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The emergence of COVID-19 has had a global and profound impact, not only on society as awhole, but also on the
lives of individuals. Various prevention measures were introduced around the world to limit the transmission of
the disease, including facemasks,mandates for social distancing and regular disinfection in public spaces, and the
use of screening applications. These developments also triggered the need for novel and improved computer vi-
sion techniques capable of ðiÞ providing support to the prevention measures through an automated analysis of
visual data, on the one hand, and ðiiÞ facilitating normal operation of existing vision-based services, such as bio-
metric authentication schemes, on the other. Especially important here, are computer vision techniques that
focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions
introduced by themandates for facialmasks. Such computer vision based humananalysis techniques include face
and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression
estimation procedures,models for detecting face-hand interactions andmany others, and have seen considerable
attention over recent years. The goal of this survey is to provide an introduction to the problems induced by
COVID-19 into such research and to present a comprehensive review of the work done in the computer vision
based human analysis field. Particular attention is paid to the impact of facial masks on the performance of var-
ious methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets
useful for the development and evaluation ofmethods for COVID-19 related applications is also provided. Finally,
to help advance the field further, a discussion on themain open challenges and future research direction is given
at the end of the survey. This work is intended to have a broad appeal and be useful not only for computer vision
researchers but also the general public.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The COVID-19 pandemic took the world by storm. Since the first
large-scale outbreak in December 2019 in Wuhan, China, COVID-19, a
highly infectious atypical (viral) pneumonia caused by the zoonotic co-
ronavirus SARS-CoV-2, spread throughout the globe and resulted in
around 600 million recorded cases and over 6:5 million deaths by mid
2022 according to information from Worldometer1 [1]. To contain the
spread of the disease, minimize cases and limit the number of deaths,
governments across theworld started introducing preventionmeasures
that had a profound impact on peoples’ lives and changed their behavior
and daily routines. Common prevention measures included (manda-
tory) face masks in public spaces, medical facilities and crowded areas,
requests for social distancing, and restrictions on the allowed crowd
size at different events, among others [2,3].
1 Accessible from: https://www.worldometers.info/coronavirus/.
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To help combat COVID-19, the computer vision community quickly
took an active stance and initiated a wide range of research activities
that resulted in novel techniques for COVID-19 detection and severity
analysis from medical images [4,5], monitoring solutions for assessing
compliance with the given prevention measures [1,6,7], screening
approaches for flagging potentially sick subjects [8–10], infection-risk as-
sessment methods [11], and efficient biometrics-based authentication
schemes tailored towards the characteristics of the COVID-19 era [12,13].
These solutions have been swiftly adopted in practice and were observed
to have a critical role in the efforts towards containing the pandemic
[14]. They allowed to automate many monitoring tasks, improved
situation-awareness and facilitated large-scale screening efforts. Further-
more, themed workshops, such as the International Workshop on Face
and Gesture Analysis for COVID-19 (FG4COVID19),2 were organized in
the scope of major computer vision conferences to provide a platform for
discussion and presentation of the latest vision techniques related to
COVID-19.

A key component ofmany of the solutions discussed above are, what
we refer to in this survey as, computer vision based human analysis
(CVHA) techniques that focus on the analysis of people and faces in
visual data. While considerable progress has been made in the general
area of vision based human analysis, the COVID-19 pandemic intro-
duced several new challenges that havebeenunderexplored in the liter-
ature before, e.g.:

• Mask-based occlusions: One of the globally most prevalent preven-
tion measures, introduced in response to COVID-19, are face masks.
The presence of face masks represents a considerable obstacle with
an adverse impact on the performance of many CVHA techniques,
such as facial landmarking, face detection and recognition, but also
related (auxiliary) tasks such as face image quality assessment
(FIQA), presentation attack detection (PAD) and others. Dedicated
mechanisms are, therefore, needed to handle this type of occlusion.
It is important to note that partial occlusions of the facial area have
been studied also in the pre-COVID-19 era [15–17]. However, most
of the research from that period was not focused specifically on face
masks and, as a result, techniques developed for more general occlu-
sions were observed to lead to suboptimal performance for many
COVID-19 related human-centered vision tasks.

• Relevant datasets: The majority of modern vision techniques relies
on machine learning and is, hence, trained using suitably annotated
training data. Before the start of the pandemic, there was an obvious
lack of datasets suitable for the development of CVHA techniques for
combating COVID-19. Especially datasets with masked faces (and peo-
ple) with high-quality annotations were not widely available. Several
factors contributed to the lack of such datasets: ðiÞ therewas limited in-
terest in vision problems involvingmasked-faces (andmasked-people)
only, ðiiÞ the occlusions caused by the face masks made it difficult to
generate annotations of reasonable quality (e.g., facial landmarks, accu-
rate bounding boxes, segmentation/parsingmaps, etc.), and ðiiiÞ a wide
variety of facial masks with highly diverse appearance was introduced
during the pandemic, but was not available in the pre-COVID-19 era.

• Ethical considerations and social impact:While CVHA techniques for
COVID-19 were developed with the goal of more efficiently combating
the pandemic, the deployment of such techniques also raises ethical
considerations and comes with a considerable societal impact. For ex-
ample, installments of screening and monitoring applications can help
to contain the spread of the coronavirus, but may also be extended
into citizen surveillance and impact the privacy of individuals.

A considerable amount of work has been conducted over the course
of the last three years to address the above challenges and has been
covered partially in recent survey papers. Wang et al. [18], for example,
2 URL: https://fg4covid19.github.io/.
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reviewed techniques for masked facial detection and associated
datasets. Alzubi et al. [19] as well as Utomo and Kusuma [20] discussed
dedicated face recognition techniques for masked faces. Elbishlawi
et al. [21] reviewed crowd-counting techniques and pointed to the
importance of this technology for COVID-19. Related to these works is
also the survey of Ulhaq et al. [4], which covers computer vision
techniques applicable mostly to medical data, diagnostics and clinical
management, and the deep-learning oriented review paper by Shorten
et al . [22], where vision approaches, againmostly related tomedical ap-
plications, are briefly discussed. Although the listedworks provide some
insight into CVHA research related to COVID-19, they focus on specific
problems only, e.g., masked face detection or recognition, or provide a
partial picture of the broader (and interconnected) research area. A
well-structured and thorough survey on COVID-19 focused vision-
based human analysis techniques, on the other hand, is, to the best of
our knowledge, still missing from the literature.

In this work, we aim to address this gap and present a comprehen-
sive overview of computer vision techniques that analyze visual data
of people and faces with COVID-19 applications in mind. The goal of
the survey is to: ðiÞ provide a high-level taxonomy and background
on vision techniques applied to human analysis relevant to COVID-19
(Section 2) ðiiÞ present a consolidated summary of recent research ac-
tivities in this area (Section 3), ðiiiÞ provide a reviewof dataset collection
and generation efforts (Section 4), and ðivÞ elaborate on open problems
and challenges with the goal of providing a basis for future research
activities (Section 5). The overall structure of the survey is illustrated
in Fig. 1. The work is primarily intended for researchers looking for a
broad overview of computer vision research for COVID-19, but also
other stakeholders interested in this topic.

We make the following main contributions in this survey:

• We present a comprehensive review of computer vision techniques
that analyze imagery of people and faces to support the COVID-19
containment efforts and discuss over 200 relevant references that
cover diverse but relevant topics from this problem domain.

• We provide a taxonomy of existing solutions for the most relevant
tasks studied as part of vision-based research for COVID-19, e.g., face
mask detection, masked face detection, masked face recognition,
crowd analysis, etc.

• We discuss issues beyond the technological solutions, such as ethics,
social impact and elaborate on open problems and future research
directions.

Since COVID-19will not be the last pandemic theworld faces,we be-
lieve this survey will help technological preparedness for similar situa-
tions, and ultimately improve the robustness and usability of relevant
technologies.

2. Taxonomy on Computer Vision based Human Analysis (CVHA) for
COVID-19

The COVID-19 pandemic triggered a need for efficient computer
vision techniques related to different problems in visual human analysis
that can broadly be categorized into three groups based on their overall
goals, as also illustrated in Fig. 2, i.e.:

• Techniques for prevention, monitoring and control: The goal of the
first group of CVHA techniques is to help prevent the spread of COVID-
19 and monitor compliance with the given prevention measures and
typically aim to detect/analyze some characteristics (e.g., the presence
of masks, the crowd size, or physiological changes/abnormalities) of
the subjects in the visual data. Techniques from this group are applica-
ble for screening purposes and as a source of critical statistical data for
governments, health organizations and regulatory bodies. CVHA
solutions covered in this survey from this group include face/mask de-
tection algorithms [23–25], crowd-counting solutions designed for

https://fg4covid19.github.io/
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Fig. 1. High-level structure of the survey. We provide a comprehensive review of recent human-centered computer vision techniques for combating COVID-19, discuss existing datasets
and data-generation procedures, and present a list and discussion of the most important open issues and future research directions.
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COVID-19 characteristics [11,24,26–28], breathing rate detection tech-
niques [29] and face-hand interaction detection approaches [30,31].

