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Introduction

The unprecedented situation that the world of tourism finds itself in as it looks to recover from the sudden and extreme lim-
itations of mobility during the COVID-19 pandemic, requires some guidance on how quickly different destinations are going to
recover, and by how much. The high sensitivity to risk events makes tourism industry particularly fragile when pandemics
occur (Novelli et al., 2018). Pandemics often lead tourists to change their travel plans or even to reduce travels due to concerns
on perceived risks (Page et al., 2012; Wilks & Page, 2003). This has been the case in 2020, as the total number of international
tourist arrivals has dropped by 65% between January and June, as a result of the COVID-19 outbreak (UNWTO, 2020).

Pandemics and their effects are not new in the tourism literature. Choe et al. (2020) explored the impact of MERS on inbound
tourism demand in South Korea by adopting several forecasting methods (e.g. the autoregressive integrated moving average -
ARIMA model, exponential smoothing model, and stepwise autoregressive model). Shi and Li (2017) assessed the impact of
MERS on the Chinese tourist flows to Korea by using an autoregressive distributed lag model (ADLM), whereas Song (2016)
estimated a seasonal ARIMA (SARIMA) model to analyse MERS effects on tourists visiting Jeju Island. All these studies showed
created as part of a tourism forecasting competition. They are all members of the International Association of
s of applied tourism economics including tourism demandmodelling and forecasting, economic impactmodel-
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the detrimental effects of MERS on international tourism. Other papers, such as Zeng et al. (2005) and Yang and Chen (2009)
analysed the impact of SARS on international tourism. Kuo et al. (2008) and McAleer et al. (2010) explored both the effects of
Avian Flu and SARS, on tourist arrivals in Asian countries. While SARS significantly decreased tourist demand, moderate impact
emerged due to Avian Flu. Blake et al. (2003), Rodway-Dyer and Shaw, (2005) and Irvine and Anderson (2005) assessed the im-
pact of the foot and mouth disease in the tourism and other UK sectors. Rosselló et al. (2017) studied several disease effects on
infected countries' tourism demand (e.g. Malaria, Yellow Fever, Dengue, and Ebola). Page et al. (2012) adopted a time-variant pa-
rameter (TVP) approach to assess and disentangle the simultaneous effects of the global economic crisis and the swine flu pan-
demic on inbound tourism to UK.

Although based only on how a small number of countries have confronted previous pandemics, two lessons can be in-
ferred from their recoveries. Firstly, tourist arrivals did start to recover even before the pandemic was completely eradicated,
but recovery was slow. Secondly, once the outbreaks of both SARS and MERS were contained, recovery to normal levels took
a matter of months, and soon grew to above pre-outbreak levels. However, the current situation is pretty different: COVID-
19 has not only infected a bunch of countries but nearly 190 countries, causing a global unparalleled crisis, with detrimental
impacts to both the health and economic systems. Gössling et al. (2020), in comparing COVID-19 crisis with different types
of shocks which affected the tourism industry, predict very negative scenarios. Among other pandemics and epidemics,
COVID-19, followed by SARS, remains the external shock that most severely impacted the tourism sector (Ying et al.,
2020). Studying tourism data performance when pandemics occur is crucial to help policy makers in designing smart mea-
sures, reactions and restriction plans (Ying et al., 2020), particularly when events are unpredictable (Faulkner, 2001), as
COVID-19 is. However, given that most previous pandemics only had minor or moderate impacts on travel and tourism
growth (Gallego & Font, 2020), the tourism sector may have not been sufficiently prepared for pandemics of such dimension
as COVID-19 (Gössling et al., 2020).

The current COVID-19 crisis is characterized by a high degree of uncertainty. The future behaviour of most variables of socio-
economic interest, including tourism, depends on the evolution of the pandemic, which cannot be anticipated by any degree of
confidence. While accurate forecasting exercises in normal times are crucial and are important planning tools for policy makers
(Witt & Song, 2001), more research is needed when external unpredictable shocks occur. In fact, strategies planned before a crisis
result in more effective crisis management plans (Ritchie, 2004; Page et al., 2006; Kuo et al., 2008). Under these circumstances,
adopting conventional forecasting methods (based on past dynamics of variables and/or their determinants) is not appropriate,
as the massive estimation error would make the forecasts useless. In other words, conventional forecasting techniques provide
a central estimate under the assumption that there is an estimation interval based on the statistical behaviour of the variables
in the past. After an unexpected shock, particularly as relevant as the current one, providing central values with an enormous in-
terval error is not informative.

Given the above considerations, an appropriate alternative is to provide forecasts based on different scenarios. Scenarios
should consider the uncertainty root, such as the evolution of the pandemic in the current crisis. Although international institu-
tions such as UNWTO already issued tourism recovery scenarios for the months to come, such exercise is challenging in a global
crisis context. The dramatic change in global tourism trends, on one hand, and the profound uncertainty related to the evolution
of the outbreak, on the other hand, imply the need to define a tailored forecasting method. However, in the tourism demand fore-
casting literature, the ex ante forecast is limited with a few exceptions such as Song et al. (2011), Athanasopoulos et al. (2011), Liu
et al. (2020). To our best knowledge, Polyzos et al. (2020) and Zhang et al. (2021) are the only studies using ex ante forecast to
predict the demand recovery from COVID-19, but these are both based on a single destination. The forecast of recovery from a
global perspective has been overlooked in the tourism demand forecasting literature.

