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Abstract
Effective management decisions depend on knowledge of species distribution and 
habitat use. Maps generated from species distribution models are important in pre-
dicting previously unknown occurrences of protected species. However, if popula-
tions are seasonally dynamic or locally adapted, failing to consider population level 
differences could lead to erroneous determinations of occurrence probability and 
ineffective management. The study goal was to model the distribution of a species 
of special concern, Townsend's big-eared bats (Corynorhinus townsendii), in California. 
We incorporate seasonal and spatial differences to estimate the distribution under 
current and future climate conditions. We built species distribution models using all 
records from statewide roost surveys and by subsetting data to seasonal colonies, 
representing different phenological stages, and to Environmental Protection Agency 
Level III Ecoregions to understand how environmental needs vary based on these fac-
tors. We projected species' distribution for 2061–2080 in response to low and high 
emissions scenarios and calculated the expected range shifts. The estimated distribu-
tion differed between the combined (full dataset) and phenologically explicit models, 
while ecoregion-specific models were largely congruent with the combined model. 
Across the majority of models, precipitation was the most important variable predict-
ing the presence of C. townsendii roosts. Under future climate scenarios, distribution 
of C. townsendii is expected to contract throughout the state, however suitable areas 
will expand within some ecoregions. Comparison of phenologically explicit models 
with combined models indicates the combined models better predict the extent of 
the known range of C. townsendii in California. However, life-history-explicit models 
aid in understanding of different environmental needs and distribution of their major 
phenological stages. Differences between ecoregion-specific and statewide predic-
tions of habitat contractions highlight the need to consider regional variation when 
forecasting species' responses to climate change. These models can aid in directing 
seasonally explicit surveys and predicting regions most vulnerable under future cli-
mate conditions.
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1  |  INTRODUC TION

Over the last century, the earth's climate has changed, including a 
warming atmosphere and changes in the frequency and intensity of 
precipitation (Masson-Delmotte et al., 2021). Major impacts of cli-
mate change on biodiversity include increased extinction rate, range 
shifts, habitat fragmentation, and increased dispersal resistance 
(reviewed in Habibullah et al., 2021). There is already evidence of 
species' ranges changing, with research pointing toward major con-
tractions, expansions, and shifts in distributions globally (Amorim 
et al., 2014; Chen et al., 2011; Freeman et al., 2018). Species distri-
bution models (also known as ecological niche models and habitat 
suitability models) are popular tools used to predict species' range 
shifts under various climate and land use change scenarios (Guisan 
et al., 2013; Razgour et al., 2016). These models use environmental 
variables and known species occurrences to predict a species' dis-
tribution over larger geographic scales. Predicting spatial changes 
in species' ranges through species distribution modeling can help 
develop targeted conservation plans by identifying areas that will 
be able to sustain a species despite climate change, or by aiding 
in the prioritization of areas for field surveys of rare taxa (Guisan 
et al., 2013; Zanini et al., 2009).

The variables and processes that are important in explaining the 
distribution and persistence of species are scale dependent; they 
can change from one area to the next due to regional differences 
in biotic and abiotic factors, historical and present land use, and/
or local adaptation of populations (Deppe & Rotenberry, 2008 and 
references within, Bay et al., 2018; Ervin & Holly, 2011; Neubaum 
& Aagaard,  2022; Razgour et al.,  2019; Urbanowicz et al.,  2019). 
However, in species distribution models, the relationship between 
distribution and predictive environmental variables is assumed to be 
constant across a species' range (Reed et al., 2011). If populations 
of a species are locally adapted, excluding geographic population-
level differences could lead to erroneous distribution predictions 
and inappropriate management decisions as local response to cli-
mate change could differ throughout a species' range (Hällfors 
et al., 2016; Oldfather, 2019). Refining the spatial scale of models, 
for example, modeling by ecoregion subdivisions, can improve pre-
dictions by capturing this intraspecific variation in climate tolerance 
(Chardon et al., 2020; Ferraz et al., 2012; Hällfors et al., 2016; Smith 
et al., 2019; Urbanowicz et al., 2019).

Seasonal differences in the distribution of a species are another 
source of variation to consider when building species distribution 
models. Species' phenological stages can have vastly different 
ecological needs and many species of birds and mammals migrate 
to meet these needs, thus occupying different geographic areas 

and niches depending on the season (Avgar et al.,  2014; Fortuna 
et al., 2009). Failing to separate species distribution models based 
on breeding and non-breeding occurrences assumes that species 
have similar climatic needs during these periods. Studies on long-
distance migratory animals have shown that different climatic or 
landscape variables drive species distribution in the suitability 
breeding and non-breeding (winter) habitat (i.e., Hayes et al., 2015; 
Morganti et al., 2017). Additionally, there is a growing body of evi-
dence that supports the same patterns in species that have local sea-
sonal movements (Beumer et al., 2019; Smeraldo et al., 2018). When 
modeling potential future distribution of species that migrate locally, 
such as temperate bats, seasonally explicit distribution models may 
be used to understand if habitat will continue to be suitable for both 
breeding and non-breeding needs.

