
Computational and Structural Biotechnology Journal 21 (2023) 176–184
journal homepage: www.elsevier .com/locate /csbj
Mini review
Deconvolution algorithms for inference of the cell-type composition of
the spatial transcriptome
https://doi.org/10.1016/j.csbj.2022.12.001
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: songjiajia2010@shsmu.edu.cn (J. Song).

1 The authors contribute equally.
Yingkun Zhang a,b,1, Xinrui Lin a,1, Zhixian Yao a, Di Sun a, Xin Lin a,c, Xiaoyu Wang b, Chaoyong Yang a,b,
Jia Song a,⇑
a Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
b State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
cChemistry and Materials Science College, Shanghai Normal University, Shanghai 200234, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 August 2022
Received in revised form 1 December 2022
Accepted 1 December 2022
Available online 5 December 2022

Keywords:
Deconvolution
Spatial transcriptome
Statistic model
Regression
Machine learning
The spatial transcriptome has enabled researchers to resolve transcriptome expression profiles while pre-
serving information about cell location to better understand the complex biological processes that occur
in organisms. Due to technical limitations, the current high-throughput spatial transcriptome sequencing
methods (known as next-generation sequencing with spatial barcoding methods or spot-based methods)
cannot achieve single-cell resolution. A single measurement site, called a spot, in these technologies fre-
quently contains multiple cells of various types. Computational tools for determining the cellular composi-
tion of a spot have emerged as a way to break through these limitations. These tools are known as
deconvolution tools. Recently, a couple of deconvolution tools based on different strategies have been devel-
oped and have shown promise in different aspects. The resulting single-cell resolution expression profiles
and/or single-cell composition of spots will significantly affect downstream data mining; thus, it is crucial
to choose a suitable deconvolution tool. In this review, we present a list of currently available tools for spatial
transcriptome deconvolution, categorize them based on the strategies they employ, and explain their advan-
tages and limitations in detail in order to guide the selection of these tools in future studies.
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Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

Cells—the basic building blocks of living organisms—are
arranged in specific patterns to form complex tissues, and then
form organs. Parsing cellular expression is, therefore, critical for
understanding the mechanisms underlying physiological processes
in living organisms. Although all normal cells in an organism share
almost the same genome, their gene expression profiles and mor-
phologies tend to be distinct. Traditional bulk analysis methods
can be used to extract average population information from a
group of cells, but these methods result in the loss of valuable
properties of individual cells [1]. Single-cell RNA sequencing
(scRNA-seq) technologies developed in recent years provide
insights into cell heterogeneity; however, these methods overlook
spatial characteristics, which are also important for understanding
cellular fate and behavior [2]. Spatial transcriptome technologies,
when combined with histopathology techniques, are powerful
tools for elucidating cell heterogeneity while also retaining spatial
information that can aid in the extraction of more comprehensive
data about biologically significant subjects such as the spatial
heterogeneity of diseases and the delineation of embryonic
development.

Recently, many spatial transcriptome sequencing techniques
have been developed. In general, these techniques can be divided
into three main categories: microscopy-based methods, laser cap-
ture microscopy-based (LCM-based) methods, and next-generation
sequencing (NGS) with spatial barcoding methods [3]. The
microscopy-based methods can be further divided into fluorescent
in situ hybridization-based (FISH-based) approaches (e.g., smFISH
[4], osmFISH [5], MERFISH [6], and seqFISH [7]) and in situ
sequencing-based (ISS-based) approaches (e.g., ISS [8], HybISS
[9], FISSEQ [10], and BARseq [11]). FISH-based approaches have
high gene detection efficiency, and ISS-based approaches can be
applied to large tissue regions. It is possible to achieve single-cell
resolution and/or subcellular transcript localization with these
methods. However, both approaches require predefined probes
and can only detect a limited number of genes. The LCM-based
methods entail locating the region of interest and analyzing its
transcriptome using gene chips or RNA-seq. The advantages of this
method include its ability to obtain wide transcriptional profiles
and its application to 3D tissues; however, it is challenging to scale
up LCM-based methods to larger numbers of samples. In the
spatial-barcoding-based methods, target RNA molecules are cap-
tured in situ and subsequently sequenced ex situ (e.g., 10X Visium,
DBiT [12], Slide-seq [13], HDST [14], and Stereo-seq [15]). These
methods enable high-throughput gene detection of large areas of
tissue across various samples, but they cannot achieve single-cell
resolution. In these methods, tissues are detected by multiple
spots, so they are also known as spot-based methods. The diameter
of the spot varies according to the platform, but it is typically in the
range of 2–10 lm or 50–100 lm. A single spot may contain 1–100
cells, which could be of different cell types. This implies that the
measured gene expression of a spot could represent a mixture of
multiple cells with different gene expression patterns. As a result,
it is difficult to figure out the relationship between single cells with
these methods. Understanding such relationships is crucial for
both the clinical treatment of disease and research on the basic
mechanics of life. For example, in tumor studies, understanding
the patterns of cell colocalization in the immune microenviron-
ment is important for determining appropriate therapeutic strate-
gies [16].