With the above considerations in mind, we propose a novel scenario-based two-steps mixed method to forecast worldwide
international tourism recovery up to 2021. We estimated tourist arrivals for 20 countries covering the four UNWTO regions
and representing different tourism destinations' typologies. For each destination, tourism demand is proxied by the volume of in-
ternational tourist arrivals. Our estimates considered both, total tourist arrivals, and arrivals from the main five source markets.

Our approach combines advanced tourism demand forecasts, a COVID-19 Risk Exposure (CORE) index and judgmental fore-
casting technics. We applied 14 alternative forecast specifications covering various time series and artificial intelligence (AI)
models, and its hybrid and combined approaches. The second ex ante forecast faced the challenge of creating scenarios for 20
worldwide destinations around the globe. Given the vast amount of general information, we proposed a synthetic index, CORE,
that provides an objective measure of the risk exposure of each destination. This index includes quantitative information on ac-
cessibility and the restrictive measures adopted by economies to inhibit the virus spread. A two steps cluster analysis is used to
segment countries' policy reactions. Afterwards, CORE index is used to inform a judgmental approach process which leads to con-
sider three scenarios of COVID-19 impacts.

This paper significantly contributes to the literature in several ways. First, we propose an innovative composite method for sce-
nario building, based on the concurrent use of advanced demand modelling, a composite index, and judgmental approach. Second,
most previous studies estimated pandemics' impact based on ex post demand modelling. This study is one of the few
implementing ex ante tourist arrivals forecast and predicting the market recovery from a crisis. Third, this paper adds to the
scant literature forecasting the inbound tourism effects of a pandemic affecting most origins and destinations in the world. We
estimated country-specific scenarios for 20 countries representing all continents.

The rest of the paper is organised as follows. Section 2 describes the two steps modelling strategy. First, advanced time-series
techniques are implemented to calibrate and test a baseline model through ex post recent tourist arrivals' forecasting. Then,
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scenario writing based on judgmental approach is used to produce ex ante forecasts to the end of 2021. Section 3 presents and
discusses the results of this modelling exercise. Finally, Section 4 provides conclusions.

Modelling strategies

The forecast of the recovery of international visitors to the 20 selected destinations is composed of two stages. In the first
stage, quarterly data of five selected source markets and the total arrivals are used to generate the ex post forecast of 2019 visitor
arrivals for each destination. The sampling period is from the earliest available period to the end of 2018. Rolling forecasts of one-,
two-, three- and four-quarters-ahead are generated. The forecasting accuracy is measured by the mean absolute scaled error
(MASE) proposed by Hyndman and Koehler (2006). The most accurate method will be selected to generate the baseline forecast
for international visitor arrivals to 2021. This baseline is a forecast of what would have happened if the COVID-19 pandemic had
not occurred. Then, in the second stage, CORE index and judgmental approach are combined to obtain adjustment coefficients.
These coefficients are used to present three scenarios (mild, medium and severe) for 2021 forecast based on the 2019 visitor ar-
rivals. Fourteen out of the 20 selected destinations measure the inbound tourism demand by visitor arrivals, whereas Finland, the
Mauritius, South Africa and Tunisia by tourist arrivals and Czech Republic and Sweden by hotel nights.

Strategy of the first stage

Econometric, time series and AI models are the main forecasting approaches in the tourism and hospitality literature and fore-
casting practice (Song et al., 2019). Unreliable predictions of explanatory variables will affect the forecasting accuracy of econo-
metric models. In fact, this is one forecasting challenges associated with COVID-19 crisis. It is unlikely to obtain credible
forecasts of the conventional independent variables, such as source markets' income or real prices, to generate ex ante forecasts.
Thus, econometric models are excluded from this study. Time series, AI, the hybrid of the two approaches and combined models
are adapted to generate the first stage forecasts.

Time series models
The seasonal naïve (Snaïve) model, SARIMA model, exponential smoothing (ETS) model, and seasonal and trend decomposi-

tion using Loess (STL) model, which are four frequently used time series models, are selected to implement the ex post forecast in
the first stage. The Snaïve assumes that a quarter's forecast equals the previous year same quarter value. It is usually used as the
benchmark model in tourism demand forecasting literature (Song et al., 2019). The SARIMA model belongs to the autoregressive
moving average (ARMA) family. Although it has been developed over the past five decades, it is popular in tourism demand fore-
casting literature, and its performance has a good track record (Song et al., 2019). Snaïve and SARIMA are respectively estimated
by the snaive () and auto.arima () functions of the “forecast” package in R (a commonly used software package). Lag orders in
SARIMA are automatically selected by the Box-Jenkins approach.

The original ETS method was proposed in the 1950s and has been continuously improved since then (Hyndman &
Athanasopoulos, 2018). This model decomposes the time series into level, trend and seasonality, and then estimates each compo-
nent by various smoothing (average) methods with exponentially decreasing weights. ETS is estimated by the es () function in
the “smooth” package of R. The type of level, trend and seasonality are automatically optimised by Akaike Information Criteria
(AIC) and estimated accordingly.