• Facilitating algorithms: The second group of techniques represents
solutions that facilitate applications that are not immediately related
to COVID-19 prevention, but whose performance is affected by the
external circumstance caused by the pandemic, such as, the presence
of face masks. A typical example of such an application is biometric
identity inference from facial images, where facemasks have been ob-
served to have a considerable adverse effect on the overall recognition
accuracy [32]. Many techniques and algorithms have, therefore, been
proposed in the last few years to enable such critical applications
also during COVID-19, but with minimal performance loss. CVHA
techniques from the group of facilitating algorithms reviewed in this
paper include face recognition solutions for masked faces [33,32,
34–37], as well age estimation [38,39] and facial expression recogni-
tion approaches [40,41] that were all extended recently with the
goal of improving robustness with masked faces.

• Supporting solutions: The last group of techniques in our taxonomy
represents supporting solutions that do not address specific problems
with real-world COVID-19-related applications, but are needed to
enable techniques from the two groups above. Themost important so-
lutions from this group discussed in the survey are data generation
techniques, capable of synthesizing artificial training data for the
various computer vision models [33,42,43], mask removal techniques
aiming to reconstruct the original (unocluded) facial images [44–46]
and landmark localization (or/and alignment) techniques [47,48]
that are used as preprocessing steps for other COVID-19-related
CVHA solutions.

We note that there is no clear separation between these three
groups and there are clear interdependencies that are present in the
presented taxonomy, as also highlighted in the overview Fig. 2.
Fig. 2. High-level taxonomy of Computer Vision based Human Analysis (CVH
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3. Survey of CVHA techniques in the COVID-19 era

In this section, we summarize research on the different CVHA
techniques that emerged during the COVID-19 pandemic and are cov-
ered in this survey. Specifically, we discuss research efforts focused on
ðiÞ face/mask detection, ðiiÞ face recognition and various auxiliary
tasks needed for face recognition systems, such as presentation attack
detection and face quality estimation, ðiiiÞ facial expression recognition,
ðivÞ age classification, ðvÞ landmark localization, ðviÞ crowd detection/
counting, ðviiÞ breathing rate detection, ðviiiÞ face-hand interaction de-
tection, and ðixÞ synthetic data generation.

3.1. Face/mask detection

Among the various prevention measures introduced around the
world, face masks were likely the most wide spread and, in fact, were
mandatory in various countries [2,3]. Facial masks were also supported
by the World Health Organization (WHO), who published a detailed
guide on this topic [49]. Computer vision based detection techniques
for masked faces are typically needed to monitor whether people com-
ply with the advice of health organizations and governments in public
spaces and to facilitate situational awareness.

In general,masked facedetection is a specializedobject detectionprob-
lemwhere, in addition to the standarddetectionof non-occluded faces, the
goal is to also reliably identify the presence of faceswithmasks in an image
(or video frame). This task typically includes a binary decision (face pres-
ent/face absent) for a given sub-region of the input image, which also de-
fines the approximate spatial location of the (masked) facial area.
Extensions of this problem that emerged during the pandemic, in addition
to the (masked) face detection task, also often detect the presence of
masks in the image (mask present/mask absent) or/and determine
whether themask is placed/worn in accordancewith regulations and gen-
eral guidelines or not [1,30,50–52], as shown in Fig. 3.
A) techniques surveyed in this paper with respect to the targeted goal.



Fig. 3.Masked face detection is a specific object detection problemwhere the objects to be detected (i.e., faces) can appear both, with and without masks (left). The different extensions
that appeared during the COVID-19 pandemic also incorporate decisions on whether the masks are present in the images (middle) and whether the masks are worn correctly or not
(right).
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Before thepandemic, themasked face detection problemwasmostly
investigated as part of the more general detection tasks with partial oc-
clusions, where the occlusionsmay have appeared due to the placement
of the hands, thepresence of sunglasses, gasmasks, helmets, niqabs, and
other objects that commonly cover some part of the face. In such set-
tings, face detection methods are commonly observed to perform
worse, with the performance degradations increasing as the occluded
part of the face gets larger [53]. One of the earliest pre-COVID-19
works on detecting masked faces was presented by Nieto-Rodrígue
et al. [54], where the authors introduced a system that checks whether
medical staff wears mandatory medical masks in the operating
room. They used two distinct detectors: one for the face and the other
for the medical mask. They employed the Viola-Jones object detector
[55] for both face andmask detection. They collected a dataset that con-
tains faces with medical masks to train the detectors. Another work
from this period [56] presented the first large-scale masked face detec-
tion dataset namedMAFA and trained the locally linear embedding and
convolutional neural networks (LLE-CNNs) for detecting faces with and
without face masks. The proposed method first extracts (face) region
proposals and describes them with a convolutional neural network
(CNN). After this, a k-nearest neighbor (KNN) module refines the
descriptors for recovering missing facial cues of masked faces. As the
last step, a unified CNN is used to perform classification and regression
to identify candidate facial regions and their overall positions in images/
frames.

In [57], the authors introduced a refined version of the MAFA [56]
dataset, called MAFA-FMD, that included only images with medical
face masks. Using this new dataset, the authors proposed a novel
context attention module to extract highly descriptive contextual
features, such as face mask wearing conditions, and showed that the
proposed approach outperforms the benchmark RetinaFace [58] and
YOLOv3 [59] face detectors. In [52], Nagrath et al. introduced the
SSDMNV2 system, which combines a single-shot multibox detector
framework and a MobileNetV2 [60] based classifier for the detection
of masked faces as well as face mask detection. This lightweight model
is suitable for deploying on embedded devices and for real-time data
processing. Another work that uses a single-stage face detector is [61].
Here, the authors used the YOLOv2 model [62] to detect masked faces
and ResNet-50 [63] to detect face masks. To overcome the challenge of
scarce labeled data, Cabani et al. [51] built a synthetic dataset of masked
faces to train robust face detection and face-mask detectionmodels. The
authors tried to imitate different mask-wearing conditions by using re-
alistic image synthesis methods. However, they only used a single type
of medical mask to simulate different wearing conditions, therefore,
raising questions on the generalization capabilities of their models to
real-world data, where facial masks may have different colors, shapes,
and textures. Joshi et al. [50] proposed a framework to detect face
masks from a video stream by using the MTCNN [64] face detection
model and classifying mask presence with MobileNetV2 [60]. They
tested their framework on actual footage of public spaces, captured dur-
ing the COVID-19 pandemic. The dataset containsmultiple geographical
4

locations and people from different ethnicities and the proposed
method was demonstrated to outperform RetinaFaceMask [57] on the
considered dataset. The authors of [65] proposed a two-stage Faster
R-CNN [66] network with an InceptionV2 [67] model along with a
novel wearing mask detection (WMD) dataset to address the masked
face detection task. Through comprehensive experiments, they show
that the two-stage detector provides a good trade-off between accuracy
and computational complexity. The work of Roy et al. [68] proposed
using a YOLOv3 [59] model along with the Single Shot MultiBox
Detector (SSD) [69] and Faster R-CNN [66] for masked face detection.
The experimental results on the novel Moxa3K benchmark dataset
[68] showed that YOLOv3 [59] achieves better performance than com-
peting models while having comparable runtime.

In [30], Eyiokur et al. studied an extended detection problem, where
each face image was classified into one of three classes: nomask, mask,
and incorrectlywornmask. The authors introduced a labeled large-scale
facemask detection dataset and using the newly collected data trained a
RetinaFace model [58] for face detection. Next, they employed several
CNN models, namely, Inception-v3 [67], MobileNetV2 [60], EfficientNet
[70], etc., to classify the detected and cropped faces into the three
above-mentioned classes. The authors also extensively tested their
models, both on the proposed dataset as well as on other available
datasets from the literature. Cross-dataset evaluations showed their
dataset’s representation power, which is crucial for new face mask
detection datasets. A similar problem was also studied in [71], where
Jiang et al. proposed the Squeeze and Excitation (SE)- YOLOv3 [59]
mask detector for the detection of properly worn masks. The main
idea behind the approach was to integrate the SE block with the
YOLOv3 [59]model to teach thenetwork to focus on the crucial features.
The authors also utilized a focal loss to solve the extreme foreground-
background class imbalance. Experimental results showed that the
proposed network achieved better localization and detection perfor-
mances than competing models on the considered dataset. Kantarci
et al. [72] introduced a novel face mask detection dataset named Bias-
Aware FaceMask Detection (BAFMD) dataset. The dataset has been col-
lected using Twitter images with a specific focus on mitigating dataset
bias for ethnicity, age, and gender. In order to reduce such biases, their
dataset contains real-world facemask imageswith amore balanced dis-
tribution across different demographics, e.g., gender, race, and age. They
train a YOLOv5 [73] object detector, which shows superior performance
over other detectors. In [1], Batagelj et al. compare differentmasked face
detectors and correct face-mask placement classification networks in
detail using a dataset that they created using the MAFA [56] dataset.
The reported experimental results provide insightful performance com-
parisons of variousmethods and show that the RetinaFace [58]model is
the most stable masked face detection model among the considered
techniques. Furthermore, the authors demonstrated that all face detec-
tion models’ performance deteriorate significantly, if face masks are
present in the image as compared to faces without masks. In [74], the
authors proposed a face mask-wearing identification method by com-
bining image super-resolution and classification networks (SRCNet).
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They used a standard face detector for detecting and cropping faceswith
and without masks. After the detection step, the authors evaluated the
image size to choose the next step. If an image’s resolution was smaller
than 150� 150 pixels, i.e., the width or length was below 150 pixels,
they applied the super-resolution model to enhance the high-
frequency details of the image. If the image was already larger than
150� 150 pixels, they skipped the super-resolution and subjected the
image to a face mask-wearing classification network, which classify
the mask-wearing conditions into one of three classes: no mask-
wearing, incorrect mask-wearing, and correct mask-wearing. The re-
ported experimental results show that applying super-resolution to
low-resolution face crops boosts classification performance and that
the presented model yielded competitive performance overall.

