Generalizability: algorithm is developed and validated across diverse patient demographics and practice settings

Selectivity: excludes features that lack pathophysiologic or linguistic association with outcomes, but may introduce bias

Objectivity: includes variables that are minimally influenced by clinician judgments (e.g., vital signs)

Reproducible

Yesa

Partiallyb

Noc

N/Ad

Generalizability: validated externally, prospectively

Collaboration: algorithm is shared with the research community

Compliance: fulfills SPIRIT-AI extension guidelines (if trial) and fulfills CONSORT-AI guidelines

aOverall adjudication is “Yes” when all criteria are either met or not applicable.
bOverall adjudication is “Partially” when some but not all criteria are either met or not applicable.
cOverall adjudication is “No” when no criteria are met.
dOverall adjudication is “N/A” when all criteria are not applicable.

CONSORT-AI, Consolidated Standards of Reporting Trials-Artificial Intelligence; N/A, not applicable; SPIRIT-AI, Standard Protocol Items: Recommendations for

Interventional Trials-Artificial Intelligence.

https://doi.org/10.1371/journal.pdig.0000006.t001
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PDR is a simple and effective framework for evaluating and discussing the full range of user-

specific machine learning interpretations without confusing explainability with causality.

Ideal algorithms are dynamic

Dynamic algorithms capture temporal changes in physiologic signals and clinical events via time

series or sequence modeling. When algorithms are intended to improve clinical trial design, statis-

tical adjustment, or patient enrollment strategies, static predictions at a single time point are ade-

quate. When algorithms are intended to augment real-time, clinical decision-making as

conditions evolve, the algorithm should make dynamic predictions using new data as it become

available. Dynamic algorithm predictions are useful because continuous manual recalculations

are burdensome for individual patients, caregivers, and clinicians, and the cognitive load imposed

by serial reassessments of continuously accumulating data is substantial. Potentially valuable

information is easily missed and underutilized for risk stratification and clinical decision-making,

as it often requires computational capacity beyond human ability [1,2]. Instead, humans tend to

rely on heuristics, or cognitive shortcuts, which can lead to bias, error, and preventable harm

[6,19]. By contrast, large volume electronic health record (EAU : PleasenotethatEHRhasbeendefinedaselectronichealthrecordinthesentenceBycontrast; largevolumeelectronichealthrecordðEHRÞdata::::Pleasecheckandcorrectifnecessary:HR) data are well suited to dynamic

predictive analytics that capture trends over time; physiologic time series data have been used to

predict mortality and specific conditions such as acute kidney injury [20–23].

Algorithm dynamicity is especially important when modeling conditions that change rap-

idly. For instance, intracranial and cerebral perfusion pressure can vacillate substantially after

traumatic brain injury. Delayed recognition of rapid changes in intracranial and cerebral per-

fusion pressure can worsen outcomes because brain ischemia is exquisitely time sensitive.

Classical traumatic brain injury prediction models only used static variables present on admis-

sion [24–26]. These models may be useful for research purposes, early prognostication, and

early resource use decisions, but they do not perform the critically important function of

updating predictions as new data become available. For example, an algorithm using 5-minute

median values of intracranial pressure, mean arterial pressure, cerebral perfusion pressure,

and Glasgow coma scale scores predicts 30-day mortality with approximately 84% discrimina-

tion 48 hours after admission [25]. Using 5-minute median values rather than continuous data

streams may be favorable for implementation in clinical settings, where data collection is fre-

quently interrupted.

Dynamic algorithms face challenges in evaluating performance over time and explainabil-

ity. In some cases, algorithms learn to predict which action a clinician will take next, rather

than physiologic events [27,28]. In addition, there are no standards for evaluating model per-

formance when predictions are made in a continuous or nearly continuous fashion. We sug-

gest evaluating standard model performance metrics at several predetermined, discrete time

points, including the point at which enough information has become available that calibration

is expected to plateau, achieving continuous monitoring of predictive performance. To opti-

mize explainability for dynamic algorithms, attention mechanisms can reveal periods during

which certain features make significant contributions to algorithm outputs [20,29]. For exam-

ple, the DeepSOFA algorithm uses time series measurements of the same input variables as the

sequential organ failure assessment (SOFA) score, passing those values through a recurrent

neural network with gated return and self-attention units. In 2 independent datasets of inten-

sive care unit (IAU : PleasenotethatICUhasbeendefinedasintensivecareunitinthesentenceIn2independentdatasetsofintensivecareunitðICUÞ::::Pleasecheckandcorrectifnecessary:CU) patients, DeepSOFA predicted in-hospital mortality with accuracy greater

than that of the traditional SOFA score [20]. Model explainability was promoted by generating

heatmaps that illustrate each variable’s relative contributions at each time step to the model’s

ultimate mortality prediction. Using time series measurements in dynamic algorithms relates

to the next desideratum of ideal algorithms: precision.
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Ideal algorithms are precise

Precise algorithms use data collection rates that are proportional to rates of physiologic

changes and machine learning techniques whose complexity matches the target outcome. Pre-

cision is important because human diseases are complex and nonlinear [30,31]. Simple, addi-

tive models often demonstrate poor predictive performance [32–34]. Three days after

colorectal surgery, a serum C-reactive protein level less than 172 mg/L has a 97% negative pre-

dictive value for the occurrence of anastomotic leak [34]. This finding may facilitate early dis-

charge home after major surgery. However, high C-reactive protein levels are nonspecific: As a

general marker of systemic inflammation, one would expect that C-reactive protein has a poor

positive predictive value, and it does (21%). To perform a complex task, such as differentiating

between an anastomotic leak and other pro-inflammatory postoperative complications, it is

potentially advantageous to incorporate high-resolution, multimodal patient data and machine

learning modeling [35–39].

For a given algorithm, the ideal rate of data collection should exceed by several fold the rate

of salient physiologic changes, similar to the manner in which Harry Nyquist noted that to rep-

resent a signal with fidelity, sampling should occur at twice the highest frequency of the signal

[40]. In many disease processes, this will require high-resolution data that are sampled at a fre-

quency that allows for early diagnosis, prevention, or treatment by capturing subtle but clini-

cally significant physiologic changes. Generally, longer intervals are more likely to miss critical

physiologic changes that occur between measurements [41–44]. For hospitalized patients, high-

frequency assessments are associated with greater accuracy in predicting decompensation. Sub-

tle signs of physiologic instability often occur hours before organ failure and cardiac arrest, rep-

resenting opportunities for prevention [45,46]. This is discordant with standard practices on

hospital wards, where vital signs are typically measured every 4 hours. Unsurprisingly, continu-

ous vital sign monitoring is associated with fewer rescue events, respiratory decompensation

events, unplanned ICU transfers, and ICU days, as well as shorter hospital length of stay

[47,48]. Yet, continuous monitoring can be expensive, can generate distracting false-positive

alarms, might impair patient comfort and mobility, and is not supported by a great deal of level

1 evidence, apart from heart rate characteristics monitoring for neonatal sepsis [49–54]. There-

fore, continuous monitoring is often reserved for high-risk patients that are most likely to mani-

fest time-sensitive clinically significant physiologic changes, for whom continuous data have a

proven ability to stand alone [55–60] and to add information to EHR data elements [36,59,61–

64] in predictive analytics. In designing algorithms, we suggest resampling data at intervals that

align with the expected velocity with which changes in physiologic signals lead to clinically sig-

nificant events, with sampling frequency equal to or greater than the Nyquist rate [40].