The STL model also decomposes the data into trend, seasonal and irregular components. In normal forecasting practice, the
three decomposed time series are estimated by other time series methods and then the decomposed forecasts are aggregated.
In the current study, the STL model is estimated by the stlm () function in the “forecast” R package. The seasonal trend is esti-
mated by the Snaïve model and the other two components are combined first and then estimated by ETS method. Finally, the
seasonal and the combined trend and irregular components are aggregated.

AI models
Three frequently adapted AI models, namely neutral network (NN), random forest (RF) and support vector machine (SVM) are

used to generate the ex post forecasts. In this study, the NN model takes the lagged dependent variable and seasonal dummies as
inputs, and establishes a non-linear relationship between inputs and the output by a hidden layer. The model is estimated by the
nnetar () function in the package “forecast” of R. The lagged order is determined by AIC, and the number of nodes in the hidden
layer is selected by a grid search, ranging from 1 to 20. The model with the least absolute forecasting error is used to present the
NN forecasting result.

RF is an ensemble learning method which builds multitude decision trees using the training dataset, and uses the mean pre-
diction of individual trees as the forecasting output. Seasonal dummies are also considered as inputs into the model. Two
hyperparameters need to be determined for the estimation. The first one is the number of trees. Breiman (2001) proved that
the generalization error converged as the number of trees increased. Thus, the number of trees in this study is set to 1000,
which is large enough to limit the generalization error (ibid). The second hyperparameter is the number of randomly selected
features. As a rule of thumb, it should be smaller than log (N + 1), where N is the sample size (ibid). Since the largest sample
size of this research is 96, a grid search from 1 to 3 is used to explore the most accurate NN model for each origin-destination
pair. The RF model is estimated by the function random Forecast in the “randomForecast” package of R.
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SVM is another classical machine learning method which uses different algorithms to map and divide observations into groups
in a space and then map new observations into the developed groups. In addition to the traditional linear classification, a poly-
nomial method is adapted to map the inputs into a high-dimensional feature space (Goldberg & Elhadad, 2008). Seasonal
dummies are defined as model inputs. According to Meyer et al. (2019), four hyperparameters need to be tuned in order to iden-
tify the most accurate model. Details of the four hyperparameters can be found in Meyer et al. (2019). The SVM model is esti-
mated by the tune.svm () function in the “e1071” package of R.

Hybrid models and forecast combination
Three hybrid models are proposed in this research. In the hybrid models, the trend and seasonal components are estimated by

the STL model using ETS and Snaïve methods, while the irregular component is estimated by NN, NF and SVM, using the same
procedure discussed in the previous section to optimise hyperparameters. The three hybrid models are named as STL-NN, STL-
NF and STL-SVM.

Compared with a single forecasting method, a combination forecast can provide more robust results (Li et al., 2019), because
there is no forecasting model that can always beat other models (Song et al., 2019). In this paper, simple average forecast com-
bination is used to generate four combined models including the combination of the four time series models (C_TS), the combi-
nation of the three AI models (C_AI), the combination of the three hybrid STL and AI models (C_Hybrid) and the combination of
all the above 10 models (C_10). In total, 14 models are used to generate the ex post forecast in the first stage. The optimal model
in Stage 1 is used to generate the baseline forecast without the consideration of COVID-19. It is assumed that no origin-destination
pair can recover to a level beyond the baseline forecast. The 2020 arrivals are a mix of real data and the seasonal mean between
2020 lowest number and the 2021 forecast in the same quarter.

Strategy of the second stage: judgmental forecasting and COVID-19 risk exposure (CORE) index

Scenario-based judgmental forecasting
A scenario-based judgmental forecasting is used to predict the recovery of tourism demand in 2021. Scenario writing is par-

ticularly appropriate when there is low predictability regarding the future evolution of some relevant variables or events
(Önkal et al., 2013; Wright & Goodwin, 2009). This is usually applied in crises management (Pearson & Clair, 1998) and intelli-
gence analysis (Wicke et al., 2019). Scenario writing has also been incorporated in previous tourism research. Prideaux et al.
(2003), used the case of Indonesia in the late 1990's and early 2000's to stress that traditional forecasting methods are not ade-
quate in times of crises. They propose to “bring together the quantitative elements of forecasting plus less frequently used qual-
itative methods to produce a series of scenarios.” Song et al. (2008) combine the use of both judgmental forecasting and scenario
writing. They defend that scenarios are particularly useful to incorporate different relevant variables' values under uncertainty.

Judgmental forecasting aims at incorporating experts' knowledge into a predicting context. The objective is to enrich forecast-
ing process incorporating experts' contextual information which was not included in the statistical modelling (Lawrence et al.,
2006). Judgmental forecasting can be a “pure judgmental” exercise, as in Dovern and Weisser (2011), in which experts provide
macroeconomic forecasts. Or it can be an adjustment process: first, statistical models are applied; afterwards, experts adjust initial
forecast incorporating contextual knowledge (Lin et al., 2014). There is considerable literature indicating that this approach pro-
vides more accurate estimates (Fildes et al., 2006; Fildes et al., 2009; Goodwin, 2005). Dijk and Franses (2019) used statistical
properties to technically prove why combined expert adjustment improves forecasts accuracy. They indicate that the experts' dif-
ferent interpretation of news might explain a negative covariance that leads to better combined adjusted forecasts. In this sense,
we used experts from five different origins to incorporate different contextual interpretation of the COVID-19 effects.