Bats (Chiroptera Blumenbach, 1779) are the second-most diverse 
mammalian order with ~1400 species, representing almost a fifth of 
mammal species (Frick et al.,  2019; Mammal Diversity Database, 
2022). They provide important ecosystem services such as polli-
nation, seed dispersal, and pest control (Boyles et al., 2011; Jones 
et al., 2009; Kunz et al., 2011; Maas et al., 2016). Many bat species 
are at risk of population decline from largely anthropogenic factors 
including habitat loss, mortality at wind farms, and climate change, 
therefore many bat species must be actively managed for recovery 
(Festa et al., 2022; Frick et al., 2019; Voigt & Kingston, 2016). Fine-
scale distribution maps can help prioritize management activities 
for bats by predicting potential refugia, guiding survey efforts, or 
providing insights on population connectivity (reviewed in Razgour 
et al., 2016). Climate change is predicted to cause varying responses 
in bat species—modeling studies predict both positive (e.g., range 
expansions and population growth) and negative (e.g., range con-
tractions and population decline) responses, and monitoring stud-
ies confirm range shifts have already occurred in some bat species 
(Ancillotto et al.,  2016; Festa et al.,  2022; Loeb & Winters,  2013; 
Piccioli Cappelli et al.,  2021; Voigt & Kingston,  2016; Zamora-
Gutierrez et al., 2018).

Our study focused on California populations of Townsend's big-
eared bats, Corynorhinus townsendii (Cooper, 1837). This species oc-
curs across the western United States, Canada, and Mexico, with 
isolated populations in the central and eastern United States. There 
are currently five recognized subspecies of Corynorhinus townsendii; 
C. t. australis, C. t. ingens, C.t. pallescens, C.t. townsendii, and C. t. vir-
ginianus. The two eastern subspecies (C. t. ingens and C. t. virginianus) 
are federally listed endangered species while two western sub-
species (C. t. townsendii and C. t. pallescens) are listed as species of 
Special Concern or sensitive by state and federal agencies, including 
the California Department of Fish and Wildlife and also classified as 
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high priority for study by the Western Bat Working Group (California 
Department of Fish and Wildlife, 2019; Pierson et al., 1999). As C. 
townsendii requires special management attention, building accu-
rate habitat models is essential to promote their conservation. This 
species occurs throughout the entire state of California, occupying 
coastal, desert, and mountain ecoregions and roosts in caves, mines, 
tree hollows, or anthropogenic structures with cavern like features 
(Fellers & Pierson, 2002; Harris et al., 2019; Mazurek, 2004). During 
the summer, reproductively active female bats roost in maternity col-
onies, where they give birth to and raise their one young of the year, 
and adult males tend to roost singly or in small groups. In the fall, 
mark–recapture data show maternity colonies disperse as bats travel 
to hibernacula, which are composed of bats from two to six mater-
nity colonies as well as males (M. L. Morrison, unpublished data). 
Like many temperate bat species, reproductive female C. townsendii 
select habitat at lower elevations during pregnancy and lactation, for 
stable temperatures and increased food availability necessary for in-
creased energetic needs, and use latitudinal or elevational migration 
to find hibernacula with suitable temperatures for extended torpor 
during the winter (Gruver & Keinath, 2006; reviewed in McGuire & 
Boyle, 2013). There is also evidence that C. townsendii exhibit high 
roost fidelity, where most individuals return to the same summer 
and winter roosts each year (Anderson et al., 2018; Clark et al., 1996; 
Sherwin et al.,  2000). Because C. townsendii have different roosts 
for phenological stages, we can model the roost-type separately to 
understand changes in environmental requirements for different 
life-history stages. Additionally, because this species occurs across 
the diverse ecoregions of California, it is appropriate for under-
standing how geographic scale of the model affects the predicted 
distribution, as ecoregions potentially represent areas of local ad-
aptation (due to different environmental characteristics in each 
region; Pease et al., 2022, Smith et al., 2019). The average tempera-
ture in California has increased by approximately 1.11°C since the 
early 20th century, with warming projected to continue (Frankson 
et al., 2022). However, warming across the state has not been uni-
form, suggesting that some ecoregions are experiencing more accel-
erated effects of climate change—for example, monthly minimums in 
the Sierra Nevada have increased by about 3°C in the past 100 years 
(Thorne et al.,  2006). Flooding, drought, and wildfires are ecosys-
tem disturbances, influenced by climate conditions, and are also pre-
dicted to increase in the next century (Frankson et al., 2022). Due 
to this predicted temperature change and increase in environmental 
disturbances in the state, many species, such as C. townsendii, could 
face local extinction, thus identification of potential refugia is critical 
to conservation efforts in the state.

Our study objectives were to: (1) model the present and future 
distributions of C. townsendii considering two climate change sce-
narios and determine the limiting climatic or geographic variables in 
the present, (2) assess the percentage of expansion/contraction in 
the range of C. townsendii and determine where these shifts occur, 
and (3) assess how these projections vary between different sea-
sonal and spatial scales. Understanding how predicted occurrence 
(presumably reflective of environmental needs) varies across time 

(maternity, hibernacula, and transition roosts) and space (different 
ecoregions) could be critical for helping managers and surveyors pin-
point appropriate areas for conservation actions.