With the development of computational methods in this field,
several deconvolution algorithms that can parse spot-based data
into single-cell level expression profiles have been published, and
these algorithms have improved the application potential of spatial
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barcoding-based methods [13,17–30]. Thus, the spot-based
method is currently the most popular strategy for spatial transcrip-
tome sequencing. To further promote the application of this
method and relevant studies related to it, in this review, we have
described data preprocessing and cell deconvolution tools that
can be used for spatial spot-based methods in this field. This
review summarizes 15 published deconvolution tools for spatial
transcriptome (ST) data and categorizes them based on their pri-
mary strategy. By providing this, we hope to help new researchers
in this field gain a preliminary understanding of spot-based spatial
transcriptome data processing and the concept of deconvolution, in
order to help them choose appropriate methods for their studies.
2. Data preprocessing for the expression profiles of spatial spots

For general scRNA-seq analysis, a central task is to generate an
expression matrix that illustrates the number of transcripts
observed for each gene in each cell. The spot-based spatial tran-
scriptomics method, similar to scRNA-seq, also uses NGS readouts;
hence, it shares some upstream preprocessing steps with scRNA-
seq. The difference is that each barcode (or a combination of bar-
codes representing different dimensions) represents a spot instead
of a single cell, and a spot may contain several cells. For spatial
transcriptome data, deconvolution is required to determine the cell
type composition of each spot based on the generated expression
matrix. Therefore, the general data processing pipeline of spatial
barcoding-based transcriptomics can be split into (1) upstream
preprocessing to generate the expression matrix, (2) deconvolution
to infer the composition of cellular subtypes for spots, and (3)
visualization.

To obtain an expression matrix for spots, raw data from the
sequencer are processed through quality control, correction (bar-
code, UMI correction, and deduplication), mapping (sequence
alignment), counting, and visualization. These steps are referred
to as data preprocessing steps. Several tools can be used to carry
out these processes, including the vendor-specific Space Ranger
created by 10X Genomics based on their prior Cell Ranger or more
general analysis tools (without visualization for spatial transcrip-
tome) such as zUMIs [31], UMI-tools [32], and scPipe [33]. These
steps will be briefly introduced in this section (Fig. 1).

Quality control. The first step of preprocessing is to filter out
useless reads, including reads with low-quality barcodes and/or
UMIs, and to trim non-informative repetitive sequences. This step
eliminates the major noise, such as spurious barcodes caused by
non-specific amplification, and reduces the amount of data for sub-
sequent quantification.

Correction. The remaining reads are carried out with barcode/
UMI correction. Usually barcodes or UMIs with Hamming distance
or Levenshtein distance < 2 are considered to represent the same
spot/cell or the same molecule. Reads are deduplicated to avoid
PCR amplification bias when two read pairs share the same UMI
and barcode sequence.

Mapping. Next, reads are mapped to the genome using an
aligner, such as STAR[34] (zUMIs), BWA[35] (UMI-tools), bowtie2
[36], and subread [37] (scPipe). These aligners and then generate
a bam file, annotating aligned reads with the corresponding gen-
ome positions. With the provided gtf file, overlaps between the
read and the intronic or exonic region can be assessed. For exam-
ple, zUMIs can produce two mutually exclusive annotation files—
one containing information about introns and the other containing
information about exons. With featureCounts in Rsubread, the
aligned reads are first assigned to exons, and the remaining reads
are then assigned to introns. As a result, the expression matrix
becomes more informative, and the subsequent analysis process
becomes more flexible.



Fig. 1. Framework of the typical spatial transcriptome preprocessing pipeline. First, FASTQ files are subjected to quality control treatment. Reads with low-quality barcodes or
UMIs are discarded, and the remaining reads are mapped to the corresponding genome. Next, a barcode/UMI correction process is carried out to fetch reads of the same origin.
Then, a spot-by-gene count matrix is generated according to cDNA and barcode/UMI reads. Finally, the expression matrix is visualized as a series of heat maps.
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Counting. The quantification steps are carried out based on the
bam/sam files obtained. Only high-quality mapped, non-PCR dupli-
cates with reliable barcodes and UMIs are used to generate the
gene-barcode expression matrix.

