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Abstract
Effective	management	decisions	depend	on	 knowledge	of	 species	distribution	 and	
habitat	use.	Maps	generated	from	species	distribution	models	are	important	in	pre-
dicting	previously	unknown	occurrences	of	protected	 species.	However,	 if	 popula-
tions	are	seasonally	dynamic	or	 locally	adapted,	 failing	to	consider	population	 level	
differences	 could	 lead	 to	 erroneous	 determinations	 of	 occurrence	 probability	 and	
ineffective	management.	The	study	goal	was	to	model	the	distribution	of	a	species	
of	special	concern,	Townsend's	big-	eared	bats	(Corynorhinus townsendii),	in	California.	
We	 incorporate	seasonal	and	spatial	differences	 to	estimate	 the	distribution	under	
current	and	future	climate	conditions.	We	built	species	distribution	models	using	all	
records	 from	statewide	 roost	 surveys	and	by	 subsetting	data	 to	 seasonal	 colonies,	
representing	different	phenological	stages,	and	to	Environmental	Protection	Agency	
Level	III	Ecoregions	to	understand	how	environmental	needs	vary	based	on	these	fac-
tors.	We	projected	species'	distribution	for	2061–	2080	in	response	to	low	and	high	
emissions	scenarios	and	calculated	the	expected	range	shifts.	The	estimated	distribu-
tion	differed	between	the	combined	(full	dataset)	and	phenologically	explicit	models,	
while	ecoregion-	specific	models	were	 largely	congruent	with	 the	combined	model.	
Across	the	majority	of	models,	precipitation	was	the	most	important	variable	predict-
ing	the	presence	of	C. townsendii	roosts.	Under	future	climate	scenarios,	distribution	
of	C. townsendii	is	expected	to	contract	throughout	the	state,	however	suitable	areas	
will	 expand	within	 some	ecoregions.	Comparison	of	 phenologically	 explicit	models	
with	combined	models	 indicates	the	combined	models	better	predict	 the	extent	of	
the	known	range	of	C. townsendii	in	California.	However,	life-	history-	explicit	models	
aid	in	understanding	of	different	environmental	needs	and	distribution	of	their	major	
phenological	stages.	Differences	between	ecoregion-	specific	and	statewide	predic-
tions	of	habitat	contractions	highlight	the	need	to	consider	regional	variation	when	
forecasting	species'	responses	to	climate	change.	These	models	can	aid	in	directing	
seasonally	explicit	surveys	and	predicting	regions	most	vulnerable	under	future	cli-
mate	conditions.
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1  |  INTRODUC TION

Over	the	 last	century,	 the	earth's	climate	has	changed,	 including	a	
warming	atmosphere	and	changes	in	the	frequency	and	intensity	of	
precipitation	(Masson-	Delmotte	et	al.,	2021).	Major	 impacts	of	cli-
mate	change	on	biodiversity	include	increased	extinction	rate,	range	
shifts,	 habitat	 fragmentation,	 and	 increased	 dispersal	 resistance	
(reviewed	 in	Habibullah	et	 al.,	2021).	There	 is	 already	evidence	of	
species'	ranges	changing,	with	research	pointing	toward	major	con-
tractions,	 expansions,	 and	 shifts	 in	 distributions	 globally	 (Amorim	
et al., 2014; Chen et al., 2011;	Freeman	et	al.,	2018).	Species	distri-
bution	models	 (also	known	as	ecological	niche	models	and	habitat	
suitability	models)	are	popular	tools	used	to	predict	species'	range	
shifts	under	various	climate	and	land	use	change	scenarios	(Guisan	
et al., 2013; Razgour et al., 2016).	These	models	use	environmental	
variables	and	known	species	occurrences	to	predict	a	species'	dis-
tribution	 over	 larger	 geographic	 scales.	 Predicting	 spatial	 changes	
in	 species'	 ranges	 through	 species	 distribution	modeling	 can	 help	
develop	 targeted	 conservation	plans	 by	 identifying	 areas	 that	will	
be	 able	 to	 sustain	 a	 species	 despite	 climate	 change,	 or	 by	 aiding	
in	 the	prioritization	of	 areas	 for	 field	 surveys	of	 rare	 taxa	 (Guisan	
et al., 2013; Zanini et al., 2009).

The	variables	and	processes	that	are	important	in	explaining	the	
distribution	 and	 persistence	 of	 species	 are	 scale	 dependent;	 they	
can	change	 from	one	area	 to	 the	next	due	 to	 regional	differences	
in	 biotic	 and	 abiotic	 factors,	 historical	 and	 present	 land	 use,	 and/
or	local	adaptation	of	populations	(Deppe	&	Rotenberry,	2008 and 
references	within,	Bay	et	al.,	2018;	Ervin	&	Holly,	2011;	Neubaum	
&	 Aagaard,	 2022; Razgour et al., 2019;	 Urbanowicz	 et	 al.,	 2019). 
However,	 in	species	distribution	models,	 the	 relationship	between	
distribution	and	predictive	environmental	variables	is	assumed	to	be	
constant	across	a	species'	 range	 (Reed	et	al.,	2011).	 If	populations	
of	 a	 species	are	 locally	 adapted,	excluding	geographic	population-	
level	 differences	 could	 lead	 to	 erroneous	 distribution	 predictions	
and	 inappropriate	management	 decisions	 as	 local	 response	 to	 cli-
mate	 change	 could	 differ	 throughout	 a	 species'	 range	 (Hällfors	
et al., 2016;	Oldfather,	2019).	Refining	the	spatial	scale	of	models,	
for	example,	modeling	by	ecoregion	subdivisions,	can	improve	pre-
dictions	by	capturing	this	intraspecific	variation	in	climate	tolerance	
(Chardon	et	al.,	2020; Ferraz et al., 2012;	Hällfors	et	al.,	2016;	Smith	
et al., 2019;	Urbanowicz	et	al.,	2019).

Seasonal	differences	in	the	distribution	of	a	species	are	another	
source	 of	 variation	 to	 consider	when	 building	 species	 distribution	
models.	 Species'	 phenological	 stages	 can	 have	 vastly	 different	
ecological	needs	and	many	 species	of	birds	 and	mammals	migrate	
to	 meet	 these	 needs,	 thus	 occupying	 different	 geographic	 areas	

and	 niches	 depending	 on	 the	 season	 (Avgar	 et	 al.,	2014; Fortuna 
et al., 2009).	Failing	 to	separate	species	distribution	models	based	
on	 breeding	 and	 non-	breeding	 occurrences	 assumes	 that	 species	
have	 similar	 climatic	 needs	 during	 these	periods.	 Studies	 on	 long-	
distance	 migratory	 animals	 have	 shown	 that	 different	 climatic	 or	
landscape	 variables	 drive	 species	 distribution	 in	 the	 suitability	
breeding	and	non-	breeding	(winter)	habitat	(i.e.,	Hayes	et	al.,	2015; 
Morganti et al., 2017).	Additionally,	there	is	a	growing	body	of	evi-
dence	that	supports	the	same	patterns	in	species	that	have	local	sea-
sonal	movements	(Beumer	et	al.,	2019;	Smeraldo	et	al.,	2018).	When	
modeling	potential	future	distribution	of	species	that	migrate	locally,	
such	as	temperate	bats,	seasonally	explicit	distribution	models	may	
be	used	to	understand	if	habitat	will	continue	to	be	suitable	for	both	
breeding	and	non-	breeding	needs.

Bats	(Chiroptera	Blumenbach,	1779)	are	the	second-	most	diverse	
mammalian	order	with	~1400	species,	representing	almost	a	fifth	of	
mammal	 species	 (Frick	 et	 al.,	 2019;	 Mammal	 Diversity	 Database,	
2022).	 They	 provide	 important	 ecosystem	 services	 such	 as	 polli-
nation,	seed	dispersal,	and	pest	control	 (Boyles	et	al.,	2011; Jones 
et al., 2009; Kunz et al., 2011; Maas et al., 2016).	Many	bat	species	
are	at	risk	of	population	decline	from	largely	anthropogenic	factors	
including	habitat	loss,	mortality	at	wind	farms,	and	climate	change,	
therefore	many	bat	species	must	be	actively	managed	for	recovery	
(Festa	et	al.,	2022; Frick et al., 2019;	Voigt	&	Kingston,	2016).	Fine-	
scale	 distribution	 maps	 can	 help	 prioritize	 management	 activities	
for	 bats	 by	 predicting	 potential	 refugia,	 guiding	 survey	 efforts,	 or	
providing	insights	on	population	connectivity	(reviewed	in	Razgour	
et al., 2016).	Climate	change	is	predicted	to	cause	varying	responses	
in	 bat	 species—	modeling	 studies	 predict	 both	 positive	 (e.g.,	 range	
expansions	 and	 population	 growth)	 and	 negative	 (e.g.,	 range	 con-
tractions	 and	population	decline)	 responses,	 and	monitoring	 stud-
ies	confirm	range	shifts	have	already	occurred	in	some	bat	species	
(Ancillotto	 et	 al.,	2016; Festa et al., 2022;	 Loeb	&	Winters,	2013; 
Piccioli	 Cappelli	 et	 al.,	 2021;	 Voigt	 &	 Kingston,	 2016;	 Zamora-	
Gutierrez	et	al.,	2018).