Judgmental two-steps adjustment was already used in the tourism literature 40 year ago (Edgell et al., 1980). More recently
Song et al. (2008) propose a web-based system with two steps: first, econometric models are used to forecasts Hong Kong's in-
bound tourism; then, a panel of experts adjusts the results through a Delphi type revision process. Croce and Wöber (2011) ap-
plies user intervention at the European tourism context in what is labelled as “system supporting collaborative forecasting”. They
allow for both “pure judgmental” and judgmental adjustment. Lin et al. (2014) applies a similar approach, but they improved the
tourism demand forecasting system mainly by considering more advanced econometric models (ARDL-ECM), and by providing
accuracy quantification. In their research, they concluded that the two-steps process on average improved accuracy and was un-
biased, although the adjustments were biased for some individual source markets. Delphi type methods are often used to generate
consensus in forecasters groups. Lin and Song (2015) reviewed its applications in tourism and indicated its usefulness in situa-
tions similar to the current COVID-19 effects: insufficient data, change in trends and new events that interfere with the forecast.

Development of CORE index
In this study, the CORE index is developed on the basis of a set of objective measures. A Delphi method was implemented to

collect opinions among the authors of this study about adjustment coefficients for 2021 forecast based on the 2019 visitor arrivals
to the destinations. The construction of the CORE procedure followed the following steps: First, researchers participate in several
rounds of consultation to define the list of objective variables that could measure destinations' COVID-19 risk exposure at inter-
national level. The following paragraphs of this section describe the index construction. Second, researchers were informed about
the CORE results, and they were asked to anonymously provide maximum and minimum percentage impacts for the countries
with higher and lower values CORE, for each of the mild, medium and severe scenarios. Then the relationship between the
4
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generated adjustment coefficient and the index was established. To ensure consistency, the adjustment coefficients of the other 18
destinations are predicted by their position in the CORE index relative to the highest and lowest values.

Considering specifically the construction of CORE, the index combines two quantitative elements that determined the evolu-
tion of tourism after COVID-19 at the different destinations: the accessibility risk (AR), and the country's self-protecting measures
(SP). These two measures are country specific.
Table 1
Weights

Destin

Austr
Bulga
Canad
Chile
Czech
Finlan
Indon
Japan
Malay
Maur
Mexic
New
Singa
South
South
Swed
Thaila
Tunis
UK
USA
CORE index ¼ f AR, SPð Þ
Accessibility risk sub-index (AR). The negative impact of COVID-19 on the tourism industry operates through different channels of
policy regulations and demand and supply reactions. However, the pandemic's impact on mobility has been particularly relevant.
Mobility is the essence of tourism as captured by its official definition: tourism “entails the movement of people to countries or
places outside their usual environment” (UNWTO, 2008). The AR sub-index aims at capturing that the impact of COVID-19 on in-
ternational mobility is moderated by distance. Therefore, AR sub-index, classify each inbound tourism market into three groups:

AR-a) Feasible land and water transport

AR-b) Short-haul flight
AR-c) Long-haul flight

There are different academic approaches for short-haul or long-haul classification considering both, distance and travel time
(Bianchi et al., 2017; Fang & McKercher, 2008; Ho & McKercher, 2014; Wilkerson et al., 2010). The procedure followed in this
paper was that for each pair of origin-destination, we considered the closest international airports with relevance for tourism.
If the flight time between those airports was less than 3 h, the pair was considered in category b, while it was assigned to cate-
gory c for longer flights. Also, countries that were connected by existing land or boat routes in less than 6 h were assigned to cat-
egory a. Afterwards, judgmental approach was used to allocate values to each destination group, considering that a higher value
indicates a higher exposure of its tourism sector to COVID-19 due to accessibility risks. The AR sub-indexes for each destination's
specific origin markets were then combined through a weighted average into a single AR sub-index (See Table 1). The weights
were assigned based on the most recent market share data.

The second column of Table 1 presents the normalized AR. Therefore, Australia, due to its dependence on long-haul markets,
presents an accessibility risk that is 34% higher than the 20 destinations' average. Differently, Mexico presents only half accessi-
bility risk compared with the 20 destinations' average, as 80% of its inbound tourism comes from the US. It is obvious that in
the case of large origin-destination pairs, such as US-Mexico, most tourists will not come by land or boat transportation. However,
the assumption adopted in the paper is that the vicinity effect is still persistent and relevant for the COVID-19 -travel effects. Vis-
itors are assumed to value positively the fact that they are close to their country, and they could avoid getting “trapped” at the
destination. Additionally, there is a degree of substitution of long-haul trips favouring short-distance destinations.