Visualization. Once the above steps are completed, an expres-
sion matrix is obtained. Unlike single-cell transcriptome results,
each barcode corresponds to a spot in this matrix. The expression
for each gene at each spot at different positions is visualized as a
heat map based on the relationship between the barcode and spa-
tial position. This heat map can be superimposed on the tissue
image.

There are several tools available for each step, and there are also
many integrated tools that can be used to directly carry out all
these steps. It is more convenient to use the integrated tools
instead of building up a new pipeline. However, integrated tools
such as Space Ranger only work with data from 10X Genomics or
data in a format that is compatible with 10X Genomics. Further,
while zUMIs is more universally applicable, it cannot be used to
process tissue images. Thus, there is a need for a more widely
applicable and extensive integrative tool. According to existing
methods, a spot may contain 1 to 100 cells. As a result, the gene
profile for each spot represents mixed heterogeneous cell types,
and single-cell resolution is lost. This limitation underscores the
need to integrate current spatial transcriptomics platforms with
scRNA-seq to maximize the resolution of spatial transcriptome.
Several deconvolution algorithms have been developed to solve
this problem, and 15 mainstream tools are described below.
3. Inferring the proportions of cellular subtypes for spots

As described above, deconvolution algorithms have been devel-
oped in recent years to support the development of high-
throughput single-cell resolution spatial transcriptome techniques.
According to our survey, there are 15 tools that can be used for ST
data deconvolution, including AdRoit [17], DSTG [23], Cell2location
[19], RCTD [25], Stereoscope [26], DestVI [22], STRIDE [30], CARD
[28], NMFreg [13], SpatialDecon [18], SpatialDWLS [27], SPOTlight
[29], Seurat V3 [20], Tangram [21], and STdeconvolve [24]. These
tools can be broadly classified as machine learning-based, statisti-
cal modeling-based, regression-based, data mapping-based, and
reference-free according to the main strategies they use. Indeed,
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these tools usually adopt two or more strategies to construct their
scheme and we categorized them according to their main innova-
tive strategy (Fig. 2, Table 1).
3.1. Machine learning-based algorithms

Machine learning-based approaches typically involve a learning
model (Fig. 2A), such as the neural network. Models are trained
based on scRNA-seq data to determine classifications or predic-
tions for spatial data and to uncover key insights into data mining
projects. DSTG [23] and STRIDE [30] are machine learning-based
deconvolution strategies that implement a graph convolutional
neural network and a topic model, respectively.

Graphs can be used to represent topological relationships
within data, such as sample similarity. For example, DSTG [23] is
a deconvolution method that utilizes a graph convolutional neural
network and transforms unsupervised tasks into semi-supervised
tasks. This tool first generates pseudo-ST data using scRNA-seq
data by randomly selecting and mixing 2–8 cells based on known
scRNA-seq data. Next, downsampling is used to ensure that the
expression of pseudo spots is at the same sequencing depth level
as the real-ST data. Subsequently, DTSG leverages canonical corre-
lation analysis to reduce the dimensions of pseudo-ST and real-ST
data and then uses the K-Nearest Neighbor (k-NN) method to
establish the nearest neighbor relationship between all the spots.
A network graph with all spots as nodes is obtained and its edges
are constructed between the nodes when those spots are mutual
nearest neighbors. Each spot contains the expression of 2000
highly variable genes. Based on such a graph structure, a semi-
supervised graph convolutional network learns latent associations
between the graph structure and gene expression patterns, allow-
ing it to predict the cellular composition of the spots. Since there
are many mixing possibilities of cells for pseudo spots, and the
inferred cell composition of real spots relies on pseudo spots, the
accuracy of this method may be affected by the number of gener-
ated pseudo spots, which can also strongly impact computational
efficiency. This may be a tradeoff for users of this tool. As graph
theory has been a hot topic in recent years and new graph struc-
tures are currently being proposed, it is possible that future graph
structures will be better suited to tackling such problems.



Fig. 2. A summary of ST deconvolution methods. Published tools for deconvolution can be divided into four categories according to their main strategy: regression-based,
statistical-modeling-based, machine learning-based, and mapping-based. All these tools need scRNA-seq data or gene marker lists as reference. However, a recently
developed tool based on the LDA model can deconvolve cell proportions without the need for reference data.
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In addition to graph models, some natural language-processing
models have also gradually been attracting attention in this field.
For example, STRIDE [30] is a topic-modeling-based spatial tran-
scriptomics deconvolution method that estimates cell type propor-
tions from ST data with the topic profile learned from scRNA-seq
data. Using Bayes’ theorem, a cell-type-by-topic distribution can
be inferred from known cell types in scRNA-seq data. The pre-
trained topic model is then used in spatial transcriptomics to infer
the topic distributions of each spot. Additionally, STRIDE provides
downstream analysis functions, such as signature detection and
visualization, spatial domain identification, and spatial architec-
ture reconstruction. Such a package can make the entire spatial
transcriptome data analysis process more convenient.