Most of the methods proposed for (masked) face detection and
related problems, such as facial mask detection, build on advances
made in the generic object detection problem domain. However, to
adapt/extend the existing detectors to work reliably with partially
occluded face data or, specifically,withmasked faces, these solutions in-
corporate minor modifications to the overall detection pipelines and,
more importantly, introduce new, large-scale datasets with masked
faces that contain diverse data with rich appearance variations induced
by facial masks for model training. Due to the importance of these
datasets for the masked face detection problems, they are discussed
separately in Section 4.

3.2. Face recognition

Similarly to face detection, where the appearance and widespread
usage of facial masks had an adverse impact on the performance of
existing face detection models, face recognition is another area, where
facial masks negatively impacted the applicability of face recognition
technology. In this section, we therefore provide an in-depth discussion
of the effect of face masks on different components of face recognition
systems and then review the efforts made so far to mitigate such
negative effects.

3.2.1. The effect of wearing masks on face recognition
Face recognition deployability is strongly affected by biometric

sample capture and presentation, most prominently, face occlusions.
Face recognition in the presence of occlusions has been studied widely
within the computer vision community [17,75–81]. However, most of
the pre-COVID-19 work targeted general unstructured face occlusions.
The effect of the specific occlusion induced by face masks gained atten-
tion at the start of the COVID-19 pandemic. An early work by Damer
et al. [32] evaluated the verification performance drop of face recogni-
tion systemswhen verifying unmasked-to-masked faces, in comparison
to verifying unmasked faces, all with real masks and in a collaborative
environment. Thiswas followed by an extended study [82]with a larger
database and evaluation of both synthetic and real masks. As a part of
the ongoing Face Recognition Vendor Test (FRVT), the National Institute
of Standards and Technology (NIST) has released results (FRVT -Part
6A) on the effect of face masks on the performance of face recognition
systems provided by vendors [83]. The results revealed that the verifica-
tion accuracy with masked faces declined substantially. However, the
study used simulated masked images under the assumption that their
effect is representative of the effect of real face masks. Following
NIST’s evaluation, the US Department of Homeland Security conducted
a similar evaluation, however, on more realistic data [84]. They also
identified a significant negative effect of facial masks on the accuracy
of automatic face recognition solutions. A general conclusion by these
studies was that the effect of masks was bigger on genuine pairs’ deci-
sions, in comparison to imposter pairs’ decisions. A study comparing
the effect of face masks on the human experts/verifiers in comparison
to automatic face recognitionmodels concludedwith a set of comments
on different aspects of the correlation between the verification
5

performance of humans and machines [85]. The study showed a trend
in the human experts’ verification performance drop similar to that of
automatic face verificationmodels [85]. In the next section, an overview
of the solutions to mitigate this negative effect on face recognition per-
formance is presented.

3.2.2. Enhancing masked face recognition
As validated by the studies discussed above, wearing a face mask

does significantly affect the performance of face recognition technology.
This by itself is intuitive, as the mask covers part of the facial informa-
tion that face recognition models can use to discriminate between indi-
viduals. However, the insights from the discussed studies also inspired
many innovative solutions aiming at enhancing the performance of
masked face recognition. In this work, we present an operational
categorization of these solutions based on their conceptual modeling
of the masked face recognition problem. These solutions can be catego-
rized into four groups, (a) mask in-painting, (b) template unmasking,
(c) model optimization, and (d) periocular recognition, and are
presented in the following sections along with the main works that
made significant contributions under each category. A graphical repre-
sentation of these categories is also presented in Fig. 4, where masked
face probes are processed in four different processes to be compared
to an unmasked face reference.

(A) Mask in-painting. Under this category, illustrated in the top of
Fig. 4, the main goal is to detect and in-paint the face area covered by
the mask before processing the face with conventional face recognition
models. Such a process will not necessarily add additional identity-
specific information to the face, because such in-painting processes
are trained to predict the occluded area details from the visible parts
of the face, and thus they extract the initial identity information from
the already visible parts of the face. However, such in-painting will
transfer the image into a distribution (domain) that is more similar to
what general-purpose face recognition models are trained for and
bring it closer to the unmasked reference. Seen as a domain adaption
process, this can have the potential in enhancing the performance of
masked face recognition. The main advantage with in-painting based
strategies is the possibility to maintain the use of well-performing
general-purpose face recognition models. The main disadvantage is
that the training of the generative in-painting process is commonly ex-
pensive in terms of the required training data and the training compu-
tational cost [86]. Such generative processes might also result in
artifacts that are out of the normal face image distribution compared
to the original masked faces themselves [87].

Although face in-painting is in general a well-studied field with the
recent methods producing photo realistic images [88–90], using this
technique to enhance masked face recognition is still under-explored.
Jiang et al. [91] recently addressed the specific issue of in-painting face
mask areas without evaluating the effect on face recognition
performance. Such aesthetic-driven face in-painting of the mask area,
i.e. mask removal, is discussed more in details in Section 3.9. Similar
in-painting approaches have been shown before to be beneficial,
to some degree, in enhancing the recognition performance [92] of
occluded faces.

(B) Template unmasking. Under this category, illustrated in the
second row in Fig. 4, the main goal is to transfer the extracted masked
face template into a form where it behaves similarly to a template
extracted from an unmasked face of the same identity. Here, both
the masked probe and the unmasked reference are processed by a
general-purpose face recognition model, however, the masked face
template typically undergoes another processing step. Just like with
in-painting, this processwill not add identity information to themasked
face template, but it rather will remove the template artifacts intro-
duced by the mask information. The main advantage of such solutions
is that it maintains the use of the well-performing general-purpose
face recognition models and that the overhead computational cost of



Fig. 4.Masked face recognition solutionsmainly fall under one of the four categories presented in thisfigure. From top to bottom, these solutions are face in-painting, template unmasking,
model optimization, and periocular recognition. Blue rectangles are general-purpose face recognition models, purple rectangles are template unmasking models, red rectangles are face
recognition models trained specifically to tolerate masked faces, and green rectangles are periocular recognition models.
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the template unmasking model is relatively negligible [93] when com-
pared to the face recognition model itself or the generative in-painting
model discussed under the first category.

Despite the clear operational benefits of this category of solutions,
relatively few works targeted such a concept. The first to do so was
Boutros et al. [93] that proposed to train a template unmasking model
on top of any general-purpose face recognition model to transfer the
masked face template to a form that behaves similarly to an unmasked
face template of the same identity in the comparison operations. Based
on the fact that the genuine comparisons are significantlymore affected
than the imposter ones when comparing masked to unmasked faces,
the authors proposed the self-restrained triplet loss that assigns higher
importance to positive pairs during training when the negatives pairs
are deemed relatively distanced enough. Following a similar operational
concept, a recent study also proposed to process the masked face tem-
plate in a framework that utilizes contrastive learning [94].

(C) Model optimization. Under this category, illustrated in the third
row in Fig. 4, the main goal is to train a face recognition model that
can produce comparable embeddings for both masked and unmasked
faces. Understandably, training such a solution requires having masked
and unmasked face samples in the training data. This also requires, in
part, general-purpose face recognition training goals such as direct
embedding learning [95] or embedding learning through classification
[96,97]. The main advantage of this category of solutions is that both
the masked and unmasked faces are processed with the same model.
However, such solutions induce the need for a tedious training process
and considerable amounts of training data that also needs to include
masked faces. Additionally, including masked faces in the training pro-
cess might render the resulting model less accurate when comparing
pairs of unmasked faces [98]. This shortfall was recently targeted in
the literature with a high degree of success [99], where the authors
forced the face recognition model to produce optimal templates for
both, masked and unmasked faces by incorporating a template-level
knowledge distillation loss between the trained network and a
general-purpose face recognition network.
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Most of the works addressing masked face recognition so far fall
under this category. The authors in [12] combined the ArcFace loss
[97] with a mask-usage classification loss and noted it as Multi-Task
ArcFace [12]. Other work combined the traditional triplet loss and the
mean squared error in an effort to improve the face recognition robust-
ness to masks [13]. The authors in [98] theorized that the masked face
recognition process requires a larger penaltymarginwhen using the co-
sine loss. Others proposed improving the face template consistency
using a pairwise loss [100]. Geng et al. [101] proposed to enhance
masked face recognition performance through mask-like generative
augmentation. Hsu et al. [102] experimented with different loss
functions to determine their suitability for masked face recognition. A
hybrid backbone of residual block and self-attention components was
proposed by [103], an aspect that was also investigated in [104].