Self-protecting country's measures sub-index (SP). The impact of the COVID-19 outbreak on inbound tourism has been deeply af-
fected by the magnitude of self-protecting country's measures. There has been a huge variability in the type of policies and
their speed of implementation.
of the CORE index.

ation Normalized AR Normalized SP AR & SP

alia 1.34 1.29 1.73
ria 1.17 0.32 0.38
a 0.64 1.29 0.82

1.10 0.97 1.07
Republic 1.05 0.97 1.01
d 1.07 0.97 1.04
esia 1.04 1.29 1.34

1.05 0.97 1.01
sia 0.65 0.97 0.63
itius 1.36 1.29 1.76
o 0.51 0.97 0.50
Zealand 1.20 1.29 1.54
pore 1.16 0.32 0.37
Africa 0.90 1.29 1.16
Korea 1.06 0.97 1.03
en 0.84 0.97 0.81
nd 1.10 1.29 1.42
ia 0.77 1.29 0.99

1.14 0.32 0.37
0.85 0.97 0.83

5



A. Liu, L. Vici, V. Ramos et al. Annals of Tourism Research 88 (2021) 103182
To control for countries' policy reactions, we used the Hale et al.'s (2020) coronavirus Government Response Tracker (OxCGRT)
provided by the Blavatnik School of Government at the University of Oxford. In particular, we considered the number of days (be-
tween January 1st and August 31st) in which countries imposed international travel controls. There is a ranking of policy reactions
regarding international mobility ranging from a) no measures; to different limitations such as: b) quarantine on arrival from high-
risk regions; c) ban on high-risk regions; or d) total border closure.

Given that some countries may have substituted international travel controls through airports' closure, or by simply shrinking
air traffic flows, we also considered the reduction of flight departures for our analysis. ICAO (2020) data have been used to count
the number of days in which the countries have registered a number of flight departures 20% lower than the pre-COVID-19
average.

The four typologies of travel restrictions (three restrictive policies, and air traffic below 20%) have been used to classify the
destinations in groups. Methodologically, a mixed two-steps cluster analysis has been adopted to segment countries into homo-
geneous groups. Although the most common cluster techniques are hierarchical or non-hierarchical methods, they are both weak
in terms of cluster set selection and outlier (noise) detection (Tan et al., 2006). The mixed approach is recommended as it pro-
vides accurate solutions, while controlling for outliers (Hair et al., 2010). In the first step, a hierarchical algorithm (i.e. complete
linkage) has been adopted to identify the best partition, while the squared Euclidean distance has been used to measure dissim-
ilarities. Two types of stopping rules (the Calìnski and Harabasz pseudo-F index and the Duda–Hart test) have been used to detect
the optimal partition. In the second step, a non-hierarchical K-means method has been adopted by imposing the number of clus-
ters identified in the first step.

The two-steps cluster analysis suggests to group countries in three clusters: the group of very restrictive countries that im-
posed a total closure of borders and completely or severe air traffic reduction (group 3), which includes 10 countries
(Mauritius, South Africa, Canada, Tunisia, Thailand, Indonesia, New Zealand, Australia); another group of 9 countries (Mexico,
Sweden, Chile, Finland, USA, Republic of South Korea, Japan, Malaysia, Czech Republic) that adopted slightly less restricting travel
limitations by banning journeys from high-risk regions, while reducing flights from other areas (group 1); a final group of 3 coun-
tries (UK, Bulgaria, Singapore) which imposed softer travel restriction policies and weaker flight controls (group 2). The matrix
Fig. 1. Pairwise plot of the travel restriction measures with identification of clusters (panel a) or country codes (panel b).
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scatter plot (Fig. 1, panel a) shows the pairwise links between the four measures used to cluster countries in homogeneous groups
and visually highlights the specific behaviour of the different clusters with respect to these four variables. For example, the first
plot (from the top) shows for each country the number of days it imposed a quarantine to arrivals from high-risk regions (hor-
izontal axis) and the number of days it banned tourists from high-risk regions (vertical axis) in the time span analysed. Countries
belonging to group 1 mainly banned tourists from high-risk regions, while nearly never imposed quarantine to arrivals (with
some exceptions). The opposite occurred to the countries belonging to group 2. Fig. 1, panel b, presents complementary informa-
tion. In this sense, instead of displaying the group, the graph presents the countries' acronyms. In other words, panel b identifies
each destination and positions it with respect to the four measures. So, for example, panel b shows where South Korea is located
and, comparing it to panel a, it is clear it belongs to group 1.

In a parallel way as for AR, a global SP has been obtained providing different values for the three groups described above. A
similar normalization has been applied to compute the third column of Table 1. The values capture the percentage change com-
pared with the average behaviour of the 20 destinations.

The two normalized indexes were multiplied, generating the Table 1's fourth column. Note that this column indicates the
country-specific accessibility and response related with COVID-19. Higher values indicate higher exposure to COVID-19.
Mauritius, with a value of 1.75 ranks as the destination for which tourism is more at risk of being substantially affected by
COVID-19, closely followed by Australia. On the other side of the distribution, the UK, with a value of 0.36, is the country with
the smallest combined index.