2  |  METHODS

2.1  |  Study area and survey data

The study area covers the U.S. state of California, which has steep 
environmental gradients that support an array of species (Dobrowski 
et al., 2011). To accommodate California's ecological diversity, with 
regions ranging from forested mountain ranges to deserts, we exam-
ined local environmental needs by modeling at both state-wide and 
state ecoregion scales, using U.S. Environmental Protection Agency 
(EPA) Level III ecoregion designations. There are 13 Level III ecore-
gions in California (Table S1.1; Griffith et al., 2016). Although Level 
IV Ecoregions subdivide the state into finer-scale habitat regions, 
Level III is appropriate for this study as there are not enough occur-
rences per Level IV Ecoregion to build species distribution models.

Species occurrence data used in this study were from a state-
wide survey of C. townsendii in California conducted by Harris 
et al.  (2019). Briefly, methods included field surveys from 2014 
to 2017 incorporating both historical roost sites, and a stratified 
random sampling scheme. Sample sites were selected from a grid 
of randomly numbered 10 × 10 km cells, stratified by EPA Level III 
ecoregions to ensure representation of California's disparate hab-
itat types. Areas where C. townsendii is not known to occur (e.g., 
urban core, highest elevations in the Sierra) were excluded. Sites 
systematically excluded from survey include topographical features 
inaccessible to surveyors (e.g., cliffs; steep, technical terrain, and un-
derground workings deemed unsafe to enter). Also excluded were 
areas where survey targets could not be identified during the desk-
top review process (e.g., landscapes that did not have recognizable 
abandoned buildings, bridges, or cavern-like rock formations pres-
ent). Notably, Ecoregion 7 (Central California Valley) lacks desktop 
identifiable roost features and historical occurrence records, and is 
predominantly on private land, resulting in this ecoregion having lim-
ited representation in the original survey effort. Occurrence records 
from the Global Biodiversity Information Facility (https://www.gbif.
org) also show a lack of historic or recent occurrence of C. townsendii 
in Ecoregion 7. The lack of detections in this ecoregion likely reflects 
the reality of a roost-limited, high disturbance habitat, but also may 
reflect a climatically unsuitable habitat for C. townsendii. Therefore, 
the limited representation of Ecoregion 7 in the original survey ef-
fort likely does not dramatically influence the model results.

Some degree of convenience bias is also present in the data, 
though not due to a priori sample exclusion criteria. While public 
property and distance from roads were not selection criteria for sur-
vey visits, recognition of potential roost features, and accessibility of 
such features to survey were far more likely on public jurisdictions 
than on private land. Similarly, given resource constraints, cells were 
more likely to be selected for if they contained several potential 
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roost features and were within day-trip hiking distance, or were 
adjacent to grids with existing detections. While numerous remote 
sites were sampled in the original survey effort, the prioritization 
of historical/known roost sites, coupled with feasibility constraints, 
introduces some degree of systematic bias against C. townsendii de-
tections at greatest distance from roads.

Corynorhinus townsendii presence at roost sites was based on 
visual bat sightings. From these survey efforts, we have visual oc-
currence data for 65 maternity roosts, 82 hibernation roosts (hi-
bernacula), and 91 active-season non-maternity roosts (transition 
roosts) for a total of 238 occurrence records (Figure 1, Table S1.1).

2.2  |  Ecogeographical factors

We downloaded climatic variables from WorldClim 2.1 bioclimatic 
variables (Fick & Hijmans, 2017) at a resolution of five arcmin for 
broad-scale analysis and 30 arcsec for our ecoregion-specific 
analyses. To calculate elevation and slope, we used a digital eleva-
tion model (U.S. Geological Survey, 2019) in ArcGIS 10.8.1 (ESRI, 
Redlands, California, USA). The chosen set of environmental vari-
ables reflects knowledge on climatic conditions and habitat relevant 
to bat physiology, phenology, and life history (Ancillotto et al., 2016; 
Loeb & Winters, 2013; Razgour, 2015; Razgour et al., 2011; Rebelo 
et al., 2010). To trim the global environmental variables to the same 
extent (the state of California), we used the R package “raster” 
(Hijmans et al., 2015). We performed a correlation analysis on the 

raster layers using the “layerStats” function and removed variables 
with a Pearson's coefficient > 0.7 (see Table 1 for final model vari-
ables). Notably, in our study area, elevation was highly correlated 
with annual temperature (bioclimatic variable 1). We retained el-
evation for our final models as this variable has been found to be 
important predictors of roost selection in previous studies of C. 
townsendii (Harris et al., 2019; McClure et al., 2021, 2022; Sherwin 
et al., 2000). For future climate conditions, we selected three gen-
eral circulation models (GCMs) based on previous species distribu-
tion models of temperate bat species (Razgour et al., 2019) [Hadley 
Centre Global Environment Model version 2 Earth Systems model 
(HadGEM3-GC31_LL; Webb,  2019), Institut Pierre-Simon Laplace 
Coupled Model 6th Assessment Low Resolution (IPSL-CM6A-LR; 
Boucher et al.,  2018), and Max Planck Institute for Meteorology 
Earth System Model Low Resolution (MPI-ESM1-2-LR; Brovkin 
et al., 2019)] and two contrasting greenhouse concentration trajec-
tories (Shared Socio-economic Pathways; SSPs): a steady decline 
pathway with CO2 concentrations of 360 ppmv (SSP1-2.6) and an 
increasing pathway with CO2 reaching around 2000 ppmv (SSP5-
8.5; Masson-Delmotte et al.,  2021). We modeled distribution for 
present conditions future (2061–2080) time periods. Because one 
aim of our study was to determine the consequences of changing 
climate, we changed only the climatic data when projecting future 
distributions, while keeping the other variables constant over time 
(elevation, slope).