(D) Periocular recognition.Under this category, illustrated at the bot-
tom of Fig. 4, the main goal is to simply reduce the face recognition
problem to be a partial face recognition problem. This assumes that
the mask commonly covers the lower part of the face and maintains
the visibility of the upper part of the face. This area that includes the
eyes and the adjacent regions is commonly called the (peri) ocular
region [105]. The biometric literature refers to the recognition of this
area, when the iris is not exclusively targeted, as periocular recognition
[106]. Periocular recognition can include the periocular region of one
eye for some applications [107,108]. However, in the masked face rec-
ognition scenario, both right and left periocular regions are typically
considered.

A number of works proposed to crop the masked face and focus the
recognition task on the periocular region when the mask is present
[109–111]. The need to use the periocular region for recognition
purposes when faces are masked was extensively studied in [112], in-
cluding a detailed survey on periocular recognition technologies.

3.2.3. Masked face recognition competitions
Twomajor competitions were organized in an effort to attract novel

solutions for masked face recognition. The first was the MFR2021
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Masked Face Recognition Competition [113] organized as part of the In-
ternational IEEE Joint Conference on Biometrics (IJCB) 2021 [114]. The
competition examined the deployability of the solutions by considering
the compactness of the face recognition models. A private dataset was
used for evaluation. The dataset contained real masked faces and repre-
sented a collaborative capture scenario. Out of 18 submitted solutions,
10 were able to outperform the widely used ResNet-100 baseline [63]
trained using the ArcFace loss [97]. Most of the competition entries
used synthetic or/and real masked face images in the training of their
solutions.

The second competitionwas theMasked Face Recognition Challenge
[34] organized within the Face Bio-Metrics Under COVID? Masked Face
Recognition (MFR) Workshop, one of the IEEE/CVF International
Conference on Computer Vision Workshops [115]. The competition in-
cluded three test sets and used an online model testing system and
provided a detailed evaluation of the submitted face recognition
models. The results of the competition pointed to the effectiveness of
augmentation strategies simulating facial maskswhen training recogni-
tion models for the targeted task of masked face recognition.

3.2.4. Masks and face recognition subsystems
Presentation attack detection. Presentation attacks on face recogni-

tion systems involve the presentation of an artifact or of human charac-
teristics to a biometric capture subsystem in a fashion intended to
interfere with system policy, as defined in ISO/IEC 30107–3 [116]. This
can include attacks like face morphing [117,118], makeup attacks
[119], or even identification circumvention attacks [120]. However,
given the attack scenarios, the attack that is most related to wearing
masks is the spoofing attack, where an attacker presents an artifact to
a biometric capture subsystem with the aim of impersonating a differ-
ent identity [116]. Presentation attack detection solutions (PAD) aim at
differentiating between non-attack samples, i.e. bona fide, and spoofing
presentation attacks [121]. Suchsolutionscanbebasedonuser challenge
(user performing a specific task/move), on special sensor characteristics,
e.g. light field camera or thermal sensor, or on software solutions [121].
The most widely spread software solutions depend on analyzing
samples captured in the visible domain given the high deployability of
visible-spectrum cameras in personal devices. Such solutions can be
texture-based [122], motion-based [123], frequency-based [124], or a
combination of two or more of these technologies [125].

Wearing a facemask changes the nature of the sample processed by
the face PAD algorithm. This was apparent in thewide-spread reporting
of malfunctioning face logins into personal devices at the start of the
COVID-19 pandemic, not only because of failing to match to the
unmasked reference image, but also because the masked face is seen
as a spoofing attack by the PAD algorithm. This interesting fact was re-
vealed by an extensive study presented by Fang et al. [126] where the
authors collected a set of unmasked and masked bona fide and attack
samples and tested both the vulnerability of face recognition to such at-
tacks and the performance of established PAD algorithms when pro-
cessing masked attacks. The study also presented a novel kind of
attack where the attacks, printed or shown on a screen, were covered
with a real mask. The main findings of the study pointed out that PAD
algorithms classify many of the masked bona fide samples as attacks.
The study also found that face recognition algorithms are still vulnerable
tomasked face attacks, especiallywhen a real facemask is placed on the
attacks [126]. An effort to reduce this effect on PAD performance was
successfully presented in [127] where the authors propose to train the
PAD using partial pixel-wise labels, where the real masks placed on
the attacks are considered to be a bona fide area in an attack sample.
This was also supported by giving the non-covered parts of the face a
higher influence in the PAD decision inference from the image, bringing
the PAD behavior on masked faces closer to that of the unmasked faces
[127]. Further efforts are required though to build publicly available
masked face attack databases and mask-invariant masked face PAD
algorithms.
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Quality assessment. Face image quality (FIQ) measures the utility of
an image to face recognition algorithms [128,129]. This utility is
measured with an FIQ score as defined in ISO/IEC 2382–37 [130]. Vari-
ous methods have been developed for face image quality assessment
(FIQA) weather by building quality pseudo labels and learning to
predict such labels [131,132], by measuring different aspects of face
recognition model response to the investigated image [133,134], or
learning to predict the relative classifiability of a face by predicting its
class-relative placement in a face recognition training process [135].
As FIQA measures the utility to face recognition algorithms, it does not
necessarily reflect the perceived image quality (IQ) measured by con-
ventional general image quality assessment (IQA) solutions [136,137].
However, IQ measures have been found to correlate to the face image
utility, though to a much lower degree than FIQ [136]. As mentioned
earlier, wearing a mask does lower the accuracy of face recognition,
and thus it is expected also to be reflected in a lower FIQ. This issue
was investigated by Fu et al. [138] where it was shown that even
when the perceptual quality and capture environment do not change,
the FIQ drops substantially when a mask is worn. This consistently
correlates with the drop in face recognition performance, whether by
machine or human experts [138]. Additionally, the networks perform-
ing FIQA did shift their attention away from the mask region and
more towards the visible face region,more specifically the ocular region,
as demonstrated in [138].
3.3. Facial expression recognition

Another important application affected by the presence of face
masks is Facial Expression Recognition (FER). FER is a longstanding
computer vision problem, where the goal is to recognize specific facial
expression or emotional states based on changes in facial appearance.
It is generally acknowledged that different parts of the face are involved
when expressing different expressions, as evidenced, for example, by
the facial action unit coding (FACS) system, one of themost widely con-
ceptual frameworks to the FER problem [139–142]. Thus, occlusions of
these areas, as caused, for example, by facial masks lead to obvious per-
formance degradations.

The problem of facial expression recognition under the presence of
face masks was explored by Abate et al. in [41]. Here, the authors
studied class activation maps (CAM) for different expressions and
found that anger, happiness, sadness, and neutral expressions are
most heavily represented around the nose and mouth areas. As results
of this observation the authors concluded that FER models struggle to
extract informative features from the face images when face masks
are present. To address this problem two commonmitigation strategies
were proposed in the literature, i.e.: ðaÞ collecting/generating masked
datasets with facial expressions that can be used for fine-tuning of
existing FERmodels, and ðbÞ designing newmodels capable of perform-
ing facial expression recognition despite the presence of masks.

(A) Datasets and fine-tuning. Collecting and labeling facial expressions
is a difficult, time- and labor-intensive task that might also be subjective.
The difficulty of labeling facial expressions carries over to the problem of
Masked Facial Expression Recognition as well. Since there are no datasets
publicly available for this task, generally, simulated masks are utilized in
the literature. Yang et al. [40], for example, developed a mask simulation
method that uses facial landmarks and their orientations to fit a mask.
They also annotated 13000 images from the Labeled Faces in the Wild
(LFW) dataset [143] for facial expression recognition and compiled a
new dataset, called LFW-FER. Finally, using themask simulationmethod-
ology on the LFW-FER dataset, they generated a synthetic dataset for FER
containing simulated mask, called M-LFW-FER that is publicly available
for research purposes and can be used to fine tune FERmodels for expres-
sion recognition under the presence of facial masks.

Similar ideas were also pursued by other works. Barros et al. [144],
for example, first detected the facial landmarks on images from the
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AffectNet dataset [145] and fit a mask to the faces covering all the
landmarks below the nose. Using the resulting MaskedAffectNet
dataset, the authors then applied different training strategies,
e.g., transfer learning, to their FaceChannel model [146] to account for
the presence of face masks. When the authors trained the FER model
from scratch using the MaskedAffectNet dataset, the model
performance drastically deteriorated for unmasked applications. How-
ever, when the model first pretrained on a standard dataset and later
fine-tuned, the FER performance was affected only so slightly, making
it useful for both masked and unmasked facial images.

(B) Mask-agnostic FER. Techniques from the second group aim to de-
sign models that are robust (agnostic) with respect to the presence of
facial masks and perform similarly for masked and unmasked faces.
Yang et al. [147] developed a new approach for masked face expression
recognition along these lines. Their model consists of two parts. The
first part includes a classifier for masked and unmasked recognition that
generates a binary attention heatmap for the face masks. The second
part of the model takes the binary attention heatmaps and convolutional
face features to classify the facial expression. The authors show that their
model outperforms other state-of-the-art occlusions robust facial expres-
sion recognition models, like region attention network (RAN) [148] and
CNN with attention mechanism (ACNN) [149].