Our	study	focused	on	California	populations	of	Townsend's	big-	
eared	bats,	Corynorhinus townsendii	(Cooper,	1837). This species oc-
curs	 across	 the	western	United	 States,	 Canada,	 and	Mexico,	with	
isolated	populations	in	the	central	and	eastern	United	States.	There	
are	currently	five	recognized	subspecies	of	Corynorhinus townsendii; 
C. t. australis, C. t. ingens, C.t. pallescens, C.t. townsendii, and C. t. vir-
ginianus.	The	two	eastern	subspecies	(C. t. ingens and C. t. virginianus) 
are	 federally	 listed	 endangered	 species	 while	 two	 western	 sub-
species	(C. t. townsendii and C. t. pallescens)	are	listed	as	species	of	
Special	Concern	or	sensitive	by	state	and	federal	agencies,	including	
the	California	Department	of	Fish	and	Wildlife	and	also	classified	as	
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high	priority	for	study	by	the	Western	Bat	Working	Group	(California	
Department	of	Fish	and	Wildlife,	2019;	Pierson	et	al.,	1999).	As	C. 
townsendii	 requires	 special	 management	 attention,	 building	 accu-
rate	habitat	models	is	essential	to	promote	their	conservation.	This	
species	occurs	throughout	the	entire	state	of	California,	occupying	
coastal,	desert,	and	mountain	ecoregions	and	roosts	in	caves,	mines,	
tree	hollows,	or	anthropogenic	structures	with	cavern	like	features	
(Fellers	&	Pierson,	2002; Harris et al., 2019; Mazurek, 2004). During 
the	summer,	reproductively	active	female	bats	roost	in	maternity	col-
onies,	where	they	give	birth	to	and	raise	their	one	young	of	the	year,	
and	adult	males	tend	to	roost	singly	or	 in	small	groups.	 In	the	fall,	
mark–	recapture	data	show	maternity	colonies	disperse	as	bats	travel	
to	hibernacula,	which	are	composed	of	bats	from	two	to	six	mater-
nity	 colonies	 as	well	 as	males	 (M.	 L.	Morrison,	 unpublished	 data).	
Like	many	temperate	bat	species,	reproductive	female	C. townsendii 
select	habitat	at	lower	elevations	during	pregnancy	and	lactation,	for	
stable	temperatures	and	increased	food	availability	necessary	for	in-
creased	energetic	needs,	and	use	latitudinal	or	elevational	migration	
to	find	hibernacula	with	suitable	temperatures	for	extended	torpor	
during	the	winter	(Gruver	&	Keinath,	2006;	reviewed	in	McGuire	&	
Boyle,	2013). There is also evidence that C. townsendii	exhibit	high	
roost	 fidelity,	where	most	 individuals	 return	 to	 the	 same	 summer	
and	winter	roosts	each	year	(Anderson	et	al.,	2018; Clark et al., 1996; 
Sherwin	et	 al.,	2000). Because C. townsendii	 have	different	 roosts	
for	phenological	stages,	we	can	model	the	roost-	type	separately	to	
understand	 changes	 in	 environmental	 requirements	 for	 different	
life-	history	stages.	Additionally,	because	this	species	occurs	across	
the	 diverse	 ecoregions	 of	 California,	 it	 is	 appropriate	 for	 under-
standing	how	geographic	scale	of	 the	model	affects	 the	predicted	
distribution,	 as	 ecoregions	potentially	 represent	 areas	of	 local	 ad-
aptation	 (due	 to	 different	 environmental	 characteristics	 in	 each	
region;	Pease	et	al.,	2022,	Smith	et	al.,	2019).	The	average	tempera-
ture	 in	California	has	 increased	by	approximately	1.11°C	since	 the	
early	20th	century,	with	warming	projected	to	continue	 (Frankson	
et al., 2022).	However,	warming	across	the	state	has	not	been	uni-
form,	suggesting	that	some	ecoregions	are	experiencing	more	accel-
erated	effects	of	climate	change—	for	example,	monthly	minimums	in	
the	Sierra	Nevada	have	increased	by	about	3°C	in	the	past	100 years	
(Thorne	et	 al.,	2006).	 Flooding,	drought,	 and	wildfires	 are	ecosys-
tem	disturbances,	influenced	by	climate	conditions,	and	are	also	pre-
dicted	to	 increase	 in	the	next	century	(Frankson	et	al.,	2022). Due 
to	this	predicted	temperature	change	and	increase	in	environmental	
disturbances	in	the	state,	many	species,	such	as	C. townsendii, could 
face	local	extinction,	thus	identification	of	potential	refugia	is	critical	
to	conservation	efforts	in	the	state.

Our	study	objectives	were	to:	(1)	model	the	present	and	future	
distributions	of	C. townsendii	 considering	 two	 climate	 change	 sce-
narios	and	determine	the	limiting	climatic	or	geographic	variables	in	
the	present,	 (2)	assess	the	percentage	of	expansion/contraction	 in	
the	range	of	C. townsendii	and	determine	where	these	shifts	occur,	
and	 (3)	 assess	 how	 these	projections	 vary	 between	different	 sea-
sonal and spatial scales. Understanding how predicted occurrence 
(presumably	 reflective	 of	 environmental	 needs)	 varies	 across	 time	

(maternity,	hibernacula,	 and	 transition	 roosts)	 and	space	 (different	
ecoregions)	could	be	critical	for	helping	managers	and	surveyors	pin-
point	appropriate	areas	for	conservation	actions.

2  |  METHODS

2.1  |  Study area and survey data

The	study	area	covers	the	U.S.	state	of	California,	which	has	steep	
environmental	gradients	that	support	an	array	of	species	(Dobrowski	
et al., 2011).	To	accommodate	California's	ecological	diversity,	with	
regions	ranging	from	forested	mountain	ranges	to	deserts,	we	exam-
ined	local	environmental	needs	by	modeling	at	both	state-	wide	and	
state	ecoregion	scales,	using	U.S.	Environmental	Protection	Agency	
(EPA)	Level	III	ecoregion	designations.	There	are	13	Level	III	ecore-
gions	in	California	(Table	S1.1;	Griffith	et	al.,	2016).	Although	Level	
IV	 Ecoregions	 subdivide	 the	 state	 into	 finer-	scale	 habitat	 regions,	
Level	III	is	appropriate	for	this	study	as	there	are	not	enough	occur-
rences	per	Level	IV	Ecoregion	to	build	species	distribution	models.

Species	occurrence	data	used	 in	 this	 study	were	 from	a	 state-
wide	 survey	 of	 C. townsendii	 in	 California	 conducted	 by	 Harris	
et	 al.	 (2019).	 Briefly,	 methods	 included	 field	 surveys	 from	 2014	
to	 2017	 incorporating	 both	 historical	 roost	 sites,	 and	 a	 stratified	
random	 sampling	 scheme.	 Sample	 sites	were	 selected	 from	a	 grid	
of	 randomly	numbered	10 × 10 km	 cells,	 stratified	by	EPA	Level	 III	
ecoregions	 to	 ensure	 representation	 of	California's	 disparate	 hab-
itat	 types.	 Areas	where	C. townsendii	 is	 not	 known	 to	 occur	 (e.g.,	
urban	 core,	 highest	 elevations	 in	 the	 Sierra)	 were	 excluded.	 Sites	
systematically	excluded	from	survey	include	topographical	features	
inaccessible	to	surveyors	(e.g.,	cliffs;	steep,	technical	terrain,	and	un-
derground	workings	deemed	unsafe	 to	enter).	Also	excluded	were	
areas	where	survey	targets	could	not	be	identified	during	the	desk-
top	review	process	(e.g.,	landscapes	that	did	not	have	recognizable	
abandoned	buildings,	bridges,	or	cavern-	like	rock	formations	pres-
ent).	Notably,	Ecoregion	7	(Central	California	Valley)	 lacks	desktop	
identifiable	roost	features	and	historical	occurrence	records,	and	is	
predominantly	on	private	land,	resulting	in	this	ecoregion	having	lim-
ited	representation	in	the	original	survey	effort.	Occurrence	records	
from	the	Global	Biodiversity	Information	Facility	(https://www.gbif.
org)	also	show	a	lack	of	historic	or	recent	occurrence	of	C. townsendii 
in	Ecoregion	7.	The	lack	of	detections	in	this	ecoregion	likely	reflects	
the	reality	of	a	roost-	limited,	high	disturbance	habitat,	but	also	may	
reflect	a	climatically	unsuitable	habitat	for	C. townsendii.	Therefore,	
the	limited	representation	of	Ecoregion	7	in	the	original	survey	ef-
fort	likely	does	not	dramatically	influence	the	model	results.

Some	 degree	 of	 convenience	 bias	 is	 also	 present	 in	 the	 data,	
though	 not	 due	 to	 a	 priori	 sample	 exclusion	 criteria.	While	 public	
property	and	distance	from	roads	were	not	selection	criteria	for	sur-
vey	visits,	recognition	of	potential	roost	features,	and	accessibility	of	
such	features	to	survey	were	far	more	likely	on	public	jurisdictions	
than	on	private	land.	Similarly,	given	resource	constraints,	cells	were	
more	 likely	 to	 be	 selected	 for	 if	 they	 contained	 several	 potential	
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roost	 features	 and	 were	 within	 day-	trip	 hiking	 distance,	 or	 were	
adjacent	to	grids	with	existing	detections.	While	numerous	remote	
sites	were	 sampled	 in	 the	 original	 survey	 effort,	 the	 prioritization	
of	historical/known	roost	sites,	coupled	with	feasibility	constraints,	
introduces	some	degree	of	systematic	bias	against	C. townsendii de-
tections	at	greatest	distance	from	roads.

Corynorhinus townsendii	 presence	 at	 roost	 sites	 was	 based	 on	
visual	bat	sightings.	From	these	survey	efforts,	we	have	visual	oc-
currence	 data	 for	 65	maternity	 roosts,	 82	 hibernation	 roosts	 (hi-
bernacula),	 and	 91	 active-	season	 non-	maternity	 roosts	 (transition	
roosts)	for	a	total	of	238	occurrence	records	(Figure 1,	Table	S1.1).