In many healthcare settings, highly granular data are routinely recorded from multiple

sources for clinical purposes. For example, clinical surveillance of critically ill patients often

includes not only vital sign and laboratory measurements but also assessments of mental sta-

tus, pain, respiratory mechanics, and mobility. Historically, these assessments are performed

and recorded by hospital staff in a subjective fashion. With improvements in sensor technolo-

gies and machine learning applications in healthcare, it has become feasible to automatically

capture and analyze data from ICU patients and environments tracked by accelerometers,

light sensors, sound sensors, and high-resolution cameras [65]. Wearable sensors can also cap-

ture meaningful, multimodal physiologic data from community-dwelling pAU : PleasenotethatasperPLOSstyle; thetermsubjectðsÞshouldnotbeusedforhumanpatientðsÞ:Hence; subjectshavebeenreplacedwithparticipantsinthesentenceWearablesensorscanalso::::Pleasecheckandcorrectifnecessary:articipants. Nota-

bly, high-resolution, multimodal data often suffer from high dimensionality, rendering simple

algorithms inaccurate.

Conversely, when algorithms have too many inputs relative to their application, generaliz-

ability is compromised due to overfitting. The optimal approach balances predictive accuracy

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 6 / 16

https://doi.org/10.1371/journal.pdig.0000006


and input complexity by using the fewest variables necessary to maintain high performance.

This can be accomplished with sparse regression methods [66]. Generating parsimonious

models, although harboring the potential to compromise predictive performance, has the addi-

tional advantage of improving the descriptive accuracy for input features, as described above

in the “Ideal algorithms are explainable” section.

Ideal algorithms are autonomous

Autonomous algorithms execute with minimal human input. Beyond the training and testing

autonomy shared by all unsupervised machine learning algorithms, autonomous algorithms in

healthcare can be implemented with minimal input by users. Manual data entry by the end

user imposes time constraints that hinder the clinical application of nonautonomous decision

support algorithms [67]. For dynamic models that capture temporal changes by frequently

resampling high-resolution data, the cost of manual data entry is even greater. Fortunately, the

widespread availability of high-volume EHR data and open-source machine learning code pro-

motes algorithm autonomy [68,69].

Autonomous algorithms have substantial potential to augment decision-making for clinical

scenarios in which many input features have complex associations with outcomes. Predicting

risk for complications after surgery is one such instance. Accurate predictions of postoperative

complications can influence patients’ decisions whether to undergo surgery, identify risk fac-

tors that are amenable to risk reduction strategies, and inform decisions regarding appropriate

postoperative triage destination and resource use. Regrettably, clinicians demonstrate variable

performance in predicting risk for postoperative complications, and surgeons frequently com-

mit judgment errors that confer preventable harm [70–72]. Several accurate predictive analytic

decision support algorithms have been developed and validated to augment clinical risk pre-

dictions, but most are hindered by time-consuming manual data entry requirements and lack

of integration with clinical workflow [67,73–77]. Yet, autonomous prediction of postoperative

complications is possible. One machine learning platform autonomously imports EHR input

data to predict 8 postoperative complications with area under the receiver operating character-

istic curve (AAU : PleasenotethatAUChasbeendefinedasareaunderthecurveinthesentenceOnemachinelearningplatform::::Pleasecheckandcorrectifnecessary:UC) 0.82 to 0.94, exhibiting accuracy greater than that of physicians [69,70].

Potential advantages of autonomy also apply to algorithm training. Supervised machine

learning algorithms use training data that are labeled by humans and then classifies or makes

predictions on new, unseen data; in unsupervised learning, algorithms generate their own

labels according to the structure and distribution of input data, discovering patterns and asso-

ciations. Deep learning models avoid time-intensive, handcrafted feature engineering by

autonomously learning feature representations from raw data. In addition to efficiency and

pragmatism, autonomous learning offers performance advantages, as has been demonstrated

in the gaming industry. “Go” has 32,490 possible first moves, precluding an exhaustive search

of all possible moves for each board configuration. Instead, a combination of deep and rein-

forcement learning can predict outcomes following sequences of actions and efficiently iden-

tify optimal moves. This approach was initially applied in learning 30 million positions and

instructions from a human Go expert, allowing the algorithm to build a decision policy net-

work. The program then played against itself, attempting to maximize the chance of beating

previous versions of its own decision-making policy. Next, a value network predicted the final

outcome of a game based on any board configuration. Finally, the policy and value networks

were combined, and an optimized search algorithm was used to select the next move for any

board configuration. This approach defeated the European Go champion 5 games to 0 [78].

Subsequently, a completely autonomous model was trained exclusively on self-play. This

model defeated the human input model 100 games to 0 [79]. For healthcare applications, it
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remains plausible that performance is greatest for completely autonomous learning

approaches for instances in which high-quality training data exist. Unfortunately, most health-

care data sources are compromised by a lack of granularity, generalizability, volume, or a com-

bination thereof.

Ideal algorithms are fair

Fair algorithms evaluate and mitigate implicit bias and social inequity. In theory, algorithms

use mathematical formulas and functions to produce objective outputs, offering a bulwark

against subjectivity with resultant bias and inequity. In practice, many algorithms are trained

on biased source data and produce biased outputs [80]. In healthcare, single-center source

data may disproportionately represent certain demographics. When these data are used for

algorithm training, that algorithm may perform poorly when applied to a patient that is

sparsely represented in the source data. Poor performance may be especially harmful when it

has directionality, i.e., the algorithm consistently overestimates or underestimates risk in a

manner that affects decision-making. For example, if a decision support tool incorporates the

observation that Black patients have increased risk for mortality after coronary artery bypass,

then model outputs could decrease the likelihood that Black patients will garner the benefits of

an indicated procedure [81,82]. To determine whether a demographic or socioeconomic factor

should be included in a prediction model, it is necessary to assess whether that factor has a

plausible or proven pathophysiologic association with the outcome of interest. To do so, we

recommend machine learning explainability mechanisms, causal inference, and clinical inter-

pretation of biologic plausibility. If this analysis reveals no evidence of a pathophysiologic asso-

ciation, then it is likely that the demographic or socioeconomic factor is an indicator of

suboptimal access to care, referral patterns, or systemic bias and should be excluded from the

algorithm.