2.3  |  Species distribution modeling

We generated distribution maps for total occurrences (maternity 
+ hibernacula + transition, hereafter defined as “combined mod-
els”), maternity colonies, hibernacula, and transition roosts. To es-
timate the present and future habitat suitability for C. townsendii 
in California, we used the maximum entropy (MaxEnt) algorithm 
in the “dismo” R package (Hijmans & van Etten, 2016) through 
the advanced computing resources provided by Texas A&M High 
Performance Research Computing. We chose MaxEnt to aid in 
the comparisons of state-wide and ecoregion-specific models as 
MaxEnt outperforms other approaches when using small datasets. 
We created 1000 background points from random points in the 
environmental layers and performed a fivefold cross-validation 
approach, which divided the occurrence records into training 
(80%) and testing (20%) datasets. We assessed the performance 
of our models by measuring the area under the receiver operating 
characteristic curve (AUC; Hanley & McNeil, 1982), where values 
>0.5 indicate that the model is performing better than random, 
values 0.5–0.7 indicating poor performance, 0.7–0.9 moderate 
performance and values of 0.9–1 excellent performance (BCCVL, 
Hallgren et al.,  2016). We also measured the maximum true skill 
statistic (TSS; Allouche et al., 2006) to assess model performance. 
The maxTSS ranges from −1 to +1:values <0.4 indicate a model 
that performs no better than random, 0.4–0.55 indicates poor 
performance, (0.55–0.7) moderate performance, (0.7–0.85) good 

F I G U R E  1 Map of recorded roosts of Corynorhinus townsendii 
in California from Harris et al. (2019) survey efforts. Image of C. 
townsendii provided by Devaughn Fraser.
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performance, and values >0.80 indicate excellent performance 
(Samadi et al., 2022). Final distribution maps were generated using 
all occurrence records for each region (rather than the training/
testing subset), and the models were projected onto present and 
future climate conditions. Additionally, because the climatic condi-
tions of the different ecoregions of California vary widely, we gen-
erated separate models for each ecoregion in an attempt to capture 
potential local effects of climate change. A general rule in species 
distribution modeling is that the occurrence points should be 10 
times the number of predictors included in the model, meaning that 
we would need 60 occurrences in each ecoregion. One common 
way to overcome this limitation is through the ensemble of small 
models (ESMs) included in ecospat R package (Breiner et al., 2015, 
2018; Di Cola et al., 2017). For our ESMs we implemented MaxEnt 
modeling, and the final ensemble model was created by averaging 
individual bivariate models by weighted performance (AUC > 0.5). 
We also used null model significance testing with to evaluate the 
performance of our ESMs (Raes & Ter Steege, 2007). To perform 
null model testing we compared AUC scores from ESMs to the AUC 
from 100 null models using randomly generated presence locations 
equal to the number used in the developed distribution model. All 
ecoregion models outperformed the null expectation (p < .002).

2.4  |  Estimating range shifts

For each of the three GCMs and each RCP scenario, we converted 
the probability distribution map into a binary map (0 = unsuitable, 
1  =  suitable) using the threshold that maximizes sensitivity and 
specificity (Liu et al., 2016). To create the final maps for each SSP 
scenario, we summed the three binary GCM layers and took a con-
sensus approach, meaning climatically suitable areas were pixels 
where at least two of the three models predicted species presence 
were retained (Araújo & New, 2007; Piccioli Cappelli et al., 2021). 
We combined the future binary maps (fmap) and the present binary 
maps (pmap) following the formula fmap × 2 + pmap (from Huang 
et al., 2017) to produce maps with values of 0 (areas not suitable), 
1 (areas that are suitable in the present but not the future), 2 (areas 
that are not suitable in the present but suitable in the future), and 
3 (areas currently suitable that will remain suitable) using the ras-
ter calculator function in QGIS. We then calculated the total area 
of suitability, area of maintenance, area of expansion, and area of 
contraction for each binary model using the “BIOMOD_RangeSize” 
function in R package “biomod2” (Thuiller et al., 2016).