3.4. Masked face age classification

Similar to face and facial expression recognition systems, age
estimation techniques also critically depend on the visibility of the facial
areas and struggle with performance when parts are occluded. As a
result, studies investigating age estimation with facial masks have also
appeared during the COVID-19 pandemic.

Golwalker et al. [39] conjectured that using large prediction models
in age estimation with occluded faces makes it challenging due to the
lack of suitable large-scale datasets. When wearing masks, the most
discriminative features for age estimation are largely hidden below
the masks, like wrinkles on the cheeks and mouth. Their approach to
this problem was, therefore, using a shallow model that could be fine-
tuned easily based on a small set of images of people wearing masks.
To this end, the authors used a simple 9-layer CNN architecture. For
the age detection dataset, they collected faces wearing masks from
various age categories and augmented it with an auxiliary dataset of
4500 synthetic images of masked people using a Generative Adversarial
Network (GAN) [150]. Öztel et al. [38] developed a two-stage pipeline
consisting of a face mask detection and an age classification stage.
With this approach, the authors first determine if the person is wearing
a facemask or not. Then, depending on the result, two separate age clas-
sificationmodels are utilized. If the person is notwearing amask, a stan-
dard classification model in the form of a simple CNN trained on
UTKFace Large Scale Face Dataset [151] is used. If the person is wearing
a face mask, another simple CNNmodel is utilized, but this time trained
with simulated face masks on the UTKFace Large Scale Face Dataset
[151]. The proposed pipeline included three different age classes,
i.e., teenager (12–20), middle-aged (21–64), and elderly (65+), and
was shown to ensure competitive results.

3.5. Landmark localization and alignment

Facial landmark localization and alignment are essential compo-
nents of various face-related applications, such as face recognition, facial
pose estimation, 3D face reconstruction, emotion recognition, face
synthesis, and face morphing, and falls into the category of supporting
techniques given our taxonomy from Section 2. The main goal of land-
mark localization is to locate key points of the given 2D face image,
such as the nose tip, eyebrow curve, mouth corners, eye centers, or
eye corners among others. Until the pandemic, many successful facial
landmark localization approaches have been developed by using thou-
sands of annotated face images [58,152,153]. However, the widespread
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usage of facemasks to prevent virus transmission has brought new chal-
lenges to landmark localization and alignment similarly as to many
other face-based algorithms. As it was not possible to collect and label
a new dataset for the task,mostmethods prefer to use existing datasets,
especially the JD-landmark dataset [154] and place virtual facial masks
on the face images. This is because labeling facial landmark points
on images with facial masks is hard, especially for 68 or 106 points
of landmarks, which is the most commonly used markup in the litera-
ture. The authors of [47] propose MaskFan, which is a lightweight
convolutional neural network that uses depthwise separable convolu-
tions and group operations. They also propose a novel loss function
named Enhanced Wing loss, which gives less importance to errors
made near facial masks. Facial landmark localization methods generally
adopt L1 or L2 loss functions that focus on more considerable errors.
Since predicting facial landmarks over facial masks is a hard task due
to invisible parts of the face, applying L1 or L2 loss forces the model to
pay more attention to large errors that most heavily impact perfor-
mance. In [155], Wen et al. also propose a new architecture for the
masked facial landmark localization problem. Their model consists of
three different neural networks designed for: alignment, estimation,
and refinement. They use downscaled face images in the alignment
network and then align faces according to the reference pose. Then,
the estimation network predicts 106 facial landmarks. Finally, their
refinement model takes the non-masked region of the face, which is
eyes and eyebrows and tries to generate more accurate predictions.
Hu et al. [48] adopt multi-knowledge distillation and a pose-aware
resampling strategy. They aim to increase data diversity by sampling
images with different face poses.

All the presented works generate virtual masks and apply them on
the JD-landmark dataset [154], while studies with real masks are still
largely missing from the literature due to the obvious ground-truth is-
sues associated with such work. Suggestions for evaluation strategies
that only consider visible landmarks have also been made in prior
publications [154].

3.6. Crowd detection and counting

One of the prevention measures to reduce the spread of the Corona-
virus disease is physical/social distancing in public areas (see Fig. 5) that
can be monitored automatically using vision-based crowd counting
techniques. Such techniques are able to count or estimate the number
of people in a given area froma single image or a video acquired through
surveillance cameras, CCTV or even drones. A plethora of research has
been done over the past years on the crowd counting problem
[166,167] dealing with challenges, such as mutual occlusions, non-
uniform people density, varying scale, perspective, illumination,
weather conditions, crowd size, and density, that can severely alter
human appearance. In this section, we review crowd counting solutions
with the focus on approaches developed to assist policy measures
against the COVID-19 pandemic (see Table 1).

Early crowd counting methods mainly rely on object detection with
counting. Usually, these methods first extract image features, such as
shapelets [168], Histograms of Oriented Gradients (HOGs) [169], Haar
wavelets [170] or other related descriptors from the image and then
combine the computed representations with various classification
methods, such as Support Vector Machines (SVMs) [169,170], regres-
sion forests [171] and alike, in order to detect people in images. These
methods work well for detecting sparse (masked) faces, but perform
poorly on dense crowds where individual people are not clearly visible.

To alleviate the above-mentioned problems, some approaches rely
on direct-count regression. Examples of such methods in [172] use
handcrafted features and some regression technique, such as linear re-
gression, to learn a mapping function between the features and the
crowd count. These methods are able to accurately estimate people
counts even in the presence of occlusions and background clutter, but
they ignore spatial information. The solution to this problem is given



Fig. 5. Generic images of crowded street before and during the pandemic, respectively. (© JordyMeow and Benzoyl).

Table 1
Summary of the reviewed crowd counting methods.

Method Year Handling of
facial masks

Handling of social
distancing

Mode of counting
implementation

Al-Sa’d et al. [156] 2022 No Yes Detection based CNN
Valencia et al. [157] 2021 No Yes Detection based CNN
Somaldo et al. [158] 2020 No Yes Detection based CNN
Nguyen et al. [159] 2021 No No Regression based CNN
Almalki et al. [160] 2021 Yes No Detection based CNN
He et al. [161] 2022 No No Attention based CNN
Dosi et al. [162] 2021 No No Attention based CNN
Alvarez et al. [163] 2021 No Yes Detection based CNN
Jarraya et al. [164] 2021 No No Density based CNN
Amin et al. [165] 2021 Yes Yes Detection based CNN
Nguyen et al. [6] 2021 Yes No Detection based CNN

3 https://github.com/AlexeyAB/darknet.

F.I. Eyiokur, A. Kantarcı, M.E. Erakın et al. Image and Vision Computing 130 (2023) 104610
by the density estimation based methods [173] that learn a mapping be-
tween features in the local region and the corresponding object density
maps, while integrating over the densities to obtain crowd counts. The ap-
proaches of this type generally use dot-annotated images for training that
are transformed todensity functions using kernel density estimation [174].

With the advent of deep learning, many crowd counting approaches
have been proposed based on convolutional neural networks [175].
Amin et al. [165], for example, proposed a solution that addresses
both face mask detection and crowd counting. With this approach, the
YOLO-based algorithm [176] is used to detect face masks, while the
MobileNet single shot object detector [177] is used simultaneously for
crowd counting. Kammoun-Jarraya et al. [164] introduced a CNN
based technique for crowd counting from a single image for enforcing
social distancing during the COVID-19 pandemic. The proposed model
follows the structure of VGG-19 [178] with small kernel sizes in the
convolutional layers but without the fully connected layers. Due to the
fully convolutional structure, the model is able to process input images
of arbitrary resolutions. The reported results on a new large-scale crowd
counting dataset from the Saudi public areas point to the competitive
performance compared to the state-of-art methods. Alvarez et al.
[163] developed a software to monitor the physical distance and the
crowd density of a specified area or a region of interest. The YOLOv3
model [59] was used in this work to detect humans in each video
frame captured by a mobile phone. Physical distancing is monitored
through computing the interpersonal distance of a pair of centroids of
the detected bounding boxes, while the crowd density is computed by
counting the number of people present in the region of interest. The
software is able to detect 83% of physical distancing and 84% of crowd
density violations. Dosi et al. [162] proposed a pipeline namedAttentive
EfficientNet (AECNet) for density estimation in crowd counting that
makes use of an encoder-decoder-based architecture. In the encoder
block, they use EfficientNet [70] and empirically show their superiority
over other feature extraction architectures.
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Tomitigate the problem of huge scale variations, He et al. [161] pro-
posed a novel approach for crowd counting named Jointly Attention
Network (JANet). They designed the Multi-order Scale Attention mod-
ule to extract meaningful high-order statistics with abundant scale
details and also introduced theMulti-pooling Relational Channel Atten-
tion module to investigate the global scope relations and structural se-
mantics. Various experiments illustrated the superiority of the JANet
approach. Almalki et al. [160] introduced an approach that detects,
counts, and classifies the crowd’s masking condition and calculates spa-
tiotemporal safety index that can be used for assisting effective policy
decisions and relief plans against COVID-19. The approach uses
YOLOv3 [59] to extract image features and a classification layer is
added at the end of the YOLOv3 extractor that classifies a detected
face to either the mask or the no-mask group. A unified system that
allows the scale variation problem to be solved both directly and indi-
rectly was described by Nguyen et al. in [159]. Here, the dense scale
information is learned directly through the main network, which is de-
signed with dense dilated convolution blocks and dense residual
connections among the blocks. The scale information is further incorpo-
rated into the features indirectly through learning depth information
from an auxiliary depth dataset.