Algorithm bias can be evaluated by assessing calibration across demographic and socioeco-

nomic variables. If an observed outcome matches algorithm-predicted probabilities for men

but not women, then the algorithm exhibits bias against women. This method was used to

evaluate racial bias in an algorithm that predicts healthcare needs [83]. The authors compared

observed versus predicted healthcare needs for primary care patients who self-identified as

Black versus White. When comparing Black and White patients with similar predicted risk,

Black patients had greater illness severity. The algorithm was designed to identify patients at or

above the 97th percentile of risk and allocate them to receive extra care. At the 97th percentile,

Black patients had 4.8 chronic illnesses, and White patients had 3.8 chronic illnesses

(p< 0.001). The likely mechanism for this discrepancy was the use of healthcare expenditures

as a proxy for health needs. If less money is spent on Black patients than on White patients

who have the same illness severity, then the algorithm will errantly learn that Black patients

have lesser health needs than White patients who have the same illness severity. Racial discrep-

ancies were eliminated by modifying the algorithm so that expenditures were not a proxy for

health needs.

Several other methods for promoting algorithm fairness have been described [4]. Models

should be reevaluated over time to determine whether temporal changes in study populations,

healthcare systems, and medical practices have affected relationships between features and

outcomes. This phenomenon, concept drift, undermines algorithm performance by several

mechanisms, including algorithm bias. During preprocessing, individual patient data can be

mapped to probability distributions that obfuscates information about membership in a pro-

tected subgroup (e.g., race, ethnicity, sex, gender, etc.) while retaining as much other informa-

tion about the patient as possible [84]. During postprocessing, the open-source What-If Tool
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allows interactive model testing under user-controlled hypothetical circumstances, which can

quantify the effects of different demographic and socioeconomic factors on model outputs

[85]. In addition, the What-If Tool can demonstrate whether model performance varies across

subgroups, which may be useful in determining whether the model should be applied for a

patient that is poorly represented in model training data.

Ideal algorithms are reproducible

Reproducible algorithms are validated both externally and prospectively and are shared with

academic communities. In a survey distributed by Nature, greater than 70% of all researchers

had attempted and failed to reproduce another scientist’s experiments, and 90% reported that

science is facing a reproducibility crisis [86]. Reproducibility, a critically important element of

any scientific inquiry, is especially important for machine learning algorithms because it estab-

lishes trustworthiness and credibility. Prior to successful clinical implementation, “black box”

algorithms must earn the trust of patients, clinicians, and investigators. Even when explainabil-

ity is suboptimal, people may be willing to use an algorithm that is well validated and freely

available to academicians. In addition, a reproducible algorithm can be tuned and optimized

over time, offering a performance advantage.

There are several major barriers to algorithm reproducibility. Prominent EHR platforms

are not designed to accommodate algorithm scalability across institutions and platforms. This

produces an “analytic bottleneck” in which investigators must process, harmonize, and vali-

date massive amounts of data within institutional silos. Many researchers do not possess the

necessary resources to work at such a large computational scale, much less keep track of which

data were used for different studies and evaluate the impact of data reuse on the statistical bias.

In addition, there are limited cloud resources for sharing multiple, large, healthcare data repos-

itories among research groups that have their own algorithm pipelines and tools. Given these

obstacles, many algorithms are never shared and validated externally. To ensure that algo-

rithms are suitable for external validation, results from interventions using AI algorithms

should be reported in a standardized fashion, as proposed by the SPIRIT-AI extension, which

was developed in parallel with CONSORT-AI guidelines [11,12]. Compliance with these pro-

tocols will promote the reproducibility of findings. Yet, most reports involving algorithms in

healthcare do not involve implementation in a clinical trial. Noninterventional studies that

involve prediction models should comply with the Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement [87,88]. Finally,

generalizability can be enhanced by using input features that are collected routinely in clinical

care, excluding features whose collection requires specialized measurement tools that are

unavailable in most settings.

Federated learning offers opportunities to ensure the external validity, generalizability, and

reproducibility of algorithms via collaborative machine learning without data sharing [89–92].

When sensitive patient data are shared between institutions, there is risk for unintended data

disclosures and piracy by adversarial third parties. In federated learning, local models are

trained separately and consolidated into a global model [89–92]. As local models train, they

send local updates in the form of gradients or coefficients for incorporation in the global

model. Even when these relatively secure methods are applied, privacy leakage can occur when

adversaries infer whether a given attribute belongs to the model’s training data or infer class

representatives from collaborative models [93–97]. To mitigate privacy leakage in federated

learning, the risks for privacy-sensitive information and privacy leakage can be quantified for

each data record, with subsequent obfuscation of high-risk records.
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Application of the ideal algorithms framework to prominent

algorithms in healthcare

To identify prominent examples of algorithms in healthcare, we reviewed the 20 most highly

cited articles in medical AI, as identified in a bibliometric analysis by Nadri and colleagues

[98]. Among these 20 articles, 8 described an algorithm. Table 2 applies the ideal algorithm

framework to these 8 algorithms by the majority vote of 3 independent raters. Fleiss kappa sta-

tistic was 0.708, suggesting substantial interrater agreement [99,100]. All 8 algorithms met cri-

teria for precision, 6 of the algorithms were autonomous, 5 were fair, 4 were explainable, and 3

were reproducible. Dynamicity was not applicable to any of the algorithms. These findings

suggest opportunities to enhance the autonomy, fairness, explainability, and reproducibility of

algorithms in healthcare.

Conclusions

While the breadth and complexity of human disease compromise the efficacy of hypothetical-

deductive reasoning and heuristic decision-making, high-complexity and high-volume data

can be parsed by machine learning applications with relative ease. Established guidelines

describe minimum requirements for reporting algorithm healthcare applications; it is equally

important to describe the maximum potential of ideal algorithms. We propose that ideal algo-

rithms have 6 desiderata that are represented in a checklist presented herein: explainable (con-

vey the relative importance of features in determining outputs), dynamic (capture temporal

changes in physiologic signals and clinical events), precise (use high-resolution, multimodal

data and aptly complex architecture), autonomous (learn with minimal supervision and exe-

cute without human input), fair (evaluate and mitigate implicit bias and social inequity), and

reproducible (are validated externally and prospectively and shared with academic communi-

ties). By achieving these objectives, healthcare algorithms confer maximum potential benefits

to patients, clinicians, and investigators.
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14. Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA. 2018;

320(21):2199–200. Epub 2018/11/07. https://doi.org/10.1001/jama.2018.17163 PMID: 30398550.

15. Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum infor-

mation about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020; 26

(9):1320–4. Epub 2020/09/11. https://doi.org/10.1038/s41591-020-1041-y PMID: 32908275; PubMed

Central PMCID: PMC7538196.

16. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods, and applications in inter-

pretable machine learning. Proc Natl Acad Sci U S A. 2019; 116(44):22071–80. https://doi.org/10.

1073/pnas.1900654116 PMID: 31619572; PubMed Central PMCID: PMC6825274.

17. Khera R, Haimovich J, Hurley NC, McNamara R, Spertus JA, Desai N, et al. Use of Machine Learning

Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiol. 2021; 6(6):633–41. Epub

2021/03/11. https://doi.org/10.1001/jamacardio.2021.0122 PMID: 33688915; PubMed Central

PMCID: PMC7948114.

18. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use inter-

pretable models instead. Nat Mach Intell. 2019; 1(5):206–15.