3  |  RESULTS

3.1  |  Current models

3.1.1  |  State-wide models

Both combined and life-history-explicit models showed moder-
ate predictive performance (Table  S1.2): combined (AUC  =  0.81, 
MaxTSS = 0.51), hibernacula (AUC = 0.86, MaxTSS = 0.57), Transition 
(AUC = 0.8, MaxTSS = 9.47), and with maternity models performing 
the poorest of the three (AUC = 0.78, MaxTSS = 0.43). In the com-
bined and maternity models, precipitation in the warmest quarter 
provided the highest contribution among environmental variables 
(Table  S1.3). Suitability increased with increasing precipitation in 
the combined model (S2.1). In the maternity model, the highest suit-
ability is in areas with precipitation in the warmest quarter around 
20 mm, with suitability decreasing at higher levels of precipitation 
(S2.3). For hibernacula, elevation contributed most to the model—
suitability generally increases up to 3000 m of elevation, at higher 
elevation suitability decreases (S2.2). Finally, annual precipitation 
contributed the most to the transition model, with annual precipita-
tion 250–1200 mm maximizing suitability (S2.4). Areas of suitability 
for the combined model are distributed across the state, with an 
area of approximately 150,191 km2 (Figure 2a, Table 2), occupying 
37% of the land area of California. Suitable areas are found in all 
ecoregions of the state, excluding the Central California Valley and 
much of the Sonoran Basin and Range (Ecoregions 7 and 81). The 
hibernacula model had about 91,503 km2 of suitable area in the pre-
sent, occupying 22% of California (Figure 2b, Table 2). Most notably, 
coastal areas that are suitable in the combined model are not suit-
able in the hibernacula-only model. The maternity model showed 
the highest suitability throughout the state, distributed across about 
162,224 km2, or 40% of the state (Figure  2c, Table  2). The transi-
tion model predicted an area of approximately 120,002 km2 (29%) 
with areas in the Coast Range, Sierra Nevada region, and the Central 
Basin and Range (Ecoregions 1, 5, 13) showing lower levels of suit-
ability than the combined model (Figure 2d, Table 2).

3.1.2  |  Ecoregion-specific models

The predictive performance from each of our ecoregion models 
were all acceptable with respect to AUC (Table  S1.2), with excel-
lent performance for six ecoregions and moderate performance for 

Variable name Source Description

Bio03 WorldClim Version 2.1 Isothermality (°C)

Bio12 WorldClim Version 2.1 Annual precipitation (mm)

Bio15 WorldClim Version 2.1 Precipitation seasonality (Coefficient of variation)

Bio18 WorldClim Version 2.1 Precipitation of warmest quarter (mm)

Slope USGS Slope from digital elevation model (o)

DEM USGS Elevation (m)

TA B L E  1 Environmental variable 
layers included in our species distribution 
models for Corynorhinus townsendii in 
California.
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three ecoregions. Additional details on model performance and con-
tribution of environmental variables to each model are reported in 
Tables S1.2 and S1.3. The ecoregion-specific models for Ecoregions 
1 and 85 had different distributions of suitable area than the respec-
tive regions in the combined model (Figure 3). Ecoregions 4 and 8 
showed substantially less suitable area when compared with the 
same area in the combined model. Ecoregion 5 generally matched 
the pattern of distribution in the combined model, but the ecoregion 
model had more areas of high suitability in the eastern part of the 
region. The area of suitability in the individual model for Ecoregion 6 
is also generally similar to the same area in the combined model but 
has less suitable area in the most northern part of the ecoregion, and 
occupied areas in the rest of the region have higher suitability. When 
compared to the combined model, Ecoregion 13 has similar areas of 
high suitability except in the north. Ecoregion 14 had similar a similar 
distribution, but lower suitability when compared to the combined 
model. In general, the ecoregion-specific models showed similar pat-
terns of suitability to, but with better model performance than the 
combined model. Variable contribution to each ecoregion model can 
be found in Table S1.3. Overall, precipitation (annual precipitation, 
precipitation of the warmest quarter, or precipitation seasonality) 
was the highest contributing variable in five of the ecoregion models 
(Ecoregions 1, 5, 6, 14, and 78). Suitability was maximized at precipi-
tation of around 20–30 mm in Ecoregions 1,5, and 6 (Figures S2.5, 
S2.7, S2.8). In Ecoregion 14, suitability increased with increasing pre-
cipitation (S2.9). The remaining ecoregions were best explained by 
elevation and isothermality (Ecoregions 13 and 85 and Ecoregions 
4 and 8, respectively; Table S1.3). In Ecoregion 13, suitability gener-
ally increased with increasing elevation, maximizing around 2000–
2500 m (S2.10). In Ecoregion 85 however, suitability decreases with 
increasing elevation (S2.11).

3.2  |  Changes in distribution

Six maps of habitat suitability (3 GCMs × 2 SSPs) were gener-
ated for each geographic category. Binary maps created using the 

threshold as stated above were used to assess areas of expansion 
and contraction.

3.2.1  |  State-wide models

The total change in suitable areas for C. townsendii across the state 
are reported in Table 2. The combined, hibernacula, and maternity 
model approaches predict an overall contraction of suitable area for 
C. townsendii between 2061 and 2080, with larger reductions in the 
SSP5-8.5 scenario. Reduction in the suitable habitat of the combined 
model was predicted to occur in most of the ecoregions, however, 
some expansion was predicted in eastern areas of the state, within 
the Mojave Basin and Range (Figure  4). In the hibernacula model, 
reduction in suitable area is predicted to occur along areas currently 
suitable, with an expansion in western areas, within the coastal 
mountains. Suitability for maternity colonies is expected to decrease 
largely in western areas of the state. The area of suitable habitat 
for transition colonies is expected to increase under both climate 
change scenarios, with a larger increase seen in SSP5-8.5. Under this 
scenario, suitable habitat on the coast is expected to decrease, while 
areas in eastern California are expected to increase in suitability, 
corresponding to an overall range shift.