In short, graph convolutional neural networks and topic models
are semi-supervised and unsupervised learning models, respec-
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tively, which are well integrated into the deconvolution process.
Furthermore, numerous machine-learning models, such as support
vector machines, and Convolutional Neural Network (CNN), have
deeply penetrated various areas of biological algorithms, and we
anticipate that more machine-learning-related deconvolution tools
will be developed in the future.
3.2. Regression-based strategies

As the most intuitive strategy, regression-based methods are
the most popular methods in the deconvolution field (Fig. 2B).
Non-negative matrix factorization (NMF) is a typical algorithm.
This method extracts the biological correlation coefficient of the
data in the gene expression matrix, organizes the genes and sam-
ples, grasps the internal structural characteristics of the data, and



Table 1
Summary of 15 deconvolution tools.

Tools Reference Strategies Type Year of
Publication

Refs.

STdeconvolve Reference-free latent Dirichlet allocation (LDA) / 2022/4 [24]
STRIDE scRNA-seq data a topic-model-based method & Bayesian method Machine

learning
2022/3 [30]

DSTG scRNA-seq data semi-supervised graph-based convolutional network Machine
learning

2021/9 [23]

Seurat V3 scRNA-seq data canonical correlation analysis Mapping 2019/6 [20]
Tangram sn/scRNA-seq data deep learning Mapping 2021/11 [21]
SpatialDWLS scRNA-seq data/marker gene list an extension of dampened weighted least squares Regression 2021/5 [27]
CARD scRNA-seq data/marker gene list conditional autoregressive model-based deconvolution Regression 2022/5 [28]
SpatialDecon scRNA-seq data/public scRNA-seq

atlas
log-normal regression Regression 2022/1 [18]

NMFreg scRNA-seq data non-negative matrix factorization regression Regression 2019/3 [13]
SPOTlight scRNA-seq data seeded NMF regression & topic model & NNLS Regression 2021/2 [29]
RCTD scRNA-seq data maximum-likelihood estimation (MLE) Statistics 2022/4 [25]
Cell2location scRNA-seq data a Bayesian model Statistics 2022/5 [19]
AdRoit scRNA-seq data a weighted regularized linear model Statistics 2021/10 [17]
DestVI scRNA-seq data a conditional deep generative model Statistics 2022/4 [22]
Stereoscope scRNA-seq data maximum-likelihood estimation (MLE) & maximum a posteriori

(MAP)
Statistics 2020/10 [26]

No potential conflict of interest was reported by the authors.
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groups samples into varied phenotypes [38]. This method typically
generates a weighted feature matrix and a basis matrix after
decomposition. At present, it is widely used in biological subtyp-
ing. In addition, the NMF-based framework is also useful for
researchers to develop ST deconvolution algorithms. In the follow-
ing sections, we will go through the algorithms for performing
deconvolution tasks in which the NMF serves as the core
framework.

NMF regression (NMFreg) was initially proposed to deal with
data from Slide-seq [13]. Slide-seq is a spatial transcriptomic
sequencing strategy that can achieve a 10-lm spatial resolution,
with more than 60 % of the spots containing one cell and the rest
containing two or more cells, which is indicative of the need for
single-cell distribution optimization [13]. By borrowing the
expression profile from scRNA-seq data, NMFreg manages to
recompose the single cell component within each spot as a
weighted mixture of cells, and this is achieved by non-negative
least squares (NNLS) regression. With scRNA-seq dataset of the
mouse brain [39], NMFreg successfully maps classical cell types
onto spatial spots. However, the accuracy and robustness of
NMFreg have not been validated for data from other ST platforms,
except for Slide-seq, so this might be a major setback for its wide
application.

In the recently published deconvolution method CARD [28],
NMF also serves as the backbone for linking scRNA-seq data, spa-
tial spot composition, and residual error. CARD is inspired by the
conditional autoregressive model [40], and it uses pieces from
neighboring spots for estimating cell type proportions. This is a sig-
nificant improvement over existing spatial deconvolution
approaches. Additionally, CARD has demonstrated robustness in
spatial deconvolution both for spot-based technologies such as
10X Visium and non-spot-based technologies such as seqFISH
and MERFISH. If known cell marker genes are provided, CARD
can also use pre-determined makers instead of scRNA-seq data;
in this way, its applications can be further expanded.