2.2  |  Ecogeographical factors

We	downloaded	climatic	variables	 from	WorldClim	2.1	bioclimatic	
variables	 (Fick	&	Hijmans,	2017)	 at	 a	 resolution	of	 five	 arcmin	 for	
broad-	scale	 analysis	 and	 30 arcsec	 for	 our	 ecoregion-	specific	
analyses.	To	calculate	elevation	and	slope,	we	used	a	digital	eleva-
tion	model	 (U.S.	 Geological	 Survey,	2019)	 in	 ArcGIS	 10.8.1	 (ESRI,	
Redlands,	California,	USA).	 The	 chosen	 set	 of	 environmental	 vari-
ables	reflects	knowledge	on	climatic	conditions	and	habitat	relevant	
to	bat	physiology,	phenology,	and	life	history	(Ancillotto	et	al.,	2016; 
Loeb	&	Winters,	2013; Razgour, 2015; Razgour et al., 2011;	Rebelo	
et al., 2010).	To	trim	the	global	environmental	variables	to	the	same	
extent	 (the	 state	 of	 California),	 we	 used	 the	 R	 package	 “raster”	
(Hijmans	et	al.,	2015).	We	performed	a	correlation	analysis	on	the	

raster	layers	using	the	“layerStats”	function	and	removed	variables	
with	a	Pearson's	coefficient > 0.7	 (see	Table 1	 for	 final	model	vari-
ables).	Notably,	 in	 our	 study	 area,	 elevation	was	 highly	 correlated	
with	 annual	 temperature	 (bioclimatic	 variable	 1).	We	 retained	 el-
evation	 for	our	 final	models	as	 this	variable	has	been	 found	 to	be	
important	 predictors	 of	 roost	 selection	 in	 previous	 studies	 of	 C. 
townsendii	(Harris	et	al.,	2019; McClure et al., 2021, 2022;	Sherwin	
et al., 2000).	For	future	climate	conditions,	we	selected	three	gen-
eral	circulation	models	(GCMs)	based	on	previous	species	distribu-
tion	models	of	temperate	bat	species	(Razgour	et	al.,	2019)	[Hadley	
Centre	Global	Environment	Model	version	2	Earth	Systems	model	
(HadGEM3-	GC31_LL;	 Webb,	 2019),	 Institut	 Pierre-	Simon	 Laplace	
Coupled	 Model	 6th	 Assessment	 Low	 Resolution	 (IPSL-	CM6A-	LR;	
Boucher et al., 2018),	 and	 Max	 Planck	 Institute	 for	 Meteorology	
Earth	 System	 Model	 Low	 Resolution	 (MPI-	ESM1-	2-	LR;	 Brovkin	
et al., 2019)]	and	two	contrasting	greenhouse	concentration	trajec-
tories	 (Shared	 Socio-	economic	 Pathways;	 SSPs):	 a	 steady	 decline	
pathway	with	CO2	 concentrations	of	360	ppmv	 (SSP1-	2.6)	 and	 an	
increasing	 pathway	with	CO2	 reaching	 around	 2000	 ppmv	 (SSP5-	
8.5;	 Masson-	Delmotte	 et	 al.,	 2021).	We	 modeled	 distribution	 for	
present	 conditions	 future	 (2061–	2080)	 time	periods.	Because	one	
aim	of	our	 study	was	 to	determine	 the	consequences	of	 changing	
climate,	we	changed	only	the	climatic	data	when	projecting	future	
distributions,	while	keeping	the	other	variables	constant	over	time	
(elevation,	slope).

2.3  |  Species distribution modeling

We	generated	distribution	maps	 for	 total	 occurrences	 (maternity	
+	 hibernacula	+	 transition,	hereafter	defined	as	 “combined	mod-
els”),	maternity	colonies,	hibernacula,	and	transition	roosts.	To	es-
timate	 the	present	and	 future	habitat	suitability	 for	C. townsendii 
in	 California,	 we	 used	 the	maximum	 entropy	 (MaxEnt)	 algorithm	
in	 the	 “dismo”	 R	 package	 (Hijmans	 &	 van	 Etten,	 2016) through 
the	advanced	computing	 resources	provided	by	Texas	A&M	High	
Performance	 Research	 Computing.	 We	 chose	 MaxEnt	 to	 aid	 in	
the	 comparisons	 of	 state-	wide	 and	 ecoregion-	specific	models	 as	
MaxEnt	outperforms	other	approaches	when	using	small	datasets.	
We	 created	 1000	 background	 points	 from	 random	 points	 in	 the	
environmental	 layers	 and	 performed	 a	 fivefold	 cross-	validation	
approach, which divided the occurrence records into training 
(80%)	 and	 testing	 (20%)	 datasets.	We	 assessed	 the	 performance	
of	our	models	by	measuring	the	area	under	the	receiver	operating	
characteristic	curve	(AUC;	Hanley	&	McNeil,	1982), where values 
>0.5	 indicate	 that	 the	model	 is	 performing	 better	 than	 random,	
values	 0.5–	0.7	 indicating	 poor	 performance,	 0.7–	0.9	 moderate	
performance	and	values	of	0.9–	1	excellent	performance	 (BCCVL,	
Hallgren et al., 2016).	We	 also	measured	 the	maximum	 true	 skill	
statistic	(TSS;	Allouche	et	al.,	2006)	to	assess	model	performance.	
The	maxTSS	 ranges	 from	 −1	 to	+1:values <0.4	 indicate	 a	model	
that	 performs	 no	 better	 than	 random,	 0.4–	0.55	 indicates	 poor	
performance,	 (0.55–	0.7)	 moderate	 performance,	 (0.7–	0.85)	 good	

F I G U R E  1 Map	of	recorded	roosts	of	Corynorhinus townsendii 
in	California	from	Harris	et	al.	(2019)	survey	efforts.	Image	of	C. 
townsendii	provided	by	Devaughn	Fraser.
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performance,	 and	 values	 >0.80	 indicate	 excellent	 performance	
(Samadi	et	al.,	2022).	Final	distribution	maps	were	generated	using	
all	 occurrence	 records	 for	 each	 region	 (rather	 than	 the	 training/
testing	subset),	and	the	models	were	projected	onto	present	and	
future	climate	conditions.	Additionally,	because	the	climatic	condi-
tions	of	the	different	ecoregions	of	California	vary	widely,	we	gen-
erated	separate	models	for	each	ecoregion	in	an	attempt	to	capture	
potential	local	effects	of	climate	change.	A	general	rule	in	species	
distribution	modeling	 is	 that	 the	occurrence	points	 should	be	10	
times	the	number	of	predictors	included	in	the	model,	meaning	that	
we	would	need	60	occurrences	 in	 each	 ecoregion.	One	 common	
way	to	overcome	this	 limitation	 is	 through	the	ensemble	of	small	
models	(ESMs)	included	in	ecospat	R	package	(Breiner	et	al.,	2015, 
2018; Di Cola et al., 2017).	For	our	ESMs	we	implemented	MaxEnt	
modeling,	and	the	final	ensemble	model	was	created	by	averaging	
individual	bivariate	models	by	weighted	performance	(AUC > 0.5).	
We	also	used	null	model	significance	testing	with	to	evaluate	the	
performance	of	our	ESMs	 (Raes	&	Ter	Steege,	2007).	To	perform	
null	model	testing	we	compared	AUC	scores	from	ESMs	to	the	AUC	
from	100	null	models	using	randomly	generated	presence	locations	
equal	to	the	number	used	in	the	developed	distribution	model.	All	
ecoregion	models	outperformed	the	null	expectation	(p < .002).

2.4  |  Estimating range shifts

For	each	of	the	three	GCMs	and	each	RCP	scenario,	we	converted	
the	probability	distribution	map	into	a	binary	map	(0	=	unsuitable,	
1 =	 suitable)	 using	 the	 threshold	 that	 maximizes	 sensitivity	 and	
specificity	 (Liu	et	al.,	2016).	To	create	 the	 final	maps	 for	each	SSP	
scenario,	we	summed	the	three	binary	GCM	layers	and	took	a	con-
sensus	 approach,	 meaning	 climatically	 suitable	 areas	 were	 pixels	
where	at	least	two	of	the	three	models	predicted	species	presence	
were	 retained	 (Araújo	&	New,	2007;	Piccioli	Cappelli	et	al.,	2021). 
We	combined	the	future	binary	maps	(fmap)	and	the	present	binary	
maps	 (pmap)	 following	 the	 formula	 fmap × 2 + pmap	 (from	 Huang	
et al., 2017)	to	produce	maps	with	values	of	0	(areas	not	suitable),	
1	(areas	that	are	suitable	in	the	present	but	not	the	future),	2	(areas	
that	are	not	suitable	 in	the	present	but	suitable	 in	the	future),	and	
3	 (areas	 currently	 suitable	 that	will	 remain	 suitable)	using	 the	 ras-
ter	 calculator	 function	 in	QGIS.	We	 then	calculated	 the	 total	 area	
of	 suitability,	 area	of	maintenance,	 area	of	 expansion,	 and	area	of	
contraction	for	each	binary	model	using	the	“BIOMOD_RangeSize”	
function	in	R	package	“biomod2”	(Thuiller	et	al.,	2016).