3.2.2  |  Ecoregion models

Details of all changes in suitability per ecoregion under each RCP 
scenario and time period are reported in Table 2. Five of the ecore-
gions are projected to decrease in suitable area under both SSP sce-
narios and time periods (Figure 5, Table 2). Ecoregion 6 is predicted 
to lose the highest percentage of its range (59–76%). Ecoregion 14 
is also predicted to lose suitability in a significant proportion of its 
current range in California (60–67%). Under the SSP1-2.6 scenario, 
Ecoregion 1 is expected to have a slight increase in suitable habitat 
and in the SSP5-8.5 scenario Ecoregions 4, 78, and are 85 projected 
to have an increase in suitable area.

F I G U R E  2 Maps showing the present habitat suitability (probability of occurrence) for Corynorhinus townsendii in California based on 
known roost locations. (a) Model based on all roost occurrence records state-wide, (b) model based on hibernacula only, (c) model based 
on maternity colonies only, and (d) model based on active-season non-maternity (transition) roosts only. The color ramp corresponds to 
predicted habitat suitability, where dark blue indicates low habitat suitability and yellow indicates high habitat suitability (scaled 0–100).



    |  7 of 14HAMILTON et al.

TA B L E  2 Predicted suitable area for Corynorhinus townsendii roosts in California under present and future conditions for all temporal and 
geographic subsets modeled.

Geographic extent/
Colony type Range shift Present SSP1-2.6 2061-2080 SSP5-8.5 2061-2080

All Colonies State-Wide Total suitable habitat (km2) 150,191 142,245 123,865

Expansion (km2) 2728 33,530

Contraction (km2) 10,647 7205

Maintained (km2) 139,544 116,661

Change compared to current distribution (km2, %) −7945 (−5%) −26,325 (−17.5%)

Hibernacula State-Wide Total suitable habitat (km2) 91,503 87,538 70,081

Expansion (km2) 3931 7424

Contraction (km2) 7897 28,846

Maintained (km2) 83,607 62,658

Change compared to current distribution (km2, %) −3966 (−4%) −21, 422 (−23%)

Maternity State-Wide Total suitable habitat (km2) 162,224 142,460 130,307

Expansion (km2) 3428 9445

Contraction (km2) 23,192 41,362

Maintained (km2) 139,033 120,862

Change compared to current distribution (km2, %) −19,764 (−12%) −31,918 (−20%)

Transition State-Wide Total suitable habitat (km2) 120,002 123,287 125,626

Expansion (km2) 7729 22,455

Contraction (km2) 4444 16,831

Maintained (km2) 115,558 103,171

Change compared to current distribution (km2, %) +3286 (+3%) 5624 (+5%)

Ecoregion 1 Total suitable habitat (km2) 6979 7009 6804

Expansion (km2) 320 271

Contraction (km2) 289 446

Maintained (km2) 6690 6533

Change compared to current distribution (km2, %) −31 (+0.4%) −175 (−2.5%)

Ecoregion 4 Total suitable habitat (km2) 3128 2812 3233

Expansion (km2) 283 999

Contraction (km2) 599 894

Maintained 2529 2234

Change compared to current distribution (km2, %) −316 (−10%) +105 (+3%)

Ecoregion 5 Total suitable habitat (km2) 22,675 18,689 12,035

Expansion (km2) 1040 375

Contraction (km2) 5027 11,016

Maintained (km2) 17,648 11,660

Change compared to current distribution (km2, %) −3987 (−18%) −10,641 (−47%)

Ecoregion 6 Total suitable habitat (km2) 54,439 12,978 27,417

Expansion (km2) 0.5 302

Contraction (km2) 41,462 302

Maintained (km2) 12,978 27,115

Change compared to current distribution (km2, %) −41,462 (−76%) −27,022(−59%)

Ecoregion 8 Total suitable habitat (km2) 4337 4000 4292

Expansion (km2) 127 356

Contraction (km2) 464 401

Maintained (km2) 3873 3936

Change compared to current distribution (km2, %) −337 (−8%) −45 (−1%)

(Continues)
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4  |  DISCUSSION

We estimated the most important environmental factors influencing 
the distribution of C. townsendii colonies in California and provided 
seasonal and regional projections of suitable habitat under present 
conditions and in response to simulated lower and higher future 

concentrations of global greenhouse gases. While seasonal, life-
history-explicit species distribution models are recognized as impor-
tant for taxa that have long-distance migration, taxa with small-scale 
seasonal movements have largely been neglected in modeling stud-
ies (Smeraldo et al., 2018). Our study highlights how ecological need 
differences between phenological stages contribute to differences 

Geographic extent/
Colony type Range shift Present SSP1-2.6 2061-2080 SSP5-8.5 2061-2080

Ecoregion 13 Total suitable habitat (km2) 8977 8272 7679

Expansion (km2) 186 269

Contraction (km2) 828 1567

Maintained (km2) 8086 7410

Change compared to current distribution (km2, %) −705 (−8%) −1298 (−14%)