Somaldo et al. [158] proposed a drone that has the ability of loca-
lization, navigation, people detection, crowd identifier, and social
distancing warning. For this purpose they utilize YOLOv3 [59] to detect
people and also define an adaptive social distancing detector. Valencia
et al. [157] presented a desktop application that utilizes YOLOv4-tiny3

and the DeepSORT tracking algorithm [179] to monitor crowd counts
and social distancing from a top-view camera perspective. A privacy-
preserving adaptive social distance estimation and crowd monitoring
solution for surveillance cameras was proposed by Al-Sa’d et al. [156].

https://github.com/AlexeyAB/darknet


Fig. 6. Illustration of the face-hand interaction detection task. One of themost common advice given to prevent virus transmission is not to touch the facewith hands. During the COVID-19
pandemic, automatic detection of face-hand interaction has gained importance as a research topic in CVHA.

4 https://github.com/aqeelanwar/MaskTheFace.
5 https://github.com/JDAI-CV/FaceX-Zoo.
6 https://github.com/JDAI-CV/FaceX-Zoo/tree/main/addition_module/face_mask_

adding/FMA-3D.
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The authors utilize OpenPose [180] to detect and localize people. Their
approach is able to compute inter-personal distances in real-world
coordinates, detect social distance infractions and identify overcrowded
regions in a scene. The work presented in [6] investigated the effective-
ness of different approaches to estimate the ratio of people wearing a
mask within an observed crowd - a problem referred to by the authors
as mask-wearing ratio estimation. Specifically, the authors compared
detection-based and regression-based approaches to crowd counting,
while also distinguishing between people with and without masks in
the given crowd. Moreover, the authors improved the state-of-the-art
face detector, RetinaFace [58], to be able to better estimate the mask-
wearing ratio. A large-scale dataset with more than 580,000 face anno-
tations was also introduced to facilitate the experiments.

3.7. Breathing rate measurements

Clinical studies on patients with COVID-19 disease showed that one
of the most common symptoms are fever, respiratory and digestive
symptoms [181]. In order to identify breathing abnormalities, which
can be a symptom of COVID-19, multiple research works suggested
measuring respiratory rate using wearable devices [182], non-contact
radar signals [183] and thermal cameras [29].

Among these breathing rate measurement techniques, detecting
breathing anomalies using thermal cameras represents a cheap and
effective solution that can easily be implemented in practice, as many
countries already deployed thermal cameras to detect people with
high fever at airports and public buildings [184]. Following this line of
research, Queiroz et al. [29] proposed to analyze the intensity of thermal
images over timeusing deep learning techniques. The approach exploits
the fact that the region covered by facial masks gets warmer when
exhaling, which can be detected through the analysis of the pixel inten-
sities in the thermal image. Similarly, when the pixel intensity within
the mask region decreases, this indicates that the person is inhaling.
To facilitate the research, the authors collected 33 videos of 11 subjects,
with subjects breathing slowly, normal and fast. Their experimental
results showed that breathing ratemeasurements can reach an accuracy
of up to 91% on their dataset.

3.8. Face-hand interaction detection

To minimize the transmission of COVID-19, common advice issued
by health organizations included limiting face-hand interaction. CVHA
techniques were also developed to help monitor face-hand interaction
in public spaces. A basic representation of the face-hand interaction
detection task is presented in Fig. 6.

One of the initial studies by Beyan et al. [31] investigated the face-
hand touching behavior of people. The authors first manually annotated
10
64 video recordings, originally collected for the analysis of social inter-
actions within a small group of people, for face-hand touching interac-
tion. Next, they evaluated rule-based, hand-crafted feature-based, and
learned CNN feature-based models for their performance in face-hand
touching detection and found that the CNNmodel yielded the best over-
all results with an F1-score of 83.76%. In a more recent study, Eyiokur
et al. [30] explored the applicability of several well-known CNNmodels,
such as ResNet [63] and EfficientNet [70], for face-hand interaction
detection. Here, the authors first introduced an unconstrained face-
hand interaction dataset, named ISL-Unconstrained Face Hand Interac-
tion Dataset (ISL-UFHD), to advance detection of face-hand interaction
detectionwithin a comprehensive prevention system for COVID-19pro-
tectionmeasurements, and then evaluated the considered classification
models on the newly collected data. Experimental results showed that
the highest classification accuracy of 93.35% was obtained with the
EfficientNet-b2 model [70].

Both of the studies discussed above, proposed CVHA techniques that
showed promise for the face-hand interaction problem. However, im-
portant challenges, such as the detection in extreme imaging conditions
and under varying poses, or in the presence of ambiguity caused by the
different depth levels of the face and hand, still persist. Face-hand inter-
action detection is, therefore, still considered an open research problem
that requires further investigation.
3.9. Synthetic data generation and mask removal

One of the main challenges in CVHA at the beginning of the COVID-
19 was the obvious lack of suitable datasets needed to train various
CVHA techniques. In response to this challenge, generative approaches
have been quickly adopted to build synthetic datasets to alleviate the
need of collecting real-life masked face images as well as to develop
methods based on data augmentation and generation for various tasks
such as face recognition, identification, and landmark detection.

To artificially generate face images with masks, Anwar et al. [33] de-
veloped an open-source tool, MaskTheFace,4 that can convert non-
masked faces to masked faces effectively. The tool uses the Dlib-based
face landmark detector [152] to identify the face tilt and six key features,
i.e. landmarks, on the face to properly fit a face mask. Alternatively,
Wang et al. [42] presented another open-source toolbox, FaceX-Zoo,5

which implements a Facial Mask Adding (FMA-3D)6 method for
adding a mask to a non-masked face image. Given a real masked face
image I and a non-masked face image J, this method synthesizes a

https://github.com/aqeelanwar/MaskTheFace
https://github.com/JDAI-CV/FaceX-Zoo
https://github.com/JDAI-CV/FaceX-Zoo/tree/main/addition_module/face_mask_adding/FMA-3D
https://github.com/JDAI-CV/FaceX-Zoo/tree/main/addition_module/face_mask_adding/FMA-3D
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photo-realistic masked face image with the mask region coming from I
and the facial area coming from J.

Encouraged by these initiatives, many studies have attempted to
enrich existing datasets containing faces without masks, e.g. CelebA
[185], CASIA-WebFace, LFW [143], CALFW [186],with synthetically gen-
erated masked face images to enable further research on masked face
recognition [43,154,187–190]. For instance, Wang et al. [43] and
Karasugi et al. [187] generated synthetic face mask datasets using
Dlib’s landmark detector [152] to properly align face mask templates
on faces, whereas Mare et al. [188] relied on SparkAR Studio,7 a
developer program made by Facebook to create Instagram face filters,
to create synthetic masks and overlay them on faces in the original im-
ages. On the other hand, Xiang et al. [154] targeted to improve the
accuracy and robustness of facial landmark localization on masked
faces by introducing a new dataset with generated masks that are
largely varied in identity, head pose, facial expression, and occlusion
based on the FMA-3D method in the FaceX-Zoo toolbox [42].

Some studies tackled the opposite problem and focused on
removing the face masks from images [25,44–46]. The idea with these
studies is to bring the data closer to the real-world masked-free data,
for which standard off-the shelf CVHA models for different tasks are
readily available. For instance, Din et al. [44] investigated a two-stage
method for unmasking of masked faces where the first stage detects
and segments masks with a modified version of U-Net [191] and the
second stage deploys a GAN-based network with global and local dis-
criminators for mask-area inpainting. Similarly, Li et al. [45] proposed
a method combining a GAN and a texture network to first inpaint the
face after removing the mask and then to smooth out the texture to
make the resulting face more realistic. Taking a step further, Coelho
et al. [46] presented a generative approach for face mask removal
using audio and appearance together. This approach estimated land-
marks representing mouth structure from the audio, and feed these
landmarks into a GAN to reconstruct the full face image with the
mouth in a correct shape. Hu et al. [25] described a method to generate
faceswith properly wornmasks, either by simply overlaying themask if
no mask is worn or by first removing and then overlaying the mask if
the mask is incorrectly worn. The method employs Mean and Covari-
ance Feature Matching GAN (MCGAN) [192] for the mask removal
task and uses MaskTheFace [33].
4. Datasets

An unprecedented number of datasets targeting various CVHA tasks
related to COVID-19 have been introduced over the last few years.
While masked face datasets were already collected back in 2017 [56],
the need for suitable larger-scale collections of masked face images in-
creased significantly during the COVID-19 pandemic. As a result, novel
(real and simulated) datasets were introduced (see Fig. 7) for masked
face detection and recognition, face-hand interaction detection,
(masked) crowd counting and as well as other related CVHA problems.
In Table 2, we summarize themain COVID-19 related datasets and com-
pare their characteristics.