3  |  RESULTS

3.1  |  Current models

3.1.1  |  State-	wide	models

Both	 combined	 and	 life-	history-	explicit	 models	 showed	 moder-
ate	 predictive	 performance	 (Table	 S1.2):	 combined	 (AUC	 = 0.81, 
MaxTSS	=	0.51),	hibernacula	(AUC	=	0.86,	MaxTSS	=	0.57),	Transition	
(AUC	=	0.8,	MaxTSS	=	9.47),	and	with	maternity	models	performing	
the	poorest	of	the	three	(AUC	=	0.78,	MaxTSS	=	0.43).	In	the	com-
bined	 and	maternity	models,	 precipitation	 in	 the	warmest	quarter	
provided	 the	 highest	 contribution	 among	 environmental	 variables	
(Table	 S1.3).	 Suitability	 increased	 with	 increasing	 precipitation	 in	
the	combined	model	(S2.1).	In	the	maternity	model,	the	highest	suit-
ability	is	in	areas	with	precipitation	in	the	warmest	quarter	around	
20 mm,	with	 suitability	decreasing	at	higher	 levels	of	precipitation	
(S2.3).	For	hibernacula,	elevation	contributed	most	 to	 the	model—	
suitability	generally	 increases	up	to	3000 m	of	elevation,	at	higher	
elevation	 suitability	 decreases	 (S2.2).	 Finally,	 annual	 precipitation	
contributed	the	most	to	the	transition	model,	with	annual	precipita-
tion	250–	1200 mm	maximizing	suitability	(S2.4).	Areas	of	suitability	
for	 the	 combined	model	 are	 distributed	 across	 the	 state,	 with	 an	
area	of	 approximately	150,191 km2	 (Figure 2a, Table 2),	 occupying	
37%	of	 the	 land	 area	 of	California.	 Suitable	 areas	 are	 found	 in	 all	
ecoregions	of	the	state,	excluding	the	Central	California	Valley	and	
much	of	 the	Sonoran	Basin	and	Range	 (Ecoregions	7	and	81).	The	
hibernacula	model	had	about	91,503 km2	of	suitable	area	in	the	pre-
sent,	occupying	22%	of	California	(Figure 2b, Table 2).	Most	notably,	
coastal	areas	that	are	suitable	in	the	combined	model	are	not	suit-
able	 in	 the	 hibernacula-	only	model.	 The	maternity	model	 showed	
the	highest	suitability	throughout	the	state,	distributed	across	about	
162,224 km2,	 or	 40%	of	 the	 state	 (Figure 2c, Table 2). The transi-
tion	model	predicted	an	area	of	approximately	120,002 km2	 (29%)	
with	areas	in	the	Coast	Range,	Sierra	Nevada	region,	and	the	Central	
Basin	and	Range	(Ecoregions	1,	5,	13)	showing	lower	levels	of	suit-
ability	than	the	combined	model	(Figure 2d, Table 2).

3.1.2  |  Ecoregion-	specific	models

The	 predictive	 performance	 from	 each	 of	 our	 ecoregion	 models	
were	 all	 acceptable	with	 respect	 to	AUC	 (Table	 S1.2),	with	 excel-
lent	performance	for	six	ecoregions	and	moderate	performance	for	

Variable name Source Description

Bio03 WorldClim	Version	2.1 Isothermality	(°C)

Bio12 WorldClim	Version	2.1 Annual	precipitation	(mm)

Bio15 WorldClim	Version	2.1 Precipitation	seasonality	(Coefficient	of	variation)

Bio18 WorldClim	Version	2.1 Precipitation	of	warmest	quarter	(mm)

Slope USGS Slope	from	digital	elevation	model	(o)

DEM USGS Elevation	(m)

TA B L E  1 Environmental	variable	
layers	included	in	our	species	distribution	
models	for	Corynorhinus townsendii in 
California.
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three	ecoregions.	Additional	details	on	model	performance	and	con-
tribution	of	environmental	variables	to	each	model	are	reported	in	
Tables	S1.2 and S1.3.	The	ecoregion-	specific	models	for	Ecoregions	
1	and	85	had	different	distributions	of	suitable	area	than	the	respec-
tive	regions	 in	 the	combined	model	 (Figure 3). Ecoregions 4 and 8 
showed	 substantially	 less	 suitable	 area	 when	 compared	 with	 the	
same	area	 in	 the	combined	model.	Ecoregion	5	generally	matched	
the	pattern	of	distribution	in	the	combined	model,	but	the	ecoregion	
model	had	more	areas	of	high	suitability	in	the	eastern	part	of	the	
region.	The	area	of	suitability	in	the	individual	model	for	Ecoregion	6	
is	also	generally	similar	to	the	same	area	in	the	combined	model	but	
has	less	suitable	area	in	the	most	northern	part	of	the	ecoregion,	and	
occupied	areas	in	the	rest	of	the	region	have	higher	suitability.	When	
compared	to	the	combined	model,	Ecoregion	13	has	similar	areas	of	
high	suitability	except	in	the	north.	Ecoregion	14	had	similar	a	similar	
distribution,	but	lower	suitability	when	compared	to	the	combined	
model.	In	general,	the	ecoregion-	specific	models	showed	similar	pat-
terns	of	suitability	to,	but	with	better	model	performance	than	the	
combined	model.	Variable	contribution	to	each	ecoregion	model	can	
be	found	in	Table	S1.3.	Overall,	precipitation	(annual	precipitation,	
precipitation	 of	 the	warmest	 quarter,	 or	 precipitation	 seasonality)	
was	the	highest	contributing	variable	in	five	of	the	ecoregion	models	
(Ecoregions	1,	5,	6,	14,	and	78).	Suitability	was	maximized	at	precipi-
tation	of	around	20–	30 mm	in	Ecoregions	1,5,	and	6	(Figures	S2.5, 
S2.7, S2.8).	In	Ecoregion	14,	suitability	increased	with	increasing	pre-
cipitation	(S2.9).	The	remaining	ecoregions	were	best	explained	by	
elevation	and	 isothermality	 (Ecoregions	13	and	85	and	Ecoregions	
4	and	8,	respectively;	Table	S1.3).	In	Ecoregion	13,	suitability	gener-
ally	 increased	with	 increasing	elevation,	maximizing	around	2000–	
2500 m	(S2.10).	In	Ecoregion	85	however,	suitability	decreases	with	
increasing	elevation	(S2.11).

3.2  |  Changes in distribution

Six	 maps	 of	 habitat	 suitability	 (3	 GCMs × 2	 SSPs)	 were	 gener-
ated	 for	each	geographic	category.	Binary	maps	created	using	 the	

threshold	as	stated	above	were	used	to	assess	areas	of	expansion	
and contraction.

3.2.1  |  State-	wide	models

The	total	change	in	suitable	areas	for	C. townsendii across the state 
are reported in Table 2.	The	combined,	hibernacula,	and	maternity	
model	approaches	predict	an	overall	contraction	of	suitable	area	for	
C. townsendii	between	2061	and	2080,	with	larger	reductions	in	the	
SSP5-	8.5	scenario.	Reduction	in	the	suitable	habitat	of	the	combined	
model	was	predicted	to	occur	 in	most	of	the	ecoregions,	however,	
some	expansion	was	predicted	in	eastern	areas	of	the	state,	within	
the	Mojave	Basin	 and	Range	 (Figure 4).	 In	 the	hibernacula	model,	
reduction	in	suitable	area	is	predicted	to	occur	along	areas	currently	
suitable,	 with	 an	 expansion	 in	 western	 areas,	 within	 the	 coastal	
mountains.	Suitability	for	maternity	colonies	is	expected	to	decrease	
largely	 in	western	 areas	 of	 the	 state.	 The	 area	 of	 suitable	 habitat	
for	 transition	 colonies	 is	 expected	 to	 increase	 under	 both	 climate	
change	scenarios,	with	a	larger	increase	seen	in	SSP5-	8.5.	Under	this	
scenario,	suitable	habitat	on	the	coast	is	expected	to	decrease,	while	
areas	 in	 eastern	 California	 are	 expected	 to	 increase	 in	 suitability,	
corresponding	to	an	overall	range	shift.

3.2.2  |  Ecoregion	models

Details	of	 all	 changes	 in	 suitability	per	ecoregion	under	each	RCP	
scenario	and	time	period	are	reported	in	Table 2.	Five	of	the	ecore-
gions	are	projected	to	decrease	in	suitable	area	under	both	SSP	sce-
narios	and	time	periods	(Figure 5, Table 2). Ecoregion 6 is predicted 
to	lose	the	highest	percentage	of	its	range	(59–	76%).	Ecoregion	14	
is	also	predicted	to	lose	suitability	in	a	significant	proportion	of	its	
current	range	in	California	(60–	67%).	Under	the	SSP1-	2.6	scenario,	
Ecoregion	1	is	expected	to	have	a	slight	increase	in	suitable	habitat	
and	in	the	SSP5-	8.5	scenario	Ecoregions	4,	78,	and	are	85	projected	
to	have	an	increase	in	suitable	area.

F I G U R E  2 Maps	showing	the	present	habitat	suitability	(probability	of	occurrence)	for	Corynorhinus townsendii	in	California	based	on	
known	roost	locations.	(a)	Model	based	on	all	roost	occurrence	records	state-	wide,	(b)	model	based	on	hibernacula	only,	(c)	model	based	
on	maternity	colonies	only,	and	(d)	model	based	on	active-	season	non-	maternity	(transition)	roosts	only.	The	color	ramp	corresponds	to	
predicted	habitat	suitability,	where	dark	blue	indicates	low	habitat	suitability	and	yellow	indicates	high	habitat	suitability	(scaled	0–	100).
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TA B L E  2 Predicted	suitable	area	for	Corynorhinus townsendii	roosts	in	California	under	present	and	future	conditions	for	all	temporal	and	
geographic	subsets	modeled.