Ecoregion 14 Total suitable habitat (km2) 24,028 7912 9682

Expansion (km2) 0 0

Contraction (km2) 16,116 14,347

Maintained (km2) 7912 9682

Change compared to current distribution (km2, %) −16,116 (−67%) −14,347 (−60%)

Ecoregion 78 Total Occupied Area (km2) 11,857 10,669 12,111

Expansion (km2) 1637 2975

Contraction (km2) 2825 2721

Maintained (km2) 9032 9136

Change Compared to current distribution (km2, %) −1187 (−10%) +254 (+2%)

Ecoregion 85 Total suitable habitat (km2) 4556 3852 4719

Expansion (km2) 17 11

Contraction (km2) 722 148

Maintained (km2) 3834 4408

Change compared to current distribution (km2, %) −704 (−15%) +163 (+4%)

TA B L E  2 (Continued)

F I G U R E  3 Map showing level III 
ecoregion-specific habitat suitability 
for Corynorhinus townsendii in California 
based on known roost locations. The color 
ramp corresponds to predicted habitat 
suitability, where dark blue indicates low 
habitat suitability and yellow indicates 
high habitat suitability.
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in seasonal distribution of C. townsendii. Additionally, by modeling 
each ecoregion separately, our study highlights how environmental 
needs vary across the species' range in California.

Overall, our results indicate that environmental factors driving C. 
townsendii distribution differ across temporal and geographic scales, 
but precipitation is the most important factor predicting C. townsendii 
presence in the majority of our models. Availability of water, in terms 
of either distance to permanent water sources or amount of precipi-
tation, is important for insectivorous bats for both foraging and drink-
ing water and the association between maternity colonies and annual 

precipitation is to be expected, as female insectivorous bats also have 
a significant increase in water needs during pregnancy and lactation 
(Adams & Hayes, 2008; Rainho & Palmeirim, 2011). Precipitation is 
also an important factor to hibernacula as it contributes to cave hu-
midity (Perry, 2013). High humidity within hibernacula reduces evapo-
rative water loss during hibernation (Speakman & Thomas, 2003). Our 
results support precipitation as an important factor for this species at 
multiple life phases. Elevation is another important variable contrib-
uting to the hibernacula models, with suitability increasing with eleva-
tion up to ~2750 m, consistent with previous studies of C. townsendii 

F I G U R E  4 Climate-related habitat suitability shifts in extent and location in Corynorhinus townsendii in California based on known roost 
locations. Colors indicate areas of contraction (red), expansion (blue), and areas that are currently suitable that will remain suitable in the 
future (yellow).

F I G U R E  5 Climate-related habitat suitability shifts for level III ecoregion-specific models of Corynorhinus townsendii in California based 
on known roost locations. Colors indicate areas of contraction (red), expansion (blue), and areas that are currently suitable that will remain 
suitable in the future (yellow).
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reporting the species hibernating at >1500 m (Gillies et al.,  2014; 
Harris et al., 2019; Hayes et al., 2011; Szewczak et al., 1998; Whiting 
et al.,  2021). However, recent modeling approaches predict higher 
suitability for C. townsendii hibernacula at elevations <1000 m. 
Differences in predicted elevation are likely due to differences in 
occurrence data, environmental predictor variables, study extent (in-
cluding latitude), and modeling techniques used. Higher elevation is 
linked to lower temperature, which is important for hibernating bats 
as they must select sites with stable, low temperatures to ensure that 
their metabolic rate will not exhaust fat reserves before hibernation 
ends (Humphrey, 1978; Perry, 2013; Thomas et al., 1990). As our ini-
tial model building found a high correlation between temperature and 
elevation in our study area, annual temperature is potentially also 
driving the distribution of high suitability in the hibernacula models.

The differences in environmental needs are reflected in the dif-
ferences in the distribution of predicted suitable habitat between 
our models. The predicted distribution of suitable habitat for C. 
townsendii roosts differed between the combined, hibernacula, 
maternity, and transition models, consistent with recent work ex-
amining temporally explicit distribution models in locally migratory 
bats (Smeraldo et al., 2018). The combined, maternity, and transition 
models predict areas of high suitability across the state (Figure 3). 
On the contrary, the hibernacula model shows less area of high 
suitability, corresponding to areas of sufficient elevation (Figure 3). 
Because hibernacula have a more restricted area of suitability in 
California, the hibernacula model failed to predict the extent of the 
known range of C. townsendii in the state. This highlights how the 
combined model (encompassing all phenological stages) best cap-
tures the broad distribution of C. townsendii in California. It also 
highlights how life-history-explicit models are more useful than the 
combined in describing seasonal niches of C. townsendii and could 
therefore be more useful when planning seasonal survey efforts.