19. Bekker HL. Making choices without deliberating. Science. 2006; 312(5779):1472; author reply https://

doi.org/10.1126/science.312.5779.1472a PMID: 16763132.

20. Shickel B, Loftus TJ, Adhikari L, Ozrazgat-Baslanti T, Bihorac A, Rashidi P. DeepSOFA: A Continuous

Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning. Sci Rep. 2019; 9

(1):1879. https://doi.org/10.1038/s41598-019-38491-0 PMID: 30755689.

21. Kim SY, Kim S, Cho J, Kim YS, Sol IS, Sung Y, et al. A deep learning model for real-time mortality pre-

diction in critically ill children. Crit Care. 2019; 23(1):279. Epub 2019/08/16. https://doi.org/10.1186/

s13054-019-2561-z PMID: 31412949; PubMed Central PMCID: PMC6694497.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 11 / 16

https://doi.org/10.1109/MPUL.2017.2678098
https://doi.org/10.1109/MPUL.2017.2678098
http://www.ncbi.nlm.nih.gov/pubmed/28534755
https://doi.org/10.1016/j.bja.2020.07.040
http://www.ncbi.nlm.nih.gov/pubmed/32838979
https://doi.org/10.1177/0272989X14547740
https://doi.org/10.1177/0272989X14547740
http://www.ncbi.nlm.nih.gov/pubmed/25145577
http://www.ncbi.nlm.nih.gov/pubmed/3989960
https://doi.org/10.1001/archinte.165.13.1493
http://www.ncbi.nlm.nih.gov/pubmed/16009864
https://doi.org/10.1097/00005792-199601000-00004
http://www.ncbi.nlm.nih.gov/pubmed/8569468
https://doi.org/10.1016/S2589-7500%2819%2930123-2
https://doi.org/10.1016/S2589-7500%2819%2930123-2
http://www.ncbi.nlm.nih.gov/pubmed/33323251
https://doi.org/10.1136/bmj.m689
http://www.ncbi.nlm.nih.gov/pubmed/32213531
https://doi.org/10.1016/S2589-7500%2820%2930219-3
http://www.ncbi.nlm.nih.gov/pubmed/33328049
https://doi.org/10.1038/s41591-020-1034-x
http://www.ncbi.nlm.nih.gov/pubmed/32908283
https://doi.org/10.1001/jama.2018.17163
http://www.ncbi.nlm.nih.gov/pubmed/30398550
https://doi.org/10.1038/s41591-020-1041-y
http://www.ncbi.nlm.nih.gov/pubmed/32908275
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1073/pnas.1900654116
http://www.ncbi.nlm.nih.gov/pubmed/31619572
https://doi.org/10.1001/jamacardio.2021.0122
http://www.ncbi.nlm.nih.gov/pubmed/33688915
https://doi.org/10.1126/science.312.5779.1472a
https://doi.org/10.1126/science.312.5779.1472a
http://www.ncbi.nlm.nih.gov/pubmed/16763132
https://doi.org/10.1038/s41598-019-38491-0
http://www.ncbi.nlm.nih.gov/pubmed/30755689
https://doi.org/10.1186/s13054-019-2561-z
https://doi.org/10.1186/s13054-019-2561-z
http://www.ncbi.nlm.nih.gov/pubmed/31412949
https://doi.org/10.1371/journal.pdig.0000006


22. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sundermann SH, et al. Machine learning

for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med.

2018; 6(12):905–14. Epub 2018/10/03. https://doi.org/10.1016/S2213-2600(18)30300-X PMID:

30274956.

23. Tomasev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable

approach to continuous prediction of future acute kidney injury. Nature. 2019; 572(7767):116–9. Epub

2019/08/02. https://doi.org/10.1038/s41586-019-1390-1 PMID: 31367026; PubMed Central PMCID:

PMC6722431.

24. MRC CRASH Trial Collaborators, Perel P, Arango M, Clayton T, Edwards P, Komolafe E, et al. Pre-

dicting outcome after traumatic brain injury: practical prognostic models based on large cohort of inter-

national patients. BMJ. 2008; 336(7641):425–9. Epub 2008/02/14. https://doi.org/10.1136/bmj.39461.

643438.25 PMID: 18270239; PubMed Central PMCID: PMC2249681.

25. Raj R, Siironen J, Skrifvars MB, Hernesniemi J, Kivisaari R. Predicting outcome in traumatic brain

injury: development of a novel computerized tomography classification system (Helsinki computerized

tomography score). Neurosurgery. 2014; 75(6):632–46; discussion 46–7. Epub 2014/09/03. https://

doi.org/10.1227/NEU.0000000000000533 PMID: 25181434.

26. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after

traumatic brain injury: development and international validation of prognostic scores based on admis-

sion characteristics. PLoS Med. 2008; 5(8):e165; discussion e. Epub 2008/08/08. https://doi.org/10.

1371/journal.pmed.0050165 PMID: 18684008; PubMed Central PMCID: PMC2494563.

27. Beaulieu-Jones BK, Yuan W, Brat GA, Beam AL, Weber G, Ruffin M, et al. Machine learning for

patient risk stratification: standing on, or looking over, the shoulders of clinicians? NPJ Digit Med.

2021; 4(1):62. Epub 2021/04/01. https://doi.org/10.1038/s41746-021-00426-3 PMID: 33785839;

PubMed Central PMCID: PMC8010071 fees from Salutary Inc. A.L.B. received consulting fees and

stock options from Generate Biomedicines. The remaining authors declare that there are no compet-

ing interests.

28. Davis JP, Wessells DA, Moorman JR. Coronavirus Disease 2019 Calls for Predictive Analytics Moni-

toring-A New Kind of Illness Scoring System. Crit Care Explor. 2020; 2(12):e0294. Epub 2020/12/29.

https://doi.org/10.1097/CCE.0000000000000294 PMID: 33364604; PubMed Central PMCID:

PMC7752690.

29. Shamout FE, Zhu T, Sharma P, Watkinson PJ, Clifton DA. Deep Interpretable Early Warning System

for the Detection of Clinical Deterioration. IEEE J Biomed Health Inform. 2019. Epub 2019/09/24.

https://doi.org/10.1109/JBHI.2019.2937803 PMID: 31545746.

30. Schwartz WB, Patil RS, Szolovits P. Artificial intelligence in medicine. Where do we stand? N Engl J

Med. 1987; 316(11):685–8. https://doi.org/10.1056/NEJM198703123161109 PMID: 3821801.

31. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils.

Ann Surg. 2018; 268(1):70–6. https://doi.org/10.1097/SLA.0000000000002693 PMID: 29389679;

PubMed Central PMCID: PMC5995666.

32. Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using artificial

neural network synthesised by genetic algorithm. Lancet. 1996; 347(9009):1146–50. https://doi.org/

10.1016/s0140-6736(96)90609-1 PMID: 8609749

33. Kim S, Kim W, Park RW. A Comparison of Intensive Care Unit Mortality Prediction Models through the

Use of Data Mining Techniques. Healthc Inform Res. 2011; 17(4):232–43. https://doi.org/10.4258/hir.