Geographic extent/
Colony type Range shift Present SSP1- 2.6 2061- 2080 SSP5- 8.5 2061- 2080

All	Colonies	State-	Wide Total	suitable	habitat	(km2) 150,191 142,245 123,865

Expansion	(km2) 2728 33,530

Contraction	(km2) 10,647 7205

Maintained	(km2) 139,544 116,661

Change	compared	to	current	distribution	(km2,	%) −7945	(−5%) −26,325	(−17.5%)

Hibernacula	State-	Wide Total	suitable	habitat	(km2) 91,503 87,538 70,081

Expansion	(km2) 3931 7424

Contraction	(km2) 7897 28,846

Maintained	(km2) 83,607 62,658

Change	compared	to	current	distribution	(km2,	%) −3966	(−4%) −21,	422	(−23%)

Maternity	State-	Wide Total	suitable	habitat	(km2) 162,224 142,460 130,307

Expansion	(km2) 3428 9445

Contraction	(km2) 23,192 41,362

Maintained	(km2) 139,033 120,862

Change	compared	to	current	distribution	(km2,	%) −19,764	(−12%) −31,918	(−20%)

Transition	State-	Wide Total	suitable	habitat	(km2) 120,002 123,287 125,626

Expansion	(km2) 7729 22,455

Contraction	(km2) 4444 16,831

Maintained	(km2) 115,558 103,171

Change	compared	to	current	distribution	(km2,	%) +3286	(+3%) 5624	(+5%)

Ecoregion 1 Total	suitable	habitat	(km2) 6979 7009 6804

Expansion	(km2) 320 271

Contraction	(km2) 289 446

Maintained	(km2) 6690 6533

Change	compared	to	current	distribution	(km2,	%) −31	(+0.4%) −175	(−2.5%)

Ecoregion 4 Total	suitable	habitat	(km2) 3128 2812 3233

Expansion	(km2) 283 999

Contraction	(km2) 599 894

Maintained 2529 2234

Change	compared	to	current	distribution	(km2,	%) −316	(−10%) +105	(+3%)

Ecoregion	5 Total	suitable	habitat	(km2) 22,675 18,689 12,035

Expansion	(km2) 1040 375

Contraction	(km2) 5027 11,016

Maintained	(km2) 17,648 11,660

Change	compared	to	current	distribution	(km2,	%) −3987	(−18%) −10,641	(−47%)

Ecoregion 6 Total	suitable	habitat	(km2) 54,439 12,978 27,417

Expansion	(km2) 0.5 302

Contraction	(km2) 41,462 302

Maintained	(km2) 12,978 27,115

Change	compared	to	current	distribution	(km2,	%) −41,462	(−76%) −27,022(−59%)

Ecoregion 8 Total	suitable	habitat	(km2) 4337 4000 4292

Expansion	(km2) 127 356

Contraction	(km2) 464 401

Maintained	(km2) 3873 3936

Change	compared	to	current	distribution	(km2,	%) −337	(−8%) −45	(−1%)

(Continues)
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4  |  DISCUSSION

We	estimated	the	most	important	environmental	factors	influencing	
the	distribution	of	C. townsendii	colonies	in	California	and	provided	
seasonal	and	regional	projections	of	suitable	habitat	under	present	
conditions	 and	 in	 response	 to	 simulated	 lower	 and	 higher	 future	

concentrations	 of	 global	 greenhouse	 gases.	 While	 seasonal,	 life-	
history-	explicit	species	distribution	models	are	recognized	as	impor-
tant	for	taxa	that	have	long-	distance	migration,	taxa	with	small-	scale	
seasonal	movements	have	largely	been	neglected	in	modeling	stud-
ies	(Smeraldo	et	al.,	2018).	Our	study	highlights	how	ecological	need	
differences	between	phenological	stages	contribute	to	differences	

Geographic extent/
Colony type Range shift Present SSP1- 2.6 2061- 2080 SSP5- 8.5 2061- 2080

Ecoregion 13 Total	suitable	habitat	(km2) 8977 8272 7679

Expansion	(km2) 186 269

Contraction	(km2) 828 1567

Maintained	(km2) 8086 7410

Change	compared	to	current	distribution	(km2,	%) −705	(−8%) −1298	(−14%)

Ecoregion 14 Total	suitable	habitat	(km2) 24,028 7912 9682

Expansion	(km2) 0 0

Contraction	(km2) 16,116 14,347

Maintained	(km2) 7912 9682

Change	compared	to	current	distribution	(km2,	%) −16,116	(−67%) −14,347	(−60%)

Ecoregion 78 Total	Occupied	Area	(km2) 11,857 10,669 12,111

Expansion	(km2) 1637 2975

Contraction	(km2) 2825 2721

Maintained	(km2) 9032 9136

Change	Compared	to	current	distribution	(km2,	%) −1187	(−10%) +254	(+2%)

Ecoregion	85 Total	suitable	habitat	(km2) 4556 3852 4719

Expansion	(km2) 17 11

Contraction	(km2) 722 148

Maintained	(km2) 3834 4408

Change	compared	to	current	distribution	(km2,	%) −704	(−15%) +163	(+4%)

TA B L E  2 (Continued)

F I G U R E  3 Map	showing	level	III	
ecoregion-	specific	habitat	suitability	
for	Corynorhinus townsendii	in	California	
based	on	known	roost	locations.	The	color	
ramp	corresponds	to	predicted	habitat	
suitability,	where	dark	blue	indicates	low	
habitat	suitability	and	yellow	indicates	
high	habitat	suitability.



    |  9 of 14HAMILTON et al.

in	 seasonal	distribution	of	C. townsendii.	Additionally,	 by	modeling	
each	ecoregion	separately,	our	study	highlights	how	environmental	
needs	vary	across	the	species'	range	in	California.

Overall,	our	results	indicate	that	environmental	factors	driving	C. 
townsendii	distribution	differ	across	temporal	and	geographic	scales,	
but	precipitation	is	the	most	important	factor	predicting	C. townsendii 
presence	in	the	majority	of	our	models.	Availability	of	water,	in	terms	
of	either	distance	to	permanent	water	sources	or	amount	of	precipi-
tation,	is	important	for	insectivorous	bats	for	both	foraging	and	drink-
ing	water	and	the	association	between	maternity	colonies	and	annual	

precipitation	is	to	be	expected,	as	female	insectivorous	bats	also	have	
a	significant	increase	in	water	needs	during	pregnancy	and	lactation	
(Adams	&	Hayes,	2008;	Rainho	&	Palmeirim,	2011).	Precipitation	 is	
also	an	important	factor	to	hibernacula	as	it	contributes	to	cave	hu-
midity	(Perry,	2013).	High	humidity	within	hibernacula	reduces	evapo-
rative	water	loss	during	hibernation	(Speakman	&	Thomas,	2003). Our 
results	support	precipitation	as	an	important	factor	for	this	species	at	
multiple	life	phases.	Elevation	is	another	important	variable	contrib-
uting	to	the	hibernacula	models,	with	suitability	increasing	with	eleva-
tion up to ~2750 m,	consistent	with	previous	studies	of	C. townsendii 

F I G U R E  4 Climate-	related	habitat	suitability	shifts	in	extent	and	location	in	Corynorhinus townsendii	in	California	based	on	known	roost	
locations.	Colors	indicate	areas	of	contraction	(red),	expansion	(blue),	and	areas	that	are	currently	suitable	that	will	remain	suitable	in	the	
future	(yellow).

F I G U R E  5 Climate-	related	habitat	suitability	shifts	for	level	III	ecoregion-	specific	models	of	Corynorhinus townsendii	in	California	based	
on	known	roost	locations.	Colors	indicate	areas	of	contraction	(red),	expansion	(blue),	and	areas	that	are	currently	suitable	that	will	remain	
suitable	in	the	future	(yellow).
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reporting	 the	 species	 hibernating	 at	 >1500 m	 (Gillies	 et	 al.,	 2014; 
Harris et al., 2019;	Hayes	et	al.,	2011;	Szewczak	et	al.,	1998;	Whiting	
et al., 2021).	 However,	 recent	modeling	 approaches	 predict	 higher	
suitability	 for	 C. townsendii	 hibernacula	 at	 elevations	 <1000 m.	
Differences	 in	 predicted	 elevation	 are	 likely	 due	 to	 differences	 in	
occurrence	data,	environmental	predictor	variables,	study	extent	(in-
cluding	 latitude),	and	modeling	techniques	used.	Higher	elevation	 is	
linked	to	lower	temperature,	which	is	important	for	hibernating	bats	
as	they	must	select	sites	with	stable,	low	temperatures	to	ensure	that	
their	metabolic	rate	will	not	exhaust	fat	reserves	before	hibernation	
ends	(Humphrey,	1978;	Perry,	2013;	Thomas	et	al.,	1990).	As	our	ini-
tial	model	building	found	a	high	correlation	between	temperature	and	
elevation	 in	 our	 study	 area,	 annual	 temperature	 is	 potentially	 also	
driving	the	distribution	of	high	suitability	in	the	hibernacula	models.