In [56], the first large-scale masked face dataset, named MAFA, was
published. The dataset contains 30,811 images of multiple persons
with various head poses, face occlusions, and ethnicity, collected from
the Internet. The MAFA dataset includes 35,806 masked face crops
(there are multiple faces per image) with six annotated attributes:
face, eye, and mask coordinates, head pose, occlusion degree, and four
different mask types. The dataset is primarily intended for the develop-
ment of face/mask detectionmodels. However, it needs to be noted that
some of the masks present in the data are not worn correctly, e.g., they
are not covering the nose, so mask detection models developed on
this dataset are generally considered less suitable for monitoring
7 https://sparkar.facebook.com/ar-studio/.
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applications aimed at preventing the spread of the COVID-19 disease.
To address this issue, some studies considered improper mask usage
as an additional label for the facial images, i.e., next to the mask and
no mask labels. Such data labels helps conceive more appropriate
systems with respect to health-protective rules and usability in
real-world conditions. In [1], Batagelj et al. pointed out that the actual
annotations of MAFA [56] are not suitable for training useful detectors
to distinguish between correctly and incorrectly worn masks. The
authors, therefore, reannotated the MAFA images based on health-
protective rules. In addition to MAFA [56], they also annotated the
Wider Face dataset and released the generated annotations under the
name Face Mask Label Dataset (FMLD). Thus, FMLD [1] includes images
partitioned into three groups: 29,532 images with correctly worn
masks, 1,528 images with incorrectly worn masks, and 32,012 images
with mask free faces. In addition to mask annotations, the FMLD also
has boundingbox coordinates of faces, gender, ethnicity, and pose labels
for each face. Wang et al. [194] utilized the same benchmark datasets,
Wider Face [53] & MAFA [56], to build a serverless edge face detection
tool. Their dataset included 4,065 images from MAFA, 3,894 images
from Wider Face [53], and 1,138 additional images from the Internet,
for a total of 17,532 face crops with corresponding bounding boxes. In
[71], a new dataset called the Properly Wearing Masked Face Detection
Dataset (PWMFD) is presented and consists of 3,615 newly collected
images, 2,581 relabeled images from MAFA [56], 2,951 images from
Wider Face [53], and 58 images from RMFRD [43]. Similar to the previ-
ous studies, Jiang et al. [71] considered three classes for the labels of
their dataset, i.e., correctly worn, incorrectly worn and mask-free. In
total, there are 7,695 properly worn masked faces, 10,471 mask-free
faces, and 366 incorrectly worn masked faces in PWMFD. In [193], a
face detector was first applied to the MAFA dataset [56], and the gener-
ated face crops were then reannotated with respect to virus protection
rules. This way, a new dataset, named MAFA-FMD, was collected and
includes 56,024 images belonging to correct, incorrect, and no mask-
wearing classes. Unfortunately, the MAFA-FMD dataset is not publicly
available.

Eyiokur et al. [30] proposed an unconstrained masked face dataset,8

named ISL-Unconstrained Face Mask Dataset (ISL-UFMD), to study
CVHA techniques for COVID-19. ISL-UFMD [30] contains 11,075
mask-free, 9,300 proper, and 513 improper mask images, collected
from the Internet, YouTube videos, and well-known face datasets,
such as CelebA-HQ [185] and LFW [143]. By relying on different re-
sources during data collection, the data in ISL-UFMD features highly di-
verse images captured in unconstrained conditions with variability
across ethnicity, age, gender, head pose, and environmental settings.
Furthermore, Eyiokur et al. [30] also presented the first unconstrained
face-hand interaction dataset named ISL-Unconstrained Face Hand In-
teraction Dataset (ISL-UFHD) to advance face-hand interaction
detection with respect to COVID-19 protection rules. In ISL-UFHD,
there are 10,018 samples with face-hand interaction and 20,038 with-
out. Another related dataset, FaceMask, was described by Vrinkas et al.
in [195] and contains 4,866 images of people with variations in gender
and ethnicity, occlusions, and capture conditions, e.g., indoor/outdoor.
Some of the faces are blurred, have partial occlusions or are of low-
resolution due to distance to the camera. There are 15,419 and 12,262
face crops that belong to the mask and no mask classes, respectively.
Morever, Kantarci et al. [72] proposed Bias Aware Face Mask Detection
(BAFMD) dataset in order to create a dataset that minimizes potential
bias on ethnicity, age, and gender. Their dataset contains 6,264 images
from Twitter with more than 16,000 facial bounding boxes with and
without facial masks.

The need for a large-scale masked face datasets motivated
researchers to also generate simulated images with artificial masks
positioned on the face, as already discussed in Section 3.9. In [51],
8 https://github.com/iremeyiokur/COVID-19-Preventions-Control-System.

https://sparkar.facebook.com/ar-studio/
https://github.com/iremeyiokur/COVID-19-Preventions-Control-System


Fig. 7. Illustrative example images from different datasets introduced for the development of CVHA techniques for the COVID-19 era.
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a large-scale simulated masked face dataset named MaskedFace-Net,
which includes the CorrectlywornMasked Face Dataset (CMFD) and In-
correctly worn Masked Face Dataset (IMFD) subsets, was presented.
MaskedFace-Net was constructed from the Flickr-Faces-HQ3 (FFHQ)
dataset [205] using a mask-to-face deformable model and contains
137,016 images in total. In [99], the popular large-scale MS1MV2
dataset [206] with 5.8 M images of 85 k subjects was augmented with
12
simulated face masks with a probability of 0.5. Similarly, in [93], a face
mask simulated version of the MS1MV2 dataset [206] was utilized for
the training of the presentedmasked face recognition system. To evalu-
ate the proposed system, other well-known benchmarks for face verifi-
cation, namely IARPA Janus Benchmark-C (IJB-C) dataset [207] and LFW
[143], were used to generate face images with synthetic face masks.
Moreover, in [43], three novel datasets, named Masked Face Detection
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Dataset (MFDD), Real-world Masked Face Recognition Dataset
(RMFRD), and Simulated Masked Face Recognition Dataset (SMFRD)
were published to investigate the facemask detection and face recogni-
tion performance in the case of occlusion due to face masks.Wang et al.
[43] proposed 500,000 simulatedmasked face images of 10,000 subjects
constructed with an artificial mask generation tool.

In addition to theworks that investigate prevention,monitoring and
control CVHA techniques, e.g., for the detection and tracking of proper
usage of face masks, some studies also examined the effect of wearing
face masks on the performance of face recognition systems. To facilitate
this work, novel real-world and simulated masked face recognition
datasets were introduced. Wang et al. [43], for example, described the
Real-world Masked Face Recognition Dataset (RMFRD) which consists
of 5,000 masked and 90,000 non-masked face images that belong to
525 celebrities. Although it is stated that the RMFRD dataset contains
5,000 face images with masks, there are only 2,203 face images with
masks in the publicly available version. Damer et al. [32] presented a
database that consists of 2,160 images of 24 participants from three dif-
ferent sessions. For each session, three videos are collected from the
participants; two of them containing faces with and without a face
mask in daylight and the third one containing faceswithmasks in differ-
ent lighting condition. Session one was considered as a reference, and
sessions two and three were considered as sources for the probe data.
In their follow-up work [82], the same authors extended the initial
datasetwith an additional 24 participants and a new type of face images
with simulated masks. In [33], the authors published a relatively small
dataset, called Masked Faces in Real World for Face Recognition
(MFR2), that contains 53 identities with an average of five images,
with or without face mask, per subject.

In [196], Mishra et al. focused on analyzing masked face detection,
gender prediction, mask/no mask classification, and masked face
recognition on images thatwere acquired from Indian subjects. They in-
troduced the Dual Sensor Indian Masked Face Dataset (DS-IMF), which
consists of 300 subjects with 300 mask-free and 1,500 mask images per
class. The images were captured with a DSLR camera and a mobile
phone. Moreover, Fang et al. [126] presented the novel Collaborative
Real Mask Attack Database (CRMA) to investigate the effect of face
masks on presentation attack detection. The CRMA dataset consists of
30% AM0 (unmasked face PA), 60% AM1 (masked face PA), and 10%
AM2 (unmasked face PA with a real masked placed on the PA) which
are images of three different presentation attacks for analyzing both
print and replay attacks. In [81], a new real-world dataset named Real
World Occluded Faces (ROF) with 3,195 neutral images, 1,686
sunglasses images (upper-face occluded) and 678 masked images
(lower-face occluded) is presented. In ROF dataset, collected images be-
long to 180 different identities and they are used to explore effect of
occlusions on face recognition performance.

Another notable group of works [29,197,198] focused on the collec-
tion of datasets for COVID-19 related applications using thermal
imaging. Queiroz et al. [29], for example, utilized a large-scale multi-
modal dataset known as SpeakingFaces [208] that consists of thermal
images as well as visual and audio streams. The original SpeakingFaces
dataset [208] does not include faces with masks. Queiroz et al. [29],
therefore, generated thermal masked faces using artificial masks placed
over the mouth and nose area. After preprocessing, 42,460 thermal
masked and 33,448 thermal mask-free faces were included in the final
Thermal-Mask Dataset (TMD) [29]. In [197], Glowacka et al. collected
7,920 thermal images with four different cameras from various dis-
tances and subjects with andwithout facialmasks. The captured dataset
[197] in the final form includes 10,555 faces, as some of the recorded
images include multiple people. In [198], a small thermal mask dataset
(COVID-19 TFCD), with 250 images belonging to 20 participants, was
collected.