Results and discussion

First stage results

Table 2 presents the MASE values of the 14 forecasting methods across the first stage four rolling periods. The last column in-
dicates the overall performance, which is computed as the simple average mean across the four-steps ahead forecasts. Overall,
C_TS, which combines the four time series models can outperform all the other 13 models including the four single times series
models, three single AI models, the hybrid models and the other three combined models. Thus, this method is the best among the
14 proposed methods. In terms of the 10 single methods, time series models outperformed all AI and hybrid models. In the overall
performance, the combination of all the 10 models can outperform all single models except SARIMA and ETS. As argued by Song
et al. (2019) and Wu et al. (2017), although SARIMA and ETS are traditional methods that have been used for decades, their per-
formance is well acknowledged in the literature. The full results of Stage 1 including the MASE values of 120 origin-destination
pairs across the four rolling periods generated by different methods are available upon request.

Second stage results

The full results of Stage 2 are summarized in Table 3. For each country and scenario, the table indicates: the percentage
deepest impact; the quarter in which this deepest impact occurs (bottom quarter of 2020 in column 1); and the recovery rate
during 2021. Note that, at the time of estimation (October 2020), tourist arrivals data for the second quarter of 2020 were already
available for some countries. In those cases, if the bottom period occurs during this second quarter, the reported deepest impact
does not vary among scenarios. In line with previous recoveries from epidemics such as SARS and MERS it is to be expected that
when infection rates are low enough and travel bans are lifted, a significant but not complete, recovery in tourism numbers will
occur rather than a gradual recovery pattern. The exact time that this will happen cannot be predicted accurately, and is show in
the results as a sharp recovery in the first quarter of 2021, which the judgmental forecast deemed the most likely.

For sake of space, we will only discuss in detail the total arrivals' forecasts to five destinations. The choice of the five selected
destinations relies on their location in different continents, the different AR and SP values, the COVID-19 overall impact, and the
Table 2
MASE of 15 forecasting methods across four rolling periods.

One-quarter-ahead Two-quarters-ahead Three-quarters-ahead Four-quarters-ahead Overall performance

SARIMA 1.17 1.12 1.32 1.39 1.25
STL 1.57 1.68 1.77 1.72 1.69
Snaïve 1.39 1.20 1.28 1.31 1.30
ETS 1.09 1.15 1.31 1.42 1.24
RN 5.54 5.71 6.02 6.41 5.91
NN 1.27 1.42 1.50 1.82 1.46
SVM 2.12 2.04 2.20 2.58 2.24
STL-RN 1.80 1.86 1.95 1.93 1.88
STL-NN 1.59 1.56 1.59 1.90 1.62
STL-SVM 1.48 1.63 1.91 1.85 1.72
C_TS 1.10 1.10 1.26 1.27 1.18
C_AI 1.51 1.58 1.72 2.06 1.70
C_Hybrid 1.57 1.61 1.75 1.84 1.67
C_10 1.19 1.19 1.32 1.37 1.27
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Table 3
Summary of the forecasting results in stage 2.

Destination (bottom quarter, 2020) Indicator Scenario mild Scenario medium Scenario severe

Australia (Q2) Deepest impact −99.45% −99.45% −99.45%
2021 recovery rate 70.98% 41.58% 12.26%

Bulgaria (Q2) Deepest impact −79.99% −97.34% −98.41%
2021 recovery rate 70.98% 41.58% 12.26%

Canada (Q2) Deepest impact −82.58% −97.55% −98.53%
2021 recovery rate 77.44% 49.43% 22.84%

Chile (Q1) Deepest impact −90.67% −99.14% −99.47%
2021 recovery rate 88.76% 63.51% 27.12%

Czech Republic (Q2) Deepest impact −82.94% −97.52% −98.50%
2021 recovery rate 92.95% 62.98% 27.42%

Finland (Q3) Deepest impact −76.47% −95.16% −97.58%
2021 recovery rate 82.01% 59.11% 25.54%

Indonesia (Q1) Deepest impact −91.51% −98.51% −99.50%
2021 recovery rate 79.37% 50.83% 19.38%

Japan (Q2) Deepest impact −99.92% −99.92% −99.92%
2021 recovery rate 66.92% 44.53% 20.29%

Malaysia (Q2) Deepest impact −80.42% −97.55% −98.53%
2021 recovery rate 76.21% 49.77% 24.20%

Mauritius (Q2) Deepest impact −96.91% −98.08% −98.88%
2021 recovery rate 59.64% 36.32% 10.43%

Mexico (Q1) Deepest impact −95.98% −99.37% −99.79%
2021 recovery rate 77.06% 50.23% 25.17%

New Zealand (Q2) Deepest impact −99.00% −99.00% −99.00%
2021 recovery rate 62.16% 37.23% 12.62%

Singapore (Q2) Deepest impact −99.92% −99.92% −99.92%
2021 recovery rate 93.30% 77.06% 40.17%

South Africa (Q2) Deepest impact −90.33% −98.52% −99.11%
2021 recovery rate 71.28% 48.05% 19.81%

South Korea (Q2) Deepest impact −97.86% −97.86% −97.86%
2021 recovery rate 79.39% 49.89% 21.60%