Another bioinformatics tool, SPOTlight [29], is developed to
determine the cell composition of spatial spots through a non-
smooth NMF method [41]. This method produces sparser results
during the factorization, enhancing the cell-type-specific topic pro-
file and reducing overfitting during training compared with the
traditional NMF method. Further, NNLS regression can be applied
to calculate the topic profile of each spot as well as the cell type
composition within each spot via minimizing residuals. In the case
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of mouse brain ST data, SPOTlight can recover the associated tissue
structure when in situ hybridization images are used as the ground
truth. In the case of more concrete tumor sections, SPOTlight can
also identify clinically relevant features that might help deepen
the biological understanding of cancer.

The deconvolution algorithm developed for bulk RNA-seq pro-
vides foundational ideas for this field. For example, dampened
weighted least squares (DWLS) is a cell-type deconvolution
method designed for bulk RNA-seq based on scRNA-seq cell mark-
ers [42]. Researchers have explored DWLS as an alternative to
NNLS in situations where the influence of highly expressed genes
on corresponding cell types is mitigated by a second error term.
This has set the stage for future work on spatial deconvolution, that
is, SpatialDWLS. In SpatialDWLS, parametric analysis of gene set
enrichment (PAGE) [27] is used to determine the cell types within
each spatial spot using scRNA-seq data or previously determined
marker genes. Inference of cell type decomposition is mainly based
on the concept of DWLS, except that extra constraints are used to
reduce the false-positive rate since the number of cells within a
single spatial spot is limited. With ST data from the human heart,
SpatialDWLS has been used to capture the spatial–temporal varia-
tions that occur during organ growth. SpatialDWLS also shows
potency and efficiency when applied to various ST platforms,
including seqFISH + data and 10X Visium data.

As another alternative to NMF, SpatialDecon [18] employs log-
normal regression [43] in the deconvolution procedure, as a result
of which it can rectify the skewness of both transcriptome and ST
data as well as their unequal variance. Moreover, SpatialDecon can
generate cell-type-specific profiles from public databases, so it has
the ability to handle ST data when coupled scRNA-seq data are not
available. Therefore, after log-normal regression is applied and the
background noise in ST data is reduced, SpatialDecon can be used
to achieve better performance than traditional deconvolution
strategies such as NNLS, v-support vector regression, and DWLS.
Further, by implementing a nuclei segmentation process, Spa-
tialDecon can utilize tissue images from the GeoMx platform to
further improve the accuracy of cell assignment. To sum up, Spa-
tialDecon integrates the latest advances in algorithms and public
data resources in order to improve the accuracy and robustness
of deconvolution analysis of spatial omics data. With this method,
researchers can obtain information about cell type and abundance
without relying on scRNA-seq data in order to achieve a wider
range of applications. Overall, these regression-based algorithms
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are extensions and innovative versions of traditional deconvolu-
tion algorithms.

In conclusion, the regression-based methods described above
chart cell composition within ST spots by employing the concept
of matrix decomposition as the major framework and are opti-
mized via more concrete distributions or parameter settings. These
methods can use either scRNA-seq or pre-defined cell markers as
reference data. Further, newly developed algorithms such as CARD
and SpatialDecon can further enhance the interpretability and
cross-platform performance of these methods, and thus, help shed
light on more complex biological tasks via the decoding of tissue
textures. Among these methods, SpatialDecon is one of the first
to use tissue image information for deconvolution and lays the
basis for further expanding the applications of tissue imaging data.

3.3. Statistical modeling-based strategies

Statistical modeling-based strategies represent another type of
deconvolution method (Fig. 2C). In these strategies, gene expres-
sion is fitted by different statistical distributions. Previous studies
have shown that the gene expression of each cell type generally
follows negative binomial (NB) distributions [44,45]. Some com-
monly used models to estimate the parameters of the above distri-
butions include Bayesian, maximum likelihood estimation (MLE),
and maximum a posteriori (MAP). The tools in this category are
briefly introduced below according to the main statistical model
they employ.