When looking at the ecoregion-scale models, we see that the 
environmental variable contributing most to the suitability of C. 
townsendii varies across ecoregions (Table  S1.3). However, most 
ecoregions were best explained by amount of annual precipitation or 
precipitation in the warmest quarter, consistent with the state-wide 
models and previously mentioned physiological needs of temper-
ate insectivorous bats. Isothermality (thermal stability) contributes 
most to the suitability for two ecoregions (Ecoregions 4 and 8) that 
have high annual precipitation across the region when compared 
with other ecoregions. Isothermality is also linked to physiological 
performance and favorable reproductive outcomes in temperate 
bat species (Ancillotto et al.,  2018). Distribution of suitable area 
in the ecoregion-specific models also was largely consistent with 
the distribution seen in the combined state-wide model. Overall, 
these results indicate a large congruence between state-wide and 
ecoregion-specific models, suggesting a state-wide model is useful 
in predicting the current distribution of C. townsendii in California.

Current global emissions are most consistent with the SSP5-8.5 
scenario (Schwalm et al., 2020). Under the SSP5-8.5 scenario, model 
results indicate that the area suitable for C. townsendii in California will 
decrease when considering the state-wide and ecoregion models, with 

an exception of a range shift (and overall expansion of suitable area) 
in the transition roosts. Because the amount of annual precipitation 
best explained the majority of models, changes in annual precipitation 
predicted under SSP5-8.5 scenarios is likely contributing to the shifts 
of suitable habitat in C. townsendii. Notably, although elevation does 
not change between present and future scenarios, the amount of suit-
able area for hibernacula is expected to decrease, suggesting the inter-
action between elevation and precipitation is driving the distribution 
of C. townsendii hibernacula in California. Additionally, the changes 
in suitable habitat between the state-wide and ecoregion-specific 
models are largely congruent, with the exception of areas in within 
Ecoregions 4, 14, and 78. In the state-wide scenario, Ecoregion 14 is 
expected to have an increase in suitable area, but in the ecoregion-
specific model, this region is expected to experience a notable contrac-
tion in suitable area. In contrast, Ecoregions 4 and 78 are expected to 
have contractions in the state-wide scenario but are predicted to have 
a northward expansion. However, unlike the combined model, isother-
mality also significantly contributes to the projected suitability for the 
ecoregion-specific models for Ecoregions 4, 14, and 78—suggesting 
that future changes in temperature will have different effects on the 
distribution of C. townsendii within these regions. Differences in the 
projected range shifts between the state-wide and ecoregion-specific 
models provide evidence that the relationship between distribution 
and predictive environmental variables is not consistent across the C. 
townsendii range within California. The differences in environmental 
needs across ecoregions may be driving intraspecific variation in cli-
mate tolerances, or local adaptation. Previous work in non-volant small 
mammals suggests that ecoregion-level population classifications are 
sufficient for capturing intraspecific variation to climate response, but 
additional work is necessary to determine if C. townsendii are in fact 
locally adapted (Smith et al., 2019). Additionally, expansion of mod-
eling to populations beyond California will allow for the full adaptive 
potential of the species to be addressed.

For the aims of our work (i.e., to model distributions of roost 
suitability), we considered only roosting bats as species' presence 
records. We did not include acoustic record or mist net capture as 
these types of records do not allow us to characterize type of en-
vironmental use (e.g., maternity vs. transition roosts), meaning that 
these types of landscape detections are likely far less ecologically 
meaningful than the presence of the presumably more limiting roost 
locations. Excluding foraging locations may underestimate the real-
ized niche, but roost data have successfully produced roost habitat 
maps for other temperate bat species (McClure et al., 2021, 2022; 
Smeraldo et al., 2018). Additionally, we did not include roost-habitat 
covariates (e.g., humidity, size) in our models because we do not have 
adequate dimensional or microclimate data for all subterranean and 
anthropogenic features in the study area. Distance to mines or caves 
would also not be informative for our model, as our occurrence points 
were restricted to cavern-analog locations. Future models including 
information on cavern characteristics such as entrance size, inter-
nal dimensions, and microclimate can help further refine predictions 
of C. townsendii roosts. Additionally, survey efforts did not include 
monitoring human activity at each roost, therefore disturbance 
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vulnerability of each roost was not determined. Because this spe-
cies is sensitive to human disturbance, future research to quantify 
roost disturbance will be critical to management of this at-risk spe-
cies. Abundance data (i.e., size of populations) were also not avail-
able for the occurrence data used in this study. Information on the 
abundance of C. townsendii in each ecoregion can improve our vul-
nerability estimates by allowing us to predict proportional changes 
to species prevalence within the state (Waldock et al., 2021).

The maps of occurrence probability can help guide future work 
to survey and monitor California populations of C. townsendii and 
provide a baseline for understanding potential impacts of future 
climate change. Management applications of these results should 
consider whether features such as caves, abandoned mines, and ap-
propriate anthropogenic structures are available in areas predicted 
to be environmentally suitable. Our models provide useful data 
that can be updated over time to incorporate new climate research, 
adapt to shifting conservation goals, or respond to other impacts 
such as land use change. Knowledge on the vulnerability of popula-
tions within each ecoregion enables land managers to concentrate 
resources on protecting potential refugia (areas predicted to remain 
suitable) in their regions. Protection and enhancement of predicted 
refugia and promotion of connectivity between present and future 
suitable areas are ways that species distribution models can be used 
to focus conservation planning (Piccioli Cappelli et al., 2021) .
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