There are many online dataset repositories such as Kaggle, IEEE
DataPort, and Github that allow researchers to publish their data collec-
tions. With growing interest in CVHA problems during the COVID-19
14
times, several face masked datasets [199–204] were published on
these repositories. In [199], there are 853 images of 4,080 faces belong-
ing to three face classes (present/not present/improperly worn). In
[200], around 12 k face images belonging to two main classes: mask,
no mask, were published. The dataset has variations in terms of resolu-
tion, mask type, diverse people. Another dataset named Face Mask Lite
Dataset (Kaggle-FMLD) [201] on Kaggle contains 10,000 artificial face
images generated using StyleGAN2 architecture. By adding artificial
masks to the generated faces, the authors created a simulated dataset
to address the masked face recognition problem. The Ways to Wear a
Mask or a Respirator (WWMR-DB) dataset [202], published on the
IEEE DataPort, consists of 1,222 images of a small number of people
with eight different mask usage annotations. TheMedical Mask Dataset
(MMD) [203] and AIZOOTech dataset [204] are publicly available
masked face detection datasets and annotation efforts published by
private companies.

5. Open issues & future challenges

Significant progress has been made over the last couple of years to
address the main challenges in CVHA techniques for the COVID-19
era, but several open issues still remain and need to be addressed in
the future. Below we provide a discussion of the most important topics
in the opinion of the authors.

5.1. Self-adaptation of CVHA techniques

Adesired ability of CVHA techniques is detectingnew conditions and
self-adaptation to these new conditions. For example, before theCOVID-
19 era it was not very common to wear masks. Therefore, most of the
pre-COVID-19 CVHA techniques were trained with datasets that do
not at all contain or contain very few samples of people with masks.
On account of this, the performance of many existing techniques
deteriorated severely, once people started wearing face masks. As the
changes in human appearance can occur over time due to several fac-
tors, e.g., due to fashion trends and health concerns, it is necessary and
important to have CVHA techniques that adapt themselves to the cur-
rent conditions. One way of performing this is to benefit from online
continual learning approaches [209–214] that have been utilized in
computer vision research. Detecting unseen cases is critical, as some-
times changes in appearance might not be as sudden. The adaption of
models to new concepts and conditions by learning with few data
[215–218] and using self-supervised features [219] are other essential
points that need to be considered in future works.

5.2. Generalization and robustness

The current generation of CVHA techniques is already exhibiting
remarkable performance across diverse data characteristics. However,
in unconstrained scenarios, large appearance variability may still
adversely affect their performance [18,19]. This, for example, includes
low-resolution masked inputs for tasks such as face landmarking, face
detection and face recognition. Significant pose variations and addi-
tional occlusions, e.g., due to glasses, hats and scarfs, also still have an
adverse effect on performance, especially with masked facial images.
In CVHA solutions involving crowds, novel ideas and powerful
techniques are needed that can differentiate between masked and
non-masked people in various environments and across a range of
viewing angles [6]. Thus, there is an imminent need to further improve
the generalization capabilities and most of all robustness of CVHA tech-
niques aimed at combating COVID-19.

5.3. Availability of large-scale benchmarks

As discussed in Section 4, a considerable amount of datasets, espe-
cially for the masked faces, appeared in response to the needs induced



10 Martin Pollard, “Even mask-wearers can be ID’d, China facial recognition firm says,”
Reuters, 9 March 2020, retrieved from https://reut.rs/2TAwMux.
11 “Before Clearview Became a Police Tool, It Was a Secret Plaything of the Rich,” The
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by the COVID-19 pandemic. However, many of these datasets are small,
not well curated and comewithout a well-defined experimental proto-
col and/or performance indicators. In CVHA problems, such as facial
landmarking and related tasks, for example, ground truth information
is usually also not readily available. As a result, research often combine
datasets for their experiments and define in-house protocols for exper-
imentation. It is, therefore, difficult to objectively evaluate progress and
assess the merits and deficits of the CVHA techniques being proposed
in the literature. Well-designed large-scale benchmarks with clear ob-
jectives and properly designed experimental protocols are critically
needed to help advance the field further and provide a solid basis for
research going forward.

5.4. Bias and fairness

Data-driven techniques that learn from labeled examples are today
the most widely utilized solutions for various computer vision tasks.
When such techniques are applied in automated decision-making
systems that impact people’s lives, fairness and bias become critically
important. As automated decisions need to be fair and equally accurate
for all, regardless of race, gender, age and other demographic factors, it
is paramount that CVHA techniques ensure unbiased performance for
subjectswith diverse demographic attributes [220]. The negative conse-
quences of biased systems have, for example, made headlines for face
recognition, prompting many of the largest software corporations,
such asMicrosoft, Amazon, and IBM, to reconsider their face recognition
programs and policies [221,222]. While several studies explored bias
with standard CVHA techniques [223–227], this issue has seen far less
attention with masked face images and the data characteristics induced
by COVID-19 [228]. Therefore, studies are needed that help to better un-
derstand the behavior of CVHA techniques in terms of bias and fairness
withmasked face images, aswell as targetedmitigation techniques that
contribute towards fairer decisions for different CVHA tasks. Further-
more, as many of the existing datasets gathered for COVID-19 related
CVHA techniques are not balanced across demographic groups, addi-
tional efforts are also required on the data collection and curation side
to facilitate research into these topics.

5.5. Ethics and privacy

The ability of processing face images behind masks and identifying
people raises certain questions about the surveillance capabilities
enabled by such technologies. As in all ethics issues, a sound analysis
should balance the potential benefits against the potential risks, and
arrive at guidelines and recommendations that will mitigate the risks,
while maximizing the benefits. The main risks of facial surveillance
involve loss of privacy, especially in cases where privacy matters. Gov-
ernment surveillance, in particular during events that criticize the said
government, is a major case in point, and there is widespread worry
that the deployment of facial surveillance can jeopardize people’s rights
of expression, can lead to prosecutions and harm. This is also linked to
legitimate uses of facial surveillance and analysis technology, such as
for public transport payments or health related screening purposes,
which can then be extended into citizen surveillance, i.e. the “slippery
slope” argument. Religious freedoms, freedom of opinion and expres-
sion, freedom of assembly and association are all fundamental human
rights, and need to be protected. During the Umbrella Movement in
Hong Kong, the protesters have used masks and other props to cover
their faces to prevent the police from identifying them and singling
out protesters for arrests.9While theremay be legal barriers for govern-
ments to target protesters, they can be sidestepped quickly. A Chinese
based company, Hanwang, announced in 2020 that its facial recognition
software was identifying people with masks with 95% accuracy, as
9 https://www.nytimes.com/2019/07/26/technology/hong-kong-protests-facial-
recognition-surveillance.html.
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opposed to 99.5% for people withoutmasks.10When asked the possibil-
ity of this software being used to identify protesters in Hong Kong, the
company spokesperson said that this use case is known, but the market
is too small. The company reports having about 200 clients in Beijing
using the technology, including the police.

The second potential risk for enhanced facial surveillance capabili-
ties (even with masked faces) is associated with data use by private
companies. Since identification and personalization content for poten-
tial customers is key for new marketing approaches, identity can be
monetized easily. Privacy breaches in this sector can have drastic
consequences.11 While personal data, including biometric data, such
as facial imagery, are regulated in certain parts of the world, e.g., see
GDPR in Europe,12 the Japanese Act on the Protection of Personal Infor-
mation in Japan [229], or the California Consumer Privacy Act (CCPA)
[230] and the Biometric Information Privacy Act (BIPA) [231] in the
US, technological safeguards are also critically needed to address ethics
and privacy concerns. Along these lines, biometric privacy-enhancing
technologies designed specifically for masked faces and capable of
hiding part of the information contained in the data may become
more important going forward [222].

6. Conclusion

It is generally expected that COVID-19will not simply disappear, and
will remain an issue for years to come. Consequently, novel computer
vision techniques adapted to societal developments and behavioral
changes of people induced by prevention measures and health-related
governmental policieswill increasingly be needed. A significant amount
of work has already been done to help prevent and control the spread of
the disease and facilitate normal operation of identity management
schemes and other relevant infrastructure using vision-based methods.
As discussed in the survey paper, a large part of this work focused on
computer vision techniques for human analysis (CVHA), which analyze
visual data related to faces and people during the COVID-19 era, e.g., in
the presence of occlusions with face masks.

In this survey paper, we presented a comprehensive review of
existing CVHA solutions for the COVID-19 era. Specifically, we discussed
the main challenges introduced to CVHA problems by the pandemic,
presented a high-level taxonomy of existing methods, elaborated on
relevant datasets and described, what we feel, are the most important
open issues that need to be addressed in the future. The consolidated in-
formation presented in the survey is expected to help researcherswork-
ing on similar problems to quickly get an overview of the work already
done and the main challenges that require further research.
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