Accurate and Robust Method to Infer Transcriptome Composi-
tion (AdRoit) [17] is intended for bulk RNA-seq data, but it can also
process ST data. To infer the cell type composition in a bulk sample
or spot, AdRoit uses scRNA-seq data as a reference. This algorithm
integrates two feature selection methods to choose genes for
deconvolution based on their information richness. One of the fea-
ture selection methods is based on the selection of genes that are
significantly enriched in certain cell types, known as marker genes,
and the other one is designed to select genes that are highly vari-
able in expression across all cell types, known as highly variable
genes. Thus, AdRoit utilizes NB distribution to fit the gene expres-
sion of each selected gene in each cell type and uses MLE to calcu-
late mean expression and variation in expression. Then, in order to
infer percent combinations in spots, AdRoit builds a weighted reg-
ularized linear model. In particular, this tool uses an adaptive
learning approach to minimize sequencing platform bias and reg-
ularization to reduce collinearity among closely related cell sub-
types. AdRoit has high sensitivity and accuracy as a reference-
based deconvolution method. However, it is incapable of identify-
ing unknown cell types or cell types that are rare in the reference
data.

RCTD [25], or robust cell type decomposition, is another compu-
tational method that decomposes cell type mixtures using cell type
profiles learned from single-cell RNA-seq while accounting for dif-
ferences in sequencing technologies. RCTD first computes the aver-
age gene expression profile for each cell type using scRNA-seq data.
By fitting each spatial transcriptomics spot as a linear combination
of individual cell types, RCTD generates a spatial map of cell types.
The gene expression of each cell type for a given spot is estimated
by fitting a statistical model to observed gene counts, which are
assumed to follow Poisson distributions. This model is also opti-
mized with MLE. The RCTD is novel in that it employs a statistical
model to eliminate platform effects, but it also has the limitation of
treating platform effects uniformly across all cell types.

Stereoscope [26] is a method that is based on the assumption
that the gene expression determined from both spatial and
single-cell data follows an NB distribution pattern. While all other
reference-based methods require feature selection as the first step,
this pre-processing step is not required for Stereoscope [26]. Firstly
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from single-cell data, Stereoscope estimates parameters of the NB
distribution for all genes within each cell type by using MLE. A
weighted combination of the single-cell parameters can be used
to form equivalent parameters for a distribution describing gene
expression for a mixture of cell types. Next, the weights are esti-
mated to best fit with spatial data by using MAP. The proportion
of each cell type is then calculated based on these weights.

DestVI [22] is a multi-resolution deconvolution tool that uses a
conditional deep generative model to learn a continuous cell sub-
type expression profile that reflects the successive change of cell
states; in contrast, other deconvolution tools can only produce dis-
crete cell type expression profiles. DestVI produces a cell-type-
specific snapshot of the transcriptional state for each spot. It
assumes that the expression of each gene follows a negative bino-
mial distribution. Then, it employs two different latent variable
models (LVMs, the scLVM and the stLVM), and fits the models with
amortized variational inference and MAP inference, respectively. In
addition to general MAP inference, DestVI uses a penalized likeli-
hood method to infer some parameters in LVMs. Finally, the cell
type composition is estimated for each spot.

Cell2location [19] is a Bayesian inference strategy that can
deconvolute ST data by integrating data from scRNA-seq or
single-cell nuclei RNA-seq (snRNA-seq). The first step of Cell2loca-
tion is to determine the characteristic expression of the cell type
from scRNA or snRNA-seq data. A negative binomial regression
model is used here to fit the cell type characteristics expression
and to eliminate the batch effect that causes the overdispersion
of single-cell data. In the second step, these cell type characteristics
are used to deconvolve the mRNA count in spatial transcriptome
data in order to estimate the proportion of each cell type in each
spot. Another unique feature of Cell2location is that it can use prior
knowledge of the analyzed tissue to estimate absolute cell type
abundance. Furthermore, variational approximate inference and
GPU acceleration make it highly computationally efficient.

It is worth noting that the algorithms described above eliminate
some batch effects by introducing statistical distributions that are
tailored to the gene distribution. So far, the most common one is
NB distribution. Because fitting statistical models makes these
algorithms more robust to a wide range of noise sources, statistical
fitting strategies are expected to become increasingly popular in
future tool development. However, it should be noted that param-
eter derivation strategies play important roles in these tools and
might pose some problems. For example, Bayesian inference may
have low computational efficiency, and MLE is easily affected by
local optimal solutions. Moreover, MAP is particularly sensitive
to prior assumption errors.

3.4. Data mapping-based strategies

Apart from directly performing the deconvolution process,
mapping ST data with scRNA-seq data into latent space is also a
useful strategy to allocate cell types into spatial spots (Fig. 2D).
Several mapping-based algorithms have been used to perform this
strategy.