2011.17.4.232 PMID: 22259725; PubMed Central PMCID: PMC3259558.

34. Singh PP, Zeng IS, Srinivasa S, Lemanu DP, Connolly AB, Hill AG. Systematic review and meta-anal-

ysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery. Br J

Surg. 2014; 101(4):339–46. https://doi.org/10.1002/bjs.9354 PMID: 24311257.

35. Bagnall NM, Pring ET, Malietzis G, Athanasiou T, Faiz OD, Kennedy RH, et al. Perioperative risk pre-

diction in the era of enhanced recovery: a comparison of POSSUM, ACPGBI, and E-PASS scoring

systems in major surgical procedures of the colorectal surgeon. Int J Colorectal Dis. 2018; 33

(11):1627–34. https://doi.org/10.1007/s00384-018-3141-4 PMID: 30078107.

36. Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore)

for septic shock. Sci Transl Med. 2015; 7(299):299ra122. https://doi.org/10.1126/scitranslmed.

aab3719 PMID: 26246167.

37. Koyner JL, Carey KA, Edelson DP, Churpek MM. The Development of a Machine Learning Inpatient

Acute Kidney Injury Prediction Model. Crit Care Med. 2018; 46(7):1070–7. https://doi.org/10.1097/

CCM.0000000000003123 PMID: 29596073.

38. Delahanty RJ, Kaufman D, Jones SS. Development and Evaluation of an Automated Machine Learn-

ing Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients. Crit Care Med.

2018; 46(6):e481–e8. https://doi.org/10.1097/CCM.0000000000003011 PMID: 29419557.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 12 / 16

https://doi.org/10.1016/S2213-2600%2818%2930300-X
http://www.ncbi.nlm.nih.gov/pubmed/30274956
https://doi.org/10.1038/s41586-019-1390-1
http://www.ncbi.nlm.nih.gov/pubmed/31367026
https://doi.org/10.1136/bmj.39461.643438.25
https://doi.org/10.1136/bmj.39461.643438.25
http://www.ncbi.nlm.nih.gov/pubmed/18270239
https://doi.org/10.1227/NEU.0000000000000533
https://doi.org/10.1227/NEU.0000000000000533
http://www.ncbi.nlm.nih.gov/pubmed/25181434
https://doi.org/10.1371/journal.pmed.0050165
https://doi.org/10.1371/journal.pmed.0050165
http://www.ncbi.nlm.nih.gov/pubmed/18684008
https://doi.org/10.1038/s41746-021-00426-3
http://www.ncbi.nlm.nih.gov/pubmed/33785839
https://doi.org/10.1097/CCE.0000000000000294
http://www.ncbi.nlm.nih.gov/pubmed/33364604
https://doi.org/10.1109/JBHI.2019.2937803
http://www.ncbi.nlm.nih.gov/pubmed/31545746
https://doi.org/10.1056/NEJM198703123161109
http://www.ncbi.nlm.nih.gov/pubmed/3821801
https://doi.org/10.1097/SLA.0000000000002693
http://www.ncbi.nlm.nih.gov/pubmed/29389679
https://doi.org/10.1016/s0140-6736%2896%2990609-1
https://doi.org/10.1016/s0140-6736%2896%2990609-1
http://www.ncbi.nlm.nih.gov/pubmed/8609749
https://doi.org/10.4258/hir.2011.17.4.232
https://doi.org/10.4258/hir.2011.17.4.232
http://www.ncbi.nlm.nih.gov/pubmed/22259725
https://doi.org/10.1002/bjs.9354
http://www.ncbi.nlm.nih.gov/pubmed/24311257
https://doi.org/10.1007/s00384-018-3141-4
http://www.ncbi.nlm.nih.gov/pubmed/30078107
https://doi.org/10.1126/scitranslmed.aab3719
https://doi.org/10.1126/scitranslmed.aab3719
http://www.ncbi.nlm.nih.gov/pubmed/26246167
https://doi.org/10.1097/CCM.0000000000003123
https://doi.org/10.1097/CCM.0000000000003123
http://www.ncbi.nlm.nih.gov/pubmed/29596073
https://doi.org/10.1097/CCM.0000000000003011
http://www.ncbi.nlm.nih.gov/pubmed/29419557
https://doi.org/10.1371/journal.pdig.0000006


39. Adhikari L, Ozrazgat-Baslanti T, Ruppert M, Madushani R, Paliwal S, Hashemighouchani H, et al.

Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analyt-

ics. PLoS ONE. 2019; 14(4):e0214904. https://doi.org/10.1371/journal.pone.0214904 PMID:

30947282; PubMed Central PMCID: PMC6448850.

40. Oppenheim AV, Schafer RW, Buck JR. Discrete-time signal processing. 2nd ed. Upper Saddle River,

N.J.: Prentice Hall; 1999.

41. Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and

chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981; 9

(8):591–7. https://doi.org/10.1097/00003246-198108000-00008 PMID: 7261642.

42. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-

related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Work-

ing Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive

Care Med. 1996; 22(7):707–10. Epub 1996/07/01. https://doi.org/10.1007/BF01709751 PMID:

8844239.

43. Zimmerman JE, Kramer AA. A history of outcome prediction in the ICU. Curr Opin Crit Care. 2014; 20

(5):550–6. Epub 2014/08/20. https://doi.org/10.1097/MCC.0000000000000138 PMID: 25137400.

44. Stone DJ, Csete M. Actuating critical care therapeutics. J Crit Care. 2016; 35:90–5. Epub 2016/08/03.

https://doi.org/10.1016/j.jcrc.2016.05.002 PMID: 27481741.

45. Franklin C, Mathew J. Developing strategies to prevent inhospital cardiac arrest: analyzing responses

of physicians and nurses in the hours before the event. Crit Care Med. 1994; 22(2):244–7. PMID:

8306682.

46. Berlot G, Pangher A, Petrucci L, Bussani R, Lucangelo U. Anticipating events of in-hospital cardiac

arrest. Eur J Emerg Med. 2004; 11(1):24–8. https://doi.org/10.1097/00063110-200402000-00005

PMID: 15167189.

47. Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events

and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010; 112

(2):282–7. https://doi.org/10.1097/ALN.0b013e3181ca7a9b PMID: 20098128.

48. Brown H, Terrence J, Vasquez P, Bates DW, Zimlichman E. Continuous monitoring in an inpatient

medical-surgical unit: a controlled clinical trial. Am J Med. 2014; 127(3):226–32. https://doi.org/10.

1016/j.amjmed.2013.12.004 PMID: 24342543.

49. Slight SP, Franz C, Olugbile M, Brown HV, Bates DW, Zimlichman E. The return on investment of

implementing a continuous monitoring system in general medical-surgical units. Crit Care Med. 2014;

42(8):1862–8. https://doi.org/10.1097/CCM.0000000000000340 PMID: 24717454.

50. Prgomet M, Cardona-Morrell M, Nicholson M, Lake R, Long J, Westbrook J, et al. Vital signs monitor-

ing on general wards: clinical staff perceptions of current practices and the planned introduction of con-

tinuous monitoring technology. Int J Qual Health Care. 2016; 28(4):515–21. https://doi.org/10.1093/

intqhc/mzw062 PMID: 27317251.