The	differences	in	environmental	needs	are	reflected	in	the	dif-
ferences	 in	 the	distribution	of	 predicted	 suitable	 habitat	 between	
our	 models.	 The	 predicted	 distribution	 of	 suitable	 habitat	 for	 C. 
townsendii	 roosts	 differed	 between	 the	 combined,	 hibernacula,	
maternity,	 and	 transition	models,	 consistent	with	 recent	work	 ex-
amining	temporally	explicit	distribution	models	in	locally	migratory	
bats	(Smeraldo	et	al.,	2018).	The	combined,	maternity,	and	transition	
models	predict	areas	of	high	suitability	across	the	state	 (Figure 3). 
On	 the	 contrary,	 the	 hibernacula	 model	 shows	 less	 area	 of	 high	
suitability,	corresponding	to	areas	of	sufficient	elevation	(Figure 3). 
Because	 hibernacula	 have	 a	 more	 restricted	 area	 of	 suitability	 in	
California,	the	hibernacula	model	failed	to	predict	the	extent	of	the	
known	range	of	C. townsendii in the state. This highlights how the 
combined	model	 (encompassing	 all	 phenological	 stages)	 best	 cap-
tures	 the	 broad	 distribution	 of	 C. townsendii	 in	 California.	 It	 also	
highlights	how	life-	history-	explicit	models	are	more	useful	than	the	
combined	 in	describing	seasonal	niches	of	C. townsendii and could 
therefore	be	more	useful	when	planning	seasonal	survey	efforts.

When	 looking	 at	 the	 ecoregion-	scale	models,	we	 see	 that	 the	
environmental	 variable	 contributing	 most	 to	 the	 suitability	 of	 C. 
townsendii	 varies	 across	 ecoregions	 (Table	 S1.3).	 However,	 most	
ecoregions	were	best	explained	by	amount	of	annual	precipitation	or	
precipitation	in	the	warmest	quarter,	consistent	with	the	state-	wide	
models	 and	 previously	 mentioned	 physiological	 needs	 of	 temper-
ate	 insectivorous	bats.	 Isothermality	 (thermal	stability)	contributes	
most	to	the	suitability	for	two	ecoregions	(Ecoregions	4	and	8)	that	
have	 high	 annual	 precipitation	 across	 the	 region	 when	 compared	
with	other	ecoregions.	 Isothermality	 is	also	 linked	 to	physiological	
performance	 and	 favorable	 reproductive	 outcomes	 in	 temperate	
bat	 species	 (Ancillotto	 et	 al.,	 2018).	 Distribution	 of	 suitable	 area	
in	 the	 ecoregion-	specific	 models	 also	 was	 largely	 consistent	 with	
the	 distribution	 seen	 in	 the	 combined	 state-	wide	 model.	 Overall,	
these	 results	 indicate	a	 large	congruence	between	state-	wide	and	
ecoregion-	specific	models,	suggesting	a	state-	wide	model	is	useful	
in	predicting	the	current	distribution	of	C. townsendii	in	California.

Current	global	emissions	are	most	consistent	with	 the	SSP5-	8.5	
scenario	(Schwalm	et	al.,	2020).	Under	the	SSP5-	8.5	scenario,	model	
results	indicate	that	the	area	suitable	for	C. townsendii	in	California	will	
decrease	when	considering	the	state-	wide	and	ecoregion	models,	with	

an	exception	of	a	range	shift	(and	overall	expansion	of	suitable	area)	
in	the	transition	roosts.	Because	the	amount	of	annual	precipitation	
best	explained	the	majority	of	models,	changes	in	annual	precipitation	
predicted	under	SSP5-	8.5	scenarios	is	likely	contributing	to	the	shifts	
of	suitable	habitat	in	C. townsendii.	Notably,	although	elevation	does	
not	change	between	present	and	future	scenarios,	the	amount	of	suit-
able	area	for	hibernacula	is	expected	to	decrease,	suggesting	the	inter-
action	between	elevation	and	precipitation	is	driving	the	distribution	
of	C. townsendii	 hibernacula	 in	 California.	 Additionally,	 the	 changes	
in	 suitable	 habitat	 between	 the	 state-	wide	 and	 ecoregion-	specific	
models	are	 largely	congruent,	with	 the	exception	of	areas	 in	within	
Ecoregions	4,	14,	and	78.	In	the	state-	wide	scenario,	Ecoregion	14	is	
expected	to	have	an	 increase	 in	suitable	area,	but	 in	the	ecoregion-	
specific	model,	this	region	is	expected	to	experience	a	notable	contrac-
tion	in	suitable	area.	In	contrast,	Ecoregions	4	and	78	are	expected	to	
have	contractions	in	the	state-	wide	scenario	but	are	predicted	to	have	
a	northward	expansion.	However,	unlike	the	combined	model,	isother-
mality	also	significantly	contributes	to	the	projected	suitability	for	the	
ecoregion-	specific	models	 for	Ecoregions	4,	 14,	 and	78—	suggesting	
that	future	changes	in	temperature	will	have	different	effects	on	the	
distribution	of	C. townsendii	within	these	regions.	Differences	in	the	
projected	range	shifts	between	the	state-	wide	and	ecoregion-	specific	
models	provide	evidence	 that	 the	 relationship	between	distribution	
and	predictive	environmental	variables	is	not	consistent	across	the	C. 
townsendii	range	within	California.	The	differences	 in	environmental	
needs	across	ecoregions	may	be	driving	intraspecific	variation	in	cli-
mate	tolerances,	or	local	adaptation.	Previous	work	in	non-	volant	small	
mammals	suggests	that	ecoregion-	level	population	classifications	are	
sufficient	for	capturing	intraspecific	variation	to	climate	response,	but	
additional	work	is	necessary	to	determine	if	C. townsendii	are	in	fact	
locally	adapted	 (Smith	et	al.,	2019).	Additionally,	expansion	of	mod-
eling	to	populations	beyond	California	will	allow	for	the	full	adaptive	
potential	of	the	species	to	be	addressed.

For	 the	 aims	 of	 our	work	 (i.e.,	 to	model	 distributions	 of	 roost	
suitability),	we	 considered	only	 roosting	bats	 as	 species'	 presence	
records.	We	did	not	include	acoustic	record	or	mist	net	capture	as	
these	types	of	records	do	not	allow	us	to	characterize	type	of	en-
vironmental	use	(e.g.,	maternity	vs.	transition	roosts),	meaning	that	
these	 types	of	 landscape	detections	are	 likely	 far	 less	ecologically	
meaningful	than	the	presence	of	the	presumably	more	limiting	roost	
locations.	Excluding	foraging	locations	may	underestimate	the	real-
ized	niche,	but	roost	data	have	successfully	produced	roost	habitat	
maps	for	other	temperate	bat	species	(McClure	et	al.,	2021, 2022; 
Smeraldo	et	al.,	2018).	Additionally,	we	did	not	include	roost-	habitat	
covariates	(e.g.,	humidity,	size)	in	our	models	because	we	do	not	have	
adequate	dimensional	or	microclimate	data	for	all	subterranean	and	
anthropogenic	features	in	the	study	area.	Distance	to	mines	or	caves	
would	also	not	be	informative	for	our	model,	as	our	occurrence	points	
were	restricted	to	cavern-	analog	locations.	Future	models	including	
information	on	 cavern	 characteristics	 such	 as	 entrance	 size,	 inter-
nal	dimensions,	and	microclimate	can	help	further	refine	predictions	
of	C. townsendii	roosts.	Additionally,	survey	efforts	did	not	include	
monitoring	 human	 activity	 at	 each	 roost,	 therefore	 disturbance	
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vulnerability	of	each	 roost	was	not	determined.	Because	 this	 spe-
cies	 is	sensitive	to	human	disturbance,	future	research	to	quantify	
roost	disturbance	will	be	critical	to	management	of	this	at-	risk	spe-
cies.	Abundance	data	 (i.e.,	size	of	populations)	were	also	not	avail-
able	for	the	occurrence	data	used	in	this	study.	Information	on	the	
abundance	of	C. townsendii	in	each	ecoregion	can	improve	our	vul-
nerability	estimates	by	allowing	us	to	predict	proportional	changes	
to	species	prevalence	within	the	state	(Waldock	et	al.,	2021).

The	maps	of	occurrence	probability	can	help	guide	future	work	
to	 survey	 and	monitor	California	 populations	 of	C. townsendii and 
provide	 a	 baseline	 for	 understanding	 potential	 impacts	 of	 future	
climate	 change.	Management	 applications	 of	 these	 results	 should	
consider	whether	features	such	as	caves,	abandoned	mines,	and	ap-
propriate	anthropogenic	structures	are	available	in	areas	predicted	
to	 be	 environmentally	 suitable.	 Our	 models	 provide	 useful	 data	
that	can	be	updated	over	time	to	incorporate	new	climate	research,	
adapt	 to	 shifting	 conservation	 goals,	 or	 respond	 to	 other	 impacts	
such	as	land	use	change.	Knowledge	on	the	vulnerability	of	popula-
tions	within	each	ecoregion	enables	 land	managers	to	concentrate	
resources	on	protecting	potential	refugia	(areas	predicted	to	remain	
suitable)	in	their	regions.	Protection	and	enhancement	of	predicted	
refugia	and	promotion	of	connectivity	between	present	and	future	
suitable	areas	are	ways	that	species	distribution	models	can	be	used	
to	focus	conservation	planning	(Piccioli	Cappelli	et	al.,	2021) .

AUTHOR CONTRIBUTIONS
Joseph M. Szewczak:	 Data	 curation	 (equal);	 funding	 acquisition	
(equal);	 writing	 –		 review	 and	 editing	 (equal).	 Leila S. Harris: Data 
curation	 (lead);	 writing	 –		 review	 and	 editing	 (equal).	 Michael L. 
Morrison:	 Conceptualization	 (equal);	 funding	 acquisition	 (equal);	
supervision	 (lead);	writing	–		 review	and	editing	 (equal).	Natalie M. 
Hamilton:	Conceptualization	(equal);	formal	analysis	(lead);	writing	–		
original	draft	(lead).	Scott D. Osborn:	Data	curation	(equal);	funding	
acquisition	(equal);	writing	–		review	and	editing	(equal).