Tangram [21] is a comprehensive analysis framework designed
for ST data that incorporates multiple platforms. In short, built on
deep learning, Tangram is capable of mapping lower-resolution ST
data with single-cell data while linking these maps with histolog-
ical and anatomical information from the associated specimen. By
aligning sn/scRNA-seq data with ST data, Tangram corrects low-
quality spatial measurements and decomposes low-resolution
measurements into individual cells. By focusing on the cell type
deconvolution component, after deriving the gene intersection
set between sn/scRNA-seq data and ST data, the framework ran-
domly arranges the sn/scRNA-seq subset profile in the space and
uses a specifically designed spatial correlation function to quantify
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the spatial correlation between each gene in sn/scRNA-seq and ST
data. To maximize the total spatial correlation across the genes
shared by the datasets, Tangram then rearranges the sn/scRNA-
seq subset profile. If a tissue image is provided, as found in the
10X Visium dataset, nuclei segmentation results serve as the deter-
ministic constraints for cell numbers in each spot. Alternatively,
the output will be a matrix containing the probability of cells in
each spatial spot. In addition, this deconvolution function has been
extended to deal with data from multiple ST platforms, including
sequencing-based (10X Visium) and non-sequencing-based (ISH,
smFISH, STARmap, and MERFISH) technologies.

As a cornerstone framework, Seurat [20] has become the most
widely used single-cell data analysis tool that can be applied for
a wide range of processes—from raw data processing to a variety
of downstream analyses. The operation commands provide
friendly functions, especially for data obtained from the CellRanger
or SpaceRanger process of the 10X Genomics Company. For its
recent version, the research team developed it further by propos-
ing a more comprehensive scheme to incorporate multimodal data
for sc/snRNA-seq, epigenomic data, proteomic data, and ST data
that might significantly help researchers interpret concrete biolog-
ical phenomena. In terms of mapping single cell types into ST
spots, the deconvolution pipeline can be divided into two major
steps. First, canonical correlation analysis is applied to both
scRNA-seq data and ST data to generate a lower dimension space
with an extra L2 penalty on the canonical coefficients. Subse-
quently, mutual nearest neighbors are searched to capture similar
anchors, and shared nearest neighbor graphs [46] are introduced to
calculate the score for each anchor as the filtering parameter. This
step generates a solid basis for subsequent integration analysis and
can be realized by the FindTransferAnchors function in Seurat. Sec-
ondly, the probability distribution of each cell type in each spot is
imputed by transfer learning based on previously generated
anchors; this can be achieved via the TransferData function in Seu-
rat. Thus, with Seurat, it is possible to reliably perform the spatial
deconvolution step when integrating SMART-seq2 data with STAR-
map data for mouse brain tissue.

Data mapping-based methods are generally not limited to ST
data deconvolution. They can also integrate other types of omics
data and, thus, correlate different levels of biomolecular informa-
tion, allowing for deeper biological knowledge mining.

3.5. Reference-free strategies

A large number of deconvolution algorithms have been devel-
oped over the last few years, and we have briefly described them
above. However, research in this field is ongoing and is happening
at an accelerated pace. Some algorithms have used different
approaches to solving this issue: for example, STdeconvolve [24]
(Fig. 2E) effectively eliminates the reliance on reference data,
which, like STRIDE, is a topic modeling-based method. An unusual
feature of STdeconvolve is that it does not require a scRNA-seq ref-
erence. STdeconvolve performs feature selection immediately after
ST data are input. And to infer the cell-type distribution in each
spot, it integrated a latent Dirichlet allocation (LDA) process, which
is a popular topic modeling technique. Detailly, it considers each
spot to be a mixture of K cell types and represents each spot with
a multinomial distribution of cell type probabilities. Each cell type
is defined as a probability distribution over the genes present in
the ST dataset. By estimating those latent parameters in the model
using the variational expectation–maximization approach, the pro-
portion of cell types and the expression profile of each cell type in
each spot can be calculated.

Nomatter how similar ST data and scRNA-seq data may be, they
originate from distinct tissues, so using scRNA-seq data as the ref-
erence is sometimes inaccurate. Moreover, the corresponding
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scRNA-seq reference is sometimes hard to get. Compared with
reference-based methods, the reference-free method has the
advantage that it bypasses the constraints of scRNA-seq reference.
Therefore, the development of reference-free deconvolution tech-
niques is urgently required.
4. Discussion

Spatial transcriptome technologies that can be used to study
tissues in terms of both transcriptome dimensions and spatial loca-
tion dimensions are a powerful aid in research on cellular regula-
tory networks, cancer pathogenesis, and other physiopathological
phenomena. How spatial transcriptome data can be analyzed is
also critical to the study of the aforementioned problem. Commer-
cial spatial transcriptome sequencing technologies are currently
incapable of reaching single-cell resolution when evaluating the
entire transcriptome profile. For example, NGS with spatial barcod-
ing is one of the most popular ST technologies, and its upstream
step is similar to that of traditional scRNA-seq methods. However,
the final result is a spot-by-gene expression matrix in which spots
represent the mixed expression profiles of multiple cell types. As a
result, inferences about the cellular composition of each spot must
be made. A number of tools have been developed to infer the cell
composition of spots. Most of these methods require scRNA-seq
data as reference, assume that gene expression follows an NB dis-
tribution, and use different models to infer the proportion of cell
types.