Sweden (Q2) Deepest impact −82.44% −97.36% −98.41%
2021 recovery rate 69.14% 47.93% 22.53%

Thailand (Q2) Deepest impact −84.99% −97.90% −98.76%
2021 recovery rate 73.38% 46.21% 21.33%

Tunisia (Q2) Deepest impact −90.00% −97.39% −98.52%
2021 recovery rate 87.34% 55.06% 24.15%

UK (Q2) Deepest impact −80.42% −97.55% −98.53%
2021 recovery rate 82.41% 61.36% 31.56%

USA (Q2) Deepest impact −84.99% −97.90% −98.76%
2021 recovery rate 73.38% 46.21% 21.33%
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quality of the first stage forecasts. In line with these criteria, we selected Australia, Mexico, South Korea, Tunisia and the UK
(Fig. 2).

Even though in Australia tourism contributes to 9% of GDP, and 83% of tourism spending derives from domestic tourism
(WTTC, 2020), this destination is among those countries that suffered most from tourist arrival losses (−99.45% in the second
quarter 2020). This is because around 85% of inbound tourism comes from distant countries (long-haul flight). Australia is
among those destinations that adopted tighter measures to limit the virus' spread. It totally closed borders and several airports,
and drastically reduced air connections (Fig. 1, panel b). These measures severely affected inbound tourism, as also indicated
by the COVID-19 Tourism Index (Yang et al., 2020), falling from 96.8 at the end of January to 23.04 at the beginning of April.
Since then, it recovered in part to 35.68 at the end of August (with a positive recovery during June reaching an index value
around 45). We forecast that, in the best scenario, Australia will recover 70.98% of tourist arrivals in 2021. However, in the
harshest scenario, when new possible waves of virus spread may occur, we forecast a recovery rate of 12.26%.

Mexico heavily relies on international tourist arrivals since, before the COVID-19 outbreak, only 6% of total tourism spending
was due to domestic tourism, while tourism receipts represented 15.8% of GDP (WTTC, 2020). Starting from 94.71, its COVID-19
Tourism index (Yang et al., 2020) plunged to 14.07 in March 2020, and reached 34.83 by August. Mexico belongs to the group of
countries who tried to preserve both their safety and their tourism competitiveness. It implemented protective but flexible mea-
sures such as high-risk countries' ban and flights' limitations. We forecast the deepest tourist arrivals fall in the second quarter
2020, ranging from −93.18 in the mildest scenario to −99.45% in the worst scenario. Nonetheless, Mexico could benefit from
its moderate self-protecting policy on the one hand, and its proximity to United States, its main origin market. Before the out-
break, the USA accounted for 80% of tourist flows and, provided that the border reopened soon, the recovery of Mexico could
be strong enough. In the best scenario, we expect a 77.06% recovery for 2021 compared to 2019, while it will only achieve
25.17% recovery in the worst scenario.

In South Korea, the tourism industry contributes by 26.3% to GDP (WTTC, 2020), mainly due to international tourism (only
22% of tourism spending is attributable to domestic market). South Korea is among those destinations that reacted immediately
8
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Fig. 2. Scenario forecasts of selected destinations.
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to limit COVID-19 outbreak, given its previous experience in limiting pandemic spreads and losses (MERS, H1N1, etc.). It banned
journeys from high-risk countries and imposed quarantines from other regions; moreover, it registered a high reduction in air
traffic. 63% of its inbound tourism flows originate in relatively close destinations, and this can have helped in limiting losses. In
the second quarter 2020, it lost around 98% of its usual inbound tourist flows. The COVID-19 tourism index (Yang et al., 2020)
fell from 95.52 before the virus outbreak to 20.34 in April. This index slightly improved, but now it fluctuates around a value
of 30. We forecast that, in the most optimistic scenario, South Korea will recover 79.39% of previous tourist arrivals in 2021. How-
ever, in the most pessimistic scenario, the recovery rate is forecasted to be 21.60%.

Before COVID-19 outbreak, tourism accounted for 8% of GDP in Tunisia, and tourism spending was mostly domestic, 76% of the
total according to WTTC (2020). The COVID-19 Tourism index considers that the country has fallen from a score of 95.03 in the
early 2020 to a minimum of 7.75 in April, before rising back to 55.32 in August (Yang et al., 2020). Tunisia has implemented strict
self-protecting measures; its SP index score is among the highest and this has a clear impact on frequentation. According to our
forecasts, the visitors' drop for 2020Q2 ranges between −90% and −98.5%. Nonetheless, we believe that Tunisia benefits from the
fact that its main source markets are neighbours or short-haul destinations, and this could favour the recovery for 2021. We fore-
cast a strong recovery of 87.34% in the best scenario and 55.06% in the medium scenario.