ACKNOWLEDG MENTS
The	occurrence	data	used	in	this	study	were	collected	using	funds	
awarded	from	U.S.	Fish	and	Wildlife	Service	State	Wildlife	Grant	to	
California	 Polytechnic	 University—	Humboldt,	 formerly	 Humboldt	
State	University	 (Szewczak)	and	Texas	A&M	University	 (Morrison).	
The	field	project	was	managed	by	Leila	Harris	and	administered	by	
the	California	Department	of	Fish	and	Wildlife	(Osborn).

CONFLIC T OF INTERE S T
The	authors	have	no	conflict	of	interest	to	report.

DATA AVAIL ABILIT Y S TATEMENT
We	cannot	provide	original	bat	occurrence	points	used	in	analyses	in	
the	interest	of	protecting	sensitive	colony	locations	from	disturbance	
or	 vandalism.	 However,	 our	 complete	 analytical	 dataset,	 including	
predictor	 variables	 (removed	 of	 location	 data),	 environmental	 lay-
ers,	 and	R	 scripts,	 are	 available	on	Dryad,	 https://doi.org/10.5061/
dryad.4j0zp	c8f1.

ORCID
Natalie M. Hamilton  https://orcid.org/0000-0002-5927-6197 

R E FE R E N C E S
Adams,	R.	A.,	&	Hayes,	M.	A.	 (2008).	Water	availability	and	successful	

lactation	 by	 bats	 as	 related	 to	 climate	 change	 in	 arid	 regions	 of	
western	North	America.	Journal of Animal Ecology, 77,	1115–	1121.

Allouche,	O.,	Tsoar,	A.,	&	Kadmon,	R.	(2006).	Assessing	the	accuracy	of	
species	 distribution	models:	 Prevalence,	 kappa	 and	 the	 true	 skill	
statistic	(TSS).	Journal of Applied Ecology, 43,	1223–	1232.

Amorim,	F.,	Carvalho,	S.	B.,	Honrado,	J.,	&	Rebelo,	H.	(2014).	Designing	
optimized	multi-	species	monitoring	networks	to	detect	range	shifts	
driven	by	climate	change:	A	case	 study	with	bats	 in	 the	north	of	
Portugal.	 PLoS One, 9, e87291. https://doi.org/10.1371/journ	
al.pone.0087291

Ancillotto,	L.,	Budinski,	I.,	Nardone,	V.,	Di	Salvo,	I.,	Della	Corte,	M.,	Bosso,	
L.,	Conti,	P.,	&	Russo,	D.	(2018).	What	is	driving	range	expansion	in	
a	common	bat?	Hints	from	thermoregulation	and	habitat	selection.	
Behavioural Processes, 157,	540–	546.

Ancillotto,	 L.,	 Santini,	 L.,	 Ranc,	 N.,	 Maiorano,	 L.,	 &	 Russo,	 D.	 (2016).	
Extraordinary	 range	 expansion	 in	 a	 common	 bat:	 The	 potential	
roles	 of	 climate	 change	 and	urbanisation.	 Science	 of	 nature	 103.	
The Science of Nature, 103,	 15.	 https://doi.org/10.1007/s0011 
4-	016-	1334-	7

Anderson,	 A.	 P.,	 Light,	 J.	 E.,	 Takano,	O.	M.,	 &	Morrison,	M.	 L.	 (2018).	
Population	structure	of	the	Townsend's	big-	eared	bat	(Corynorhinus 
townsendii townsendii)	 in	 California.	 Journal of Mammalogy, 99, 
646–	658.

Araújo,	M.	B.,	&	New,	M.	(2007).	Ensemble	forecasting	of	species	distri-
butions.	Trends in Ecology & Evolution, 22,	42–	47.

Avgar,	T.,	Street,	G.,	&	Fryxell,	J.	M.	(2014).	On	the	adaptive	benefits	of	
mammal	migration.	Canadian Journal of Zoology, 92,	481–	490.

Bay,	R.	A.,	Harrigan,	R.	J.,	Le	Underwood,	V.,	Gibbs,	H.	L.,	Smith,	T.	B.,	
&	Ruegg,	K.	(2018).	Genomic	signals	of	selection	predict	climate-	
driven	population	declines	in	a	migratory	bird.	Science, 359,	83–	86.

Beumer,	 L.	 T.,	 van	 Beest,	 F.	M.,	 Stelvig,	M.,	 &	 Schmidt,	 N.	M.	 (2019).	
Spatiotemporal	dynamics	in	habitat	suitability	of	a	large	Arctic	her-
bivore:	Environmental	heterogeneity	is	key	to	a	sedentary	lifestyle.	
Global Ecology and Conservation, 18, e00647.

Boucher,	O.,	Denvil,	 S.,	 Levavasseur,	G.,	Cozic,	A.,	Caubel,	A.,	 Foujols,	
M.-	A.,	Meurdesoif,	 Y.,	 Cadule,	 P.,	 &	Ghattas,	 J.	 (2018).	 IPSL IPSL- 
CM6A- LR model output prepared for CMIP6 C4MIP.	 Earth	 System	
Grid	Federation.	https://doi.org/10.22033/	ESGF/CMIP6.1521

Boyles,	 J.	 G.,	 Cryan,	 P.	 M.,	 McCracken,	 G.	 F.,	 &	 Kunz,	 T.	 H.	 (2011).	
Economic	 importance	 of	 bats	 in	 agriculture.	Science, 332,	 41–	42.	
https://doi.org/10.1126/scien ce.1201366

Breiner,	F.	T.,	Guisan,	A.,	Bergamini,	A.,	&	Nobis,	M.	P.	(2015).	Overcoming	
limitations	of	modelling	 rare	 species	by	using	ensembles	of	 small	
models.	Methods in Ecology and Evolution, 6,	1210–	1218.

Breiner,	F.	T.,	Nobis,	M.	P.,	Bergamini,	A.,	&	Guisan,	A.	(2018).	Optimizing	
ensembles	of	small	models	for	predicting	the	distribution	of	species	
with	few	occurrences.	Methods in Ecology and Evolution, 9,	802–	808.

Brovkin,	V.,	Wieners,	K.-	H.,	Giorgetta,	M.,	Jungclaus,	J.,	Reick,	C.,	Esch,	
M.,	Bittner,	M.,	Legutke,	S.,	Schupfner,	M.,	Wachsmann,	F.,	Gayler,	
V.,	Haak,	H.,	de	Vrese,	P.,	Raddatz,	T.,	Mauritsen,	T.,	von	Storch,	J.-	S.,	
Behrens,	J.,	Claussen,	M.,	Crueger,	T.,	…	Roeckner,	E.	(2019).	MPI- M 
MPIESM1.2- LR model output prepared for CMIP6 C4MIP.	Earth	System	
Grid	Federation.	https://doi.org/10.22033/	ESGF/CMIP6.748

California	Department	of	Fish	and	Wildlife,	Natural	Diversity	Database.	
(2019).	Special animals list.	California	Department	of	Fish	and	Wildlife.

Chardon,	 N.	 I.,	 Pironon,	 S.,	 Peterson,	 M.	 L.,	 &	 Doak,	 D.	 F.	 (2020).	
Incorporating	intraspecific	variation	into	species	distribution	mod-
els	 improves	 distribution	 predictions,	 but	 cannot	 predict	 species	
traits	for	a	wide-	spread	plant	species.	Ecography, 43,	60–	74.

https://doi.org/10.5061/dryad.4j0zpc8f1
https://doi.org/10.5061/dryad.4j0zpc8f1
https://orcid.org/0000-0002-5927-6197
https://orcid.org/0000-0002-5927-6197
https://doi.org/10.1371/journal.pone.0087291
https://doi.org/10.1371/journal.pone.0087291
https://doi.org/10.1007/s00114-016-1334-7
https://doi.org/10.1007/s00114-016-1334-7
https://doi.org/10.22033/ESGF/CMIP6.1521
https://doi.org/10.1126/science.1201366
https://doi.org/10.22033/ESGF/CMIP6.748


12 of 14  |     HAMILTON et al.

Chen,	I.	C.,	Hill,	J.	K.,	Ohlemüller,	R.,	Roy,	D.	B.,	&	Thomas,	C.	D.	(2011).	
Rapid	range	shifts	of	species	associated	with	high	levels	of	climate	
warming.	Science, 333,	1024–	1026.

Clark,	 B.	 K.,	 Clark,	 B.	 S.,	 Leslie,	 D.	 M.,	 &	 Gregory,	 M.	 S.	 (1996).	
Characteristics	of	caves	used	by	the	endangered	Ozark	big-	eared	
bat.	Wildlife Society Bulletin (1973– 2006), 24,	8–	14.

Cooper,	W.	 (1837).	 On	 two	 species	 of	 Plecotus	 inhabiting	 the	 United	
States	territory.	Annals of the Lyceum of Natural History of New York, 
4,	71–	75.

Deppe,	J.	L.,	&	Rotenberry,	J.	T.	(2008).	Scale-	dependent	habitat	use	by	
fall	migratory	birds:	Vegetation	structure,	floristics,	and	geography.	
Ecological Monographs, 78,	461–	487.

Di	Cola,	V.,	Broennimann,	O.,	Petitpierre,	B.,	Breiner,	F.	T.,	D'Amen,	M.,	
Randin,	C.,	 Engler,	R.,	 Pottier,	 J.,	 Pio,	D.,	Dubuis,	A.,	Pellissier,	 L.,	
Mateo,	R.	G.,	Hordijk,	W.,	Salamin,	N.,	&	Guisan,	A.	(2017).	Ecospat:	
An	R	package	to	support	spatial	analyses	and	modeling	of	species	
niches	and	distributions.	Ecography, 40,	774–	787.