51. Watkinson PJ, Barber VS, Price JD, Hann A, Tarassenko L, Young JD. A randomised controlled trial

of the effect of continuous electronic physiological monitoring on the adverse event rate in high risk

medical and surgical patients. Anaesthesia. 2006; 61(11):1031–9. Epub 2006/10/18. https://doi.org/

10.1111/j.1365-2044.2006.04818.x PMID: 17042839.

52. Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS, et al. Cardiovascular oscilla-

tions at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring.

Physiol Meas. 2011; 32(11):1821–32. Epub 2011/10/27. https://doi.org/10.1088/0967-3334/32/11/

S08 PMID: 22026974; PubMed Central PMCID: PMC4898648.

53. Stone ML, Tatum PM, Weitkamp JH, Mukherjee AB, Attridge J, McGahren ED, et al. Abnormal heart

rate characteristics before clinical diagnosis of necrotizing enterocolitis. J Perinatol. 2013; 33(11):847–

50. Epub 2013/06/01. https://doi.org/10.1038/jp.2013.63 PMID: 23722974; PubMed Central PMCID:

PMC4026091.

54. Schelonka RL, Carlo WA, Bauer CR, Peralta-Carcelen M, Phillips V, Helderman J, et al. Mortality and

Neurodevelopmental Outcomes in the Heart Rate Characteristics Monitoring Randomized Controlled

Trial. J Pediatr. 2020; 219:48–53. Epub 2020/02/09. https://doi.org/10.1016/j.jpeds.2019.12.066

PMID: 32033793; PubMed Central PMCID: PMC7096280.

55. Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using

novel heart rate analysis. Pediatrics. 2001; 107(1):97–104. Epub 2001/01/03. https://doi.org/10.1542/

peds.107.1.97 PMID: 11134441.

56. Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration of early physiological responses predicts

later illness severity in preterm infants. Sci Transl Med. 2010; 2(48):48ra65. Epub 2010/09/10. https://

doi.org/10.1126/scitranslmed.3001304 PMID: 20826840; PubMed Central PMCID: PMC3564961.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 13 / 16

https://doi.org/10.1371/journal.pone.0214904
http://www.ncbi.nlm.nih.gov/pubmed/30947282
https://doi.org/10.1097/00003246-198108000-00008
http://www.ncbi.nlm.nih.gov/pubmed/7261642
https://doi.org/10.1007/BF01709751
http://www.ncbi.nlm.nih.gov/pubmed/8844239
https://doi.org/10.1097/MCC.0000000000000138
http://www.ncbi.nlm.nih.gov/pubmed/25137400
https://doi.org/10.1016/j.jcrc.2016.05.002
http://www.ncbi.nlm.nih.gov/pubmed/27481741
http://www.ncbi.nlm.nih.gov/pubmed/8306682
https://doi.org/10.1097/00063110-200402000-00005
http://www.ncbi.nlm.nih.gov/pubmed/15167189
https://doi.org/10.1097/ALN.0b013e3181ca7a9b
http://www.ncbi.nlm.nih.gov/pubmed/20098128
https://doi.org/10.1016/j.amjmed.2013.12.004
https://doi.org/10.1016/j.amjmed.2013.12.004
http://www.ncbi.nlm.nih.gov/pubmed/24342543
https://doi.org/10.1097/CCM.0000000000000340
http://www.ncbi.nlm.nih.gov/pubmed/24717454
https://doi.org/10.1093/intqhc/mzw062
https://doi.org/10.1093/intqhc/mzw062
http://www.ncbi.nlm.nih.gov/pubmed/27317251
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
http://www.ncbi.nlm.nih.gov/pubmed/17042839
https://doi.org/10.1088/0967-3334/32/11/S08
https://doi.org/10.1088/0967-3334/32/11/S08
http://www.ncbi.nlm.nih.gov/pubmed/22026974
https://doi.org/10.1038/jp.2013.63
http://www.ncbi.nlm.nih.gov/pubmed/23722974
https://doi.org/10.1016/j.jpeds.2019.12.066
http://www.ncbi.nlm.nih.gov/pubmed/32033793
https://doi.org/10.1542/peds.107.1.97
https://doi.org/10.1542/peds.107.1.97
http://www.ncbi.nlm.nih.gov/pubmed/11134441
https://doi.org/10.1126/scitranslmed.3001304
https://doi.org/10.1126/scitranslmed.3001304
http://www.ncbi.nlm.nih.gov/pubmed/20826840
https://doi.org/10.1371/journal.pdig.0000006


57. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deteri-

oration. Br J Anaesth. 2006; 97(1):64–8. Epub 2006/05/19. https://doi.org/10.1093/bja/ael113 PMID:

16707529.

58. Politano AD, Riccio LM, Lake DE, Rusin CG, Guin LE, Josef CS, et al. Predicting the need for urgent

intubation in a surgical/trauma intensive care unit. Surgery. 2013; 154(5):1110–6. Epub 2013/10/01.

https://doi.org/10.1016/j.surg.2013.05.025 PMID: 24075272; PubMed Central PMCID: PMC3805718.

59. Moss TJ, Lake DE, Calland JF, Enfield KB, Delos JB, Fairchild KD, et al. Signatures of Subacute

Potentially Catastrophic Illness in the ICU: Model Development and Validation. Crit Care Med. 2016;

44(9):1639–48. Epub 2016/07/28. https://doi.org/10.1097/CCM.0000000000001738 PMID:

27452809; PubMed Central PMCID: PMC4987175.

60. Ruminski CM, Clark MT, Lake DE, Kitzmiller RR, Keim-Malpass J, Robertson MP, et al. Impact of pre-

dictive analytics based on continuous cardiorespiratory monitoring in a surgical and trauma intensive

care unit. J Clin Monit Comput. 2019; 33(4):703–11. Epub 2018/08/20. https://doi.org/10.1007/

s10877-018-0194-4 PMID: 30121744.

61. Griffin MP, Lake DE, Moorman JR. Heart rate characteristics and laboratory tests in neonatal sepsis.

Pediatrics. 2005; 115(4):937–41. Epub 2005/04/05. https://doi.org/10.1542/peds.2004-1393 PMID:

15805367.

62. Griffin MP, Lake DE, O’Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal

sepsis. Pediatr Res. 2007; 61(2):222–7. Epub 2007/01/24. https://doi.org/10.1203/01.pdr.

0000252438.65759.af PMID: 17237726.

63. De Pasquale M, Moss TJ, Cerutti S, Calland JF, Lake DE, Moorman JR, et al. Hemorrhage Prediction

Models in Surgical Intensive Care: Bedside Monitoring Data Adds Information to Lab Values. IEEE J

Biomed Health Inform. 2017; 21(6):1703–10. Epub 2017/04/20. https://doi.org/10.1109/JBHI.2017.