In the pre-COVID-19 context, the United Kingdom tourism industry generated 8.4% of GDP (according to the WTTC, 2020),
with international tourism accounting for 68% of total tourism spending. This country is among those destinations that initially
adopted softer travel restrictions (it mainly imposed quarantine on arrivals from high-risk regions), while in part limited flight
departures (Fig. 1, panel b). However, the remote origin of a large part of its international tourism demand (68%) exacerbates
its COVID-19 risk exposure. The United Kingdom registered its largest tourism decline in the second quarter 2020, when the
loss of tourist arrivals ranges between −80.42%, in the mildest scenario and −98.53% in the severest scenario. Its COVID-19 Tour-
ism Index (Yang et al., 2020) fell from 96.18 in pre-COVID-19 periods to 11.34 in April, then started its recovery until the end of
August (47.55) when it was stopped by COVID-19 second wave, which led to a stable downturn of the index. Given the laxer re-
action of this country to limit travel traffic, our model forecasts that, in the mildest scenario, the UK will register a recovery rate of
82.41% in 2021, whereas in the severest scenario, the unbounded spread of the virus will reduce the recovery rate to 31.56%.
Conclusions

This paper demonstrates a novel forecasting technique to apply existing methodologies to an unprecedented uncertain situa-
tion. The combination of advanced forecasting techniques with a scenario-based judgmental approach has been necessary given
the uniqueness of the forecasting horizon. Never before has tourism been in a situation of effectively being locked down around
the globe, and never before has it needed to recover from such a situation, so traditional forecasting methods alone are not capa-
ble of providing reliable forecasts. We are also confronted with uncertainties about the epidemiology of the virus and the timing,
or even the possibility, of a vaccine or of lockdown measures leading to a situation where travel is unable to recover.

While data projections are essential tools for policy makers and their strategic planning in normal conditions (Witt & Song,
2001), more research is needed when unpredictable shocks, like COVID-19, occur. Accurate ex-ante forecasting may help policy
makers in developing effective crisis management plans (Kuo et al., 2008; Page et al., 2006; Ritchie, 2004).

We propose a CORE index, which has been used to apply a novel forecasting procedure to estimate tourist arrivals as destina-
tions recover from the COVID-19 pandemic. In terms of replicability, our proposed approach could be applied to future tourism
crises by adapting the synthetic index to the relevant objective measures of the corresponding case.

The originality of the research is the introduction of a two-step scenario-based judgmental forecasting in an ex ante forecasting
practice. At the first stage, we estimated 14 alternative specifications (including advance time series, AI models, its hybrid and
combined versions) modelling tourist arrivals to 20 international destinations. For each of them, we considered total arrivals
and the series for their main 5 origin markets. The ex post forecasts are evaluated to determine that the combination of the
four time series models was the optimal methodology. This has been used to generate an ex ante baseline forecast of which
would have been the expected tourist arrivals under the assumption of no COVID-19. At the second stage, judgmental forecasting
uses CORE index to estimate three alternative ex ante scenarios. CORE index synthetizes two determinates of destinations' risk ex-
posure: First, the AR sub-index, examined the accessibility risk, as different modes of transport and different lengths of journeys
are likely to recover differently. Second, a self-protecting measures' sub-index (SP), examined how countries implemented mea-
sures to protect their citizens from the spread of the virus in early 2020. Countries were segmented through cluster analysis, pro-
ducing an index that demonstrates government restrictions' risks on their tourism industries. The CORE index has been used to
inform judgmental forecasting to produce country specific adjustment coefficients from the baseline forecast. Finally, we used
those coefficients to estimate tourist arrivals for three alternative scenarios.

The results demonstrate that in the best-case scenario (mild), where COVID-19 cases will have dramatically dropped, some
countries (particularly those that do not rely on long-haul markets) will recover to somewhere near the baseline. This is consis-
tent with past experiences following SARS and MERS. In our central (medium) and worst-case (severe) scenarios, however, the
spread of the virus has not been eliminated or contained and may be accelerating in the severe case. Under these assumptions,
the forecasted tourist arrivals are far from the baseline, and would still be considered to be in crisis throughout our forecasting
period to the end of 2021, and even beyond. The results obtained using our methodology suggest that the speed and intensity
of the recovery is going to depend on how much a destination depends on long-haul markets. The less dependent on long-
haul, the faster a destination recovers. Beyond the countries considered in the paper, this method could be applied to any
10
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destination upon data availability. The method can also be generalized to forecast the recovery in the future crises given that high
uncertainty is a common feature of all crises.

Our analysis is not free of limitations. In the first stage of analysis, we could not estimate econometric forecasting models and
compare their performance with the other models because accurate forecasts for the inputs, such as GDP of source markets or
consumer price indices, were not available. For future research, if reliable predictions are made available, econometric models
can also be tested when defining the best performing approach. Furthermore, the definition of proper scenarios is a challenging
task in a context in which the recovery process of the tourism industry crucially depends on a series of external events, such as
the development of an effective vaccine or the capacity of governments to implement and coordinate worldwide efficient risk
management strategies. Future research could also test whether the accuracy of ex-ante forecasting changes when different mea-
sures of tourism demand are considered besides international tourist arrivals (e.g. overnight stays, tourism receipts). As for other
pandemics, COVID-19 is going to generate a number of ex post impact studies. The use of the CORE is a key contribution of this
paper. Future research, confronting forecasts to actual data, is needed in order to assess the validity and the accuracy of this ap-
proach. Such validation studies would make it possible to improve the index and apply it to forecast the impact of the next tour-
ism crises.
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