Although these deconvolution tools help a lot in parsing ST data,
it needs to be noticed that ST data and the corresponding reference
single-cell data are actually from different regions. The spatial
transcriptome is generated from a tissue slide, a specific plane of
a 3D tissue/organ. While single-cell RNA-seq data is generated by
the dissociation of the tissue/organ with a more 3D architecture.
That is to say, those reference-based deconvolution computational
tools always integrate single-cell readouts coming from different
parts of the 3D tissue with a single plane that has been analyzed
by spatial transcriptomics. This process will introduce some bias.
Besides, there are also missing and mismatched cell types, pertur-
bations, and batch effect differences between the single-cell tran-
scriptomes and the ST data. So there are still great demands for
developing high-throughput single-cell resolution spatial tran-
scriptomic technologies.

At the same time, the sequencing depth has a strong influence
on the spatial sequencing results, which further affects the decon-
volution performance. Insufficient sequencing depth will lead to
low sequencing saturation and gene coverage, while too high
sequencing depth will hardly provide more effective information.
Thus, the optimal sequencing depth in spatial transcriptome needs
further exploration. The study of STRIDE[30], which compared the
performance of a series of deconvolution tools by simulation data-
sets with various sequencing depths from 1,000 to 20,000 reads
per cell, notes that the optimal sequencing depth may be specific
for each tool and some algorithms seem to be less affected by
the depth (such as the CCA-based algorithm). However, only six
methods are compared, and a large-scale in-depth exploration of
the optimal sequencing depth is desired.

A final challenge is that the published tools for spatial transcrip-
tome deconvolution described in this review are incapable of pro-
ducing highly accurate predictions based on arbitrary data sets.
One previous study assessed the performance of part of the decon-
volution tools mentioned above [47], including stereoscope, Cel-
l2location, SpatialDWLS, RCTD, STRIDE, DestVI, Tangram, and
DSTG. Using simulated ST datasets, it shows that the performance
of RCTD consistently ranks top. And in some datasets, SpatialDWLS,
Tangram, Cell2location, stereoscope, and STRID perform better
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than others. In addition to performance comparison, several
important steps for data preprocessing before deconvolution are
also given, including 1) Removal of low-quality cells; 2) Normaliza-
tion of the expression matrix; and 3) Selection of highly variable
genes. Another review also benchmarked several deconvolution
tools, including stereoscope, RCTD, SPOTlight, Tangram, DSTG, Cel-
l2location, AdRoit, SpatialDWLS, DestVI, and STdeconvolve[48].
RCTD, Adroit, and Tangram perform better in this comparison.
Above all, these tools perform differently with data from different
platforms so it is necessary to consider the feature of each tool to
choose a suitable one.

Currently, in the absence of high-throughput technologies,
deconvolution of spot-based spatial transcriptome data is a crucial
method for obtaining single-cell resolution spatial transcriptome
profiles, which enable a variety of downstream analyses and the
extraction of biological knowledge. Detailly, after obtaining the
results of deconvolution, a series of downstream data analyses
can be performed to detect biologically relevant features, including
spatially variable genes, spatial gene patterns, and spatial regions.
Many tools are developed by implementing different strategies to
process these tasks, such as MULTILAYER [49], Trendsceek [50],
SpatialDE [51], SPARK [52], SOMDE [53], and Giotto [54]. Among
them, MULTILAYER is able to infer biologically relevant features
by utilizing contiguous spots as a readout of gene co-expression
patterns within the analyzed tissue, thereby making better use of
the spatial information. Further, identification of cell–cell interac-
tions, inferring gene-gene interactions, and gene expression impu-
tation from ST data with H&E image analysis are also important in
this field and have been rapidly developed in recent years. Previous
publications have summarized these works in detail [3,55]. Overall,
these tools provide us with deep and meaningful insights into bio-
logical phenomena based on spatial transcriptome data.

By briefly describing the process of processing spatial transcrip-
tome data and listing existing deconvolution methods, we hope
that this review will be useful for both experimenters interested
in spatial transcriptomics and researchers interested in developing
new deconvolution methods. We anticipate that our review will
provide interested researchers with an overview of the field and
help them understand the various strategies and innovative direc-
tions in the field.
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