2653849 PMID: 28422699.

64. Moss TJ, Clark MT, Calland JF, Enfield KB, Voss JD, Lake DE, et al. Cardiorespiratory dynamics mea-

sured from continuous ECG monitoring improves detection of deterioration in acute care patients: A

retrospective cohort study. PLoS ONE. 2017; 12(8):e0181448. Epub 2017/08/05. https://doi.org/10.

1371/journal.pone.0181448 PMID: 28771487; PubMed Central PMCID: PMC5542430.

65. Davoudi A, Malhotra KR, Shickel B, Siegel S, Williams S, Ruppert M, et al. Intelligent ICU for Autono-

mous Patient Monitoring Using Pervasive Sensing and Deep Learning. Sci Rep. 2019; 9. https://doi.

org/10.1038/s41598-019-44004-w WOS:000469318500008. PMID: 31142754

66. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification

of nonlinear dynamical systems. Proc Natl Acad Sci U S A. 2016; 113(15):3932–7. Epub 2016/04/02.

https://doi.org/10.1073/pnas.1517384113 PMID: 27035946; PubMed Central PMCID: PMC4839439.

67. Leeds IL, Rosenblum AJ, Wise PE, Watkins AC, Goldblatt MI, Haut ER, et al. Eye of the beholder:

Risk calculators and barriers to adoption in surgical trainees. Surgery. 2018; 164(5):1117–23. https://

doi.org/10.1016/j.surg.2018.07.002 PMID: 30149939.

68. Stanford Medicine 2017 Health Trends Report: Harnessing the Power of Data in Health. Accessed 23

Feb 2019. Available at: http://med.stanford.edu/content/dam/sm/sm-news/documents/

StanfordMedicineHealthTrendsWhitePaper2017.pdf.

69. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk:

Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death

After Surgery. Ann Surg. 2018; 269(4):652–62. https://doi.org/10.1097/SLA.0000000000002706

PMID: 29489489.

70. Brennan M, Puri S, Ozrazgat-Baslanti T, Feng Z, Ruppert M, Hashemighouchani H, et al. Comparing

clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability

study. Surgery. 2019; 165(5):1035–45. https://doi.org/10.1016/j.surg.2019.01.002 PMID: 30792011.

71. Healey MA, Shackford SR, Osler TM, Rogers FB, Burns E. Complications in surgical patients. Arch

Surg. 2002; 137(5):611–7; discussion 7–8. https://doi.org/10.1001/archsurg.137.5.611 PMID:

11982478.

72. Shanafelt TD, Balch CM, Bechamps G, Russell T, Dyrbye L, Satele D, et al. Burnout and medical

errors among American surgeons. Ann Surg. 2010; 251(6):995–1000. https://doi.org/10.1097/SLA.

0b013e3181bfdab3 PMID: 19934755.

73. Raymond BL, Wanderer JP, Hawkins AT, Geiger TM, Ehrenfeld JM, Stokes JW, et al. Use of the

American College of Surgeons National Surgical Quality Improvement Program Surgical Risk Calcula-

tor During Preoperative Risk Discussion: The Patient Perspective. Anesth Analg. 2019; 128(4):643–

50. Epub 2018/09/01. https://doi.org/10.1213/ANE.0000000000003718 PMID: 30169413.

74. Clark DE, Fitzgerald TL, Dibbins AW. Procedure-based postoperative risk prediction using NSQIP

data. J Surg Res. 2018; 221:322–7. https://doi.org/10.1016/j.jss.2017.09.003 PMID: 29229146.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 14 / 16

https://doi.org/10.1093/bja/ael113
http://www.ncbi.nlm.nih.gov/pubmed/16707529
https://doi.org/10.1016/j.surg.2013.05.025
http://www.ncbi.nlm.nih.gov/pubmed/24075272
https://doi.org/10.1097/CCM.0000000000001738
http://www.ncbi.nlm.nih.gov/pubmed/27452809
https://doi.org/10.1007/s10877-018-0194-4
https://doi.org/10.1007/s10877-018-0194-4
http://www.ncbi.nlm.nih.gov/pubmed/30121744
https://doi.org/10.1542/peds.2004-1393
http://www.ncbi.nlm.nih.gov/pubmed/15805367
https://doi.org/10.1203/01.pdr.0000252438.65759.af
https://doi.org/10.1203/01.pdr.0000252438.65759.af
http://www.ncbi.nlm.nih.gov/pubmed/17237726
https://doi.org/10.1109/JBHI.2017.2653849
https://doi.org/10.1109/JBHI.2017.2653849
http://www.ncbi.nlm.nih.gov/pubmed/28422699
https://doi.org/10.1371/journal.pone.0181448
https://doi.org/10.1371/journal.pone.0181448
http://www.ncbi.nlm.nih.gov/pubmed/28771487
https://doi.org/10.1038/s41598-019-44004-w
https://doi.org/10.1038/s41598-019-44004-w
http://www.ncbi.nlm.nih.gov/pubmed/31142754
https://doi.org/10.1073/pnas.1517384113
http://www.ncbi.nlm.nih.gov/pubmed/27035946
https://doi.org/10.1016/j.surg.2018.07.002
https://doi.org/10.1016/j.surg.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30149939
http://med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf
http://med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf
https://doi.org/10.1097/SLA.0000000000002706
http://www.ncbi.nlm.nih.gov/pubmed/29489489
https://doi.org/10.1016/j.surg.2019.01.002
http://www.ncbi.nlm.nih.gov/pubmed/30792011
https://doi.org/10.1001/archsurg.137.5.611
http://www.ncbi.nlm.nih.gov/pubmed/11982478
https://doi.org/10.1097/SLA.0b013e3181bfdab3
https://doi.org/10.1097/SLA.0b013e3181bfdab3
http://www.ncbi.nlm.nih.gov/pubmed/19934755
https://doi.org/10.1213/ANE.0000000000003718
http://www.ncbi.nlm.nih.gov/pubmed/30169413
https://doi.org/10.1016/j.jss.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/29229146
https://doi.org/10.1371/journal.pdig.0000006


75. Lubitz AL, Chan E, Zarif D, Ross H, Philp M, Goldberg AJ, et al. American College of Surgeons NSQIP

Risk Calculator Accuracy for Emergent and Elective Colorectal Operations. J Am Coll Surg. 2017; 225

(5):601–11. https://doi.org/10.1016/j.jamcollsurg.2017.07.1069 PMID: 28826803.

76. Cohen ME, Liu Y, Ko CY, Hall BL. An Examination of American College of Surgeons NSQIP Surgical

Risk Calculator Accuracy. J Am Coll Surg. 2017; 224(5):787–95 e1. https://doi.org/10.1016/j.

jamcollsurg.2016.12.057 PMID: 28389191.

77. Hyde LZ, Valizadeh N, Al-Mazrou AM, Kiran RP. ACS-NSQIP risk calculator predicts cohort but not

individual risk of complication following colorectal resection. Am J Surg. 2019; 218(1):131–5. https://

doi.org/10.1016/j.amjsurg.2018.11.017 PMID: 30522696.

78. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of

Go with deep neural networks and tree search. Nature. 2016; 529(7587):484–9. https://doi.org/10.