Dobrowski,	S.	Z.,	Thorne,	J.	H.,	Greenberg,	J.	A.,	Safford,	H.	D.,	Mynsberge,	
A.	R.,	Crimmins,	S.	M.,	&	Swanson,	A.	K.	(2011).	Modeling	plant	ranges	
over	75 years	of	climate	change	in	California,	USA:	Temporal	trans-
ferability	and	species	traits.	Ecological Monographs, 81,	241–	257.

Ervin,	G.	N.,	&	Holly,	D.	C.	(2011).	Examining	local	transferability	of	pre-
dictive	 species	 distribution	models	 for	 invasive	 plants:	An	 exam-
ple	with	Cogongrass	(Imperata cylindrica). Invasive Plant Science and 
Management, 4,	390–	401.

Fellers,	G.	M.,	&	Pierson,	E.	D.	(2002).	Habitat	use	and	foraging	behavior	
of	 Townsend's	 big-	eared	 bat	 (Corynorhinus Townsendii) in coastal 
California.	Journal of Mammalogy, 83,	167–	177.

Ferraz,	 K.	 M.	 P.	 M.	 B.,	 Ferraz,	 S.	 F.	 B.,	 Paula,	 R.	 C.,	 Beisiegel,	 B.,	 &	
Breitenmoser,	C.	(2012).	Species	distribution	modeling	for	conser-
vation purposes. Natureza a Conservacao, 10,	214–	220.

Festa,	F.,	Ancillotto,	L.,	Santini,	L.,	Pacifici,	M.,	Rocha,	R.,	Toshkova,	N.,	
Amorim,	F.,	Benítez-	López,	A.,	Domer,	A.,	Hamidović,	D.,	Kramer-	
Schadt,	 S.,	 Mathews,	 F.,	 Radchuk,	 V.,	 Rebelo,	 H.,	 Ruczynski,	 I.,	
Solem,	E.,	Tsoar,	A.,	Russo,	D.,	&	Razgour,	O.	(2022).	Bat	responses	
to	climate	change:	A	systematic	review.	Biological Reviews. https://
doi.org/10.1111/brv.12893

Fick,	S.	E.,	&	Hijmans,	R.	J.	(2017).	WorldClim	2:	new	1-km	spatial	reso-
lution	climate	surfaces	for	global	land	areas.	International Journal of 
Climatology, 37(12),	4302–	4315.	Portico.	https://doi.org/10.1002/
joc.5086

Fortuna,	M.	A.,	Popa-	Lisseanu,	A.	G.,	Ibáñez,	C.,	&	Bascompte,	J.	(2009).	
The	 roosting	 spatial	 network	 of	 a	 bird-	predator	 bat.	 Ecology, 90, 
934–	944.

Frankson,	R.,	Stevens,	L.	E.,	Kunkel,	K.	E.,	Champion,	S.	M.,	Easterling,	
D.	R.,	Sweet,	W.,	&	Anderson,	M.	 (2022).	California	 state	climate	
summary	2022.	In	NOAA Technical Report NESDIS 150-CA. NOAA/
NESDIS, Silver Spring, MD	(pp.	6).	NOAA/NESDIS.

Freeman,	B.	G.,	Lee-	Yaw,	J.	A.,	Sunday,	J.	M.,	&	Hargreaves,	A.	L.	(2018).	
Expanding,	shifting	and	shrinking:	The	impact	of	global	warming	on	
species'	elevational	distributions.	Global Ecology and Biogeography, 
27,	1268–	1276.

Frick,	W.	 F.,	 Kingston,	 T.,	&	 Flanders,	 J.	 (2019).	A	 review	of	 the	major	
threats	and	challenges	to	global	bat	conservation.	Annals of the New 
York Academy of Sciences, 1469,	5–	25.

Gillies,	K.	E.,	Murphy,	P.	 J.,	&	Matocq,	M.	D.	 (2014).	Hibernacula	char-
acteristics	 of	 Townsend's	 big-	eared	 bats	 in	 southeastern	 Idaho.	
Natural Areas Journal, 34,	24–	30.

Griffith,	 G.	 E.,	 Omernik,	 J.	 M.,	 Smith,	 D.	 W.,	 Cook,	 T.	 D.,	 Tallyn,	 E.,	
Moseley,	K.,	&	Johnson,	C.	B.	(2016).	Ecoregions of California (poster): 
U.S. Geological Survey Open- File Report 2016- 1021, with map, scale 1: 
1,100,000. https://doi.org/10.3133/ofr20	161021

Gruver,	J.	C.,	&	Keinath,	D.	A.	(2006).	Townsend's big- eared bat a technical 
conservation assessment	(pp.	1–	93).	USDA	Forest	Service.

Guisan,	A.,	Tingley,	R.,	Baumgartner,	J.	B.,	Naujokaitis-	Lewis,	I.,	Sutcliffe,	
P.	R.,	 Tulloch,	A.	 I.	 T.,	Regan,	T.	 J.,	Brotons,	 L.,	Mcdonald-	Madden,	

E.,	 Mantyka-	Pringle,	 C.,	 Martin,	 T.	 G.,	 Rhodes,	 J.	 R.,	 Maggini,	 R.,	
Setterfield,	S.	A.,	Elith,	J.,	Schwartz,	M.	W.,	Wintle,	B.	A.,	Broennimann,	
O.,	Austin,	M.,	…	Buckley,	Y.	M.	(2013).	Predicting	species	distribu-
tions	for	conservation	decisions.	Ecology Letters, 16,	1424–	1435.

Hällfors,	M.	H.,	Liao,	J.,	Dzurisin,	J.,	Grundel,	R.,	Hyvärinen,	M.,	Towle,	K.,	
Wu,	G.	C.,	&	Hellmann,	J.	J.	(2016).	Addressing	potential	local	ad-
aptation	in	species	distribution	models:	Implications	for	conserva-
tion	under	climate	change.	Ecological Applications, 26,	1154–	1169.

Habibullah,	M.	S.,	Din,	B.	H.,	 Tan,	 S.	H.,	&	Zahid,	H.	 (2021).	 Impact	of	
climate	change	on	biodiversity	loss:	Global	evidence.	Environmental 
Science and Pollution Research, 29,	1073–	1086.

Hallgren,	 W.,	 Beaumont,	 L.,	 Bowness,	 A.,	 Chambers,	 L.,	 Graham,	 E.,	
Holewa,	H.,	Laffan,	S.,	Mackey,	B.,	Nix,	H.,	Price,	J.,	Vanderwal,	J.,	
Warren,	R.,	&	Weis,	G.	(2016).	The	biodiversity	and	climate	change	
virtual	 laboratory:	Where	 ecology	meets	 big	 data.	 Environmental 
Modelling & Software, 76,	182–	186.

Hanley,	J.	A.,	&	McNeil,	B.	J.	(1982).	The	meaning	and	use	of	the	area	under	a	
receiver	operating	characteristic	(ROC)	curve.	Radiology, 143,	29–	36.

Harris,	 L.	 S.,	Morrison,	M.	 L.,	 Szewczak,	 J.	M.,	&	Osborn,	 S.	D.	 (2019).	
Assessment	 of	 the	 status	 of	 the	 Townsend's	 big-	eared	 bat	 in	
California.	California Fish & Game, 105,	101–	119.

Hayes,	M.	A.,	Cryan,	P.	M.,	&	Wunder,	M.	B.	(2015).	Seasonally-	dynamic	
presence-	only	species	distribution	models	for	a	cryptic	migratory	
bat	impacted	by	wind	energy	development.	PLoS One, 10,	1–	20.

Hayes,	M.	A.,	Schorr,	R.	A.,	&	Navo,	K.	W.	(2011).	Hibernacula	selection	
by	Townsend's	big-	eared	bat	in	southwestern	Colorado.	Journal of 
Wildlife Management, 75,	137–	143.

Hijmans,	R.	J.,	Phillips,	S.,	Leathwick,	J.,	&	Elith,	J.	(2015).	Dismo: Species 
Distribution Modeling.	 R	 Package	 Version	 1.3-	9.	 http://CRAN.R-
proje	ct.org/packa	ge=dismo

Hijmans,	R.	J.,	&	Van	Etten,	J.	(2016).	raster: Geographic data analysis and 
modeling.	 R	 package	 version	 3.6-	11.	 https://CRAN.R-proje	ct.org/
packa ge=raster

Huang,	J.,	Li,	G.,	Li,	J.,	Zhang,	X.,	Yan,	M.,	&	Du,	S.	(2017).	Projecting	the	
range	 shifts	 in	 climatically	 suitable	habitat	 for	Chinese	 sea	buck-
thorn	under	climate	change	scenarios.	Forests, 9,	1–	11.

Humphrey,	S.	R.	(1978).	Status,	winter	habitat,	and	Management	of	the	
Endangered	Indiana	bat	Myotis sodalis. Florida Scientist, 41,	65–	76.

Jones,	G.,	Jacobs,	D.	S.,	Kunz,	T.	H.,	Wilig,	M.	R.,	&	Racey,	P.	A.	(2009).	
Carpe	noctem:	The	importance	of	bats	as	bioindicators.	Endangered 
Species Research, 8,	93–	115.

Kunz,	T.	H.,	de	Torrez,	E.	B.,	Bauer,	D.,	Lobova,	T.,	&	Fleming,	T.	H.	(2011).	
Ecosystem	 services	 provided	 by	 bats.	 Annals of the New York 
Academy of Sciences, 1223,	1–	38.

Liu,	C.,	Newell,	G.,	&	White,	M.	(2016).	On	the	selection	of	thresholds	for	
predicting	species	occurrence	with	presence-	only	data.	Ecology and 
Evolution, 6,	337–	348.

Loeb,	