1038/nature16961 PMID: 26819042.

79. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of

Go without human knowledge. Nature. 2017; 550(7676):354–9. Epub 2017/10/21. https://doi.org/10.

1038/nature24270 PMID: 29052630.

80. Angwin J, Larson J, Mattu S, Kirchner L. Machine bias. ProPublica. 2016 May 23:Accessed 24 Jan

2019 [https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing].

81. Shahian DM, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC Jr., et al. The Society

of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1-Background, Design Consider-

ations, and Model Development. Ann Thorac Surg. 2018; 105(5):1411–8. Epub 2018/03/27. https://

doi.org/10.1016/j.athoracsur.2018.03.002 PMID: 29577925.

82. Vyas DA, Eisenstein LG, Jones DS. Hidden in Plain Sight—Reconsidering the Use of Race Correction

in Clinical Algorithms. New Engl J Med. 2020; 383(9):873–81. https://doi.org/10.1056/

NEJMms2004740 WOS:000563821400017. PMID: 32853499

83. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to man-

age the health of populations. Science. 2019; 366(6464):447–+. https://doi.org/10.1126/science.

aax2342 WOS:000493177900040. PMID: 31649194

84. Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C. Learning Fair Representations. In: Sanjoy D, David M,

editors. Proceedings of the 30th International Conference on Machine Learning; Proceedings of

Machine Learning Research: PMLR; 2013. p. 325–33.

85. Wexler J, Pushkarna M, Bolukbasi T, Wattenberg M, Viegas F, Wilson J. The What-If Tool: Interactive

Probing of Machine Learning Models. IEEE Trans Vis Comput Graph. 2020; 26(1):56–65. https://doi.

org/10.1109/TVCG.2019.2934619 WOS:000506166100006. PMID: 31442996

86. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604):452–4. Epub 2016/05/

27. https://doi.org/10.1038/533452a PMID: 27225100.

87. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction

model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;

162(1):55–63. Epub 2015/01/07. https://doi.org/10.7326/M14-0697 PMID: 25560714.

88. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent

Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): expla-

nation and elaboration. Ann Intern Med. 2015; 162(1):W1–73. Epub 2015/01/07. https://doi.org/10.

7326/M14-0698 PMID: 25560730.

89. Rieke N, Hancox J, Li W, Milletarı̀ F, Roth HR, Albarqouni S, et al. The future of digital health with fed-

erated learning. NPJ Digit Med. 2020; 3(1):119. https://doi.org/10.1038/s41746-020-00323-1 PMID:

34518641

90. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, et al. Towards Federated

Learning at Scale: System Design. arXiv preprint arXiv:190201046 [Internet]. 2020.

91. Yang Q, Liu Y, Chen T, Tong Y. Federated Machine Learning: Concept and Applications. ACM Trans

Intell Syst Technol. 2019; 10(2):Article 12. https://doi.org/10.1145/3298981

92. McMahan B, Moore E, Ramage D, Hampson S, Arcas BAy. Communication-Efficient Learning of

Deep Networks from Decentralized Data. In: Aarti S, Jerry Z, editors. Proceedings of the 20th Interna-

tional Conference on Artificial Intelligence and Statistics; Proceedings of Machine Learning Research:

PMLR; 2017. p. 1273–82.

93. Melis L, Song C, Cristofaro ED, Shmatikov V, editors. Exploiting Unintended Feature Leakage in Col-

laborative Learning. 2019 IEEE Symposium on Security and Privacy (SP); 2019 19–23 May 2019.

94. Nasr M, Shokri R, Houmansadr A. Comprehensive Privacy Analysis of Deep Learning: Passive and

Active White-box Inference Attacks against Centralized and Federated Learning. 2019. p. 739–53.

95. Wei W, Liu L, Loper M, Chow K, Gursoy M, Truex S, et al. A Framework for Evaluating Gradient Leak-

age Attacks in Federated Learning. arXiv preprint arXiv:200410397 [Internet]. 2020.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 15 / 16

https://doi.org/10.1016/j.jamcollsurg.2017.07.1069
http://www.ncbi.nlm.nih.gov/pubmed/28826803
https://doi.org/10.1016/j.jamcollsurg.2016.12.057
https://doi.org/10.1016/j.jamcollsurg.2016.12.057
http://www.ncbi.nlm.nih.gov/pubmed/28389191
https://doi.org/10.1016/j.amjsurg.2018.11.017
https://doi.org/10.1016/j.amjsurg.2018.11.017
http://www.ncbi.nlm.nih.gov/pubmed/30522696
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1016/j.athoracsur.2018.03.002
https://doi.org/10.1016/j.athoracsur.2018.03.002
http://www.ncbi.nlm.nih.gov/pubmed/29577925
https://doi.org/10.1056/NEJMms2004740
https://doi.org/10.1056/NEJMms2004740
http://www.ncbi.nlm.nih.gov/pubmed/32853499
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/pubmed/31649194
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1109/TVCG.2019.2934619
http://www.ncbi.nlm.nih.gov/pubmed/31442996
https://doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/27225100
https://doi.org/10.7326/M14-0697
http://www.ncbi.nlm.nih.gov/pubmed/25560714
https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
http://www.ncbi.nlm.nih.gov/pubmed/25560730
https://doi.org/10.1038/s41746-020-00323-1
http://www.ncbi.nlm.nih.gov/pubmed/34518641
https://doi.org/10.1145/3298981
https://doi.org/10.1371/journal.pdig.0000006


96. Hitaj B, Ateniese G, Perez-Cruz F. Deep Models Under the GAN: Information Leakage from Collabora-

tive Deep Learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-

cations Security; Dallas, Texas, USA: Association for Computing Machinery; 2017. p. 603–18.

97. Wang Z, Song M, Zhang Z, Song Y, Wang Q, Qi H, editors. Beyond Inferring Class Representatives:

User-Level Privacy Leakage From Federated Learning. IEEE Conference on Computer Communica-

tions INFOCOM; 2019 29 April-2 May 2019.

98. Nadri H, Rahimi B, Timpka T, Sedghi S. The Top 100 Articles in the Medical Informatics: a Bibliometric

Analysis. J Med Syst. 2017; 41(10):150. Epub 2017/08/22. https://doi.org/10.1007/s10916-017-0794-

4 PMID: 28825158.

99. Fleiss JL. Measuring Nominal Scale Agreement among Many Raters. Psychol Bull. 1971; 76(5):378.

https://doi.org/10.1037/h0031619 WOS:A1971K852700006.

100. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics.

1977; 33(1):159–74. Epub 1977/03/01. PMID: 843571.

PLOS DIGITAL HEALTH Ideal algorithms in health care

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000006 January 18, 2022 16 / 16

https://doi.org/10.1007/s10916-017-0794-4
https://doi.org/10.1007/s10916-017-0794-4
http://www.ncbi.nlm.nih.gov/pubmed/28825158
https://doi.org/10.1037/h0031619
http://www.ncbi.nlm.nih.gov/pubmed/843571
https://doi.org/10.1371/journal.pdig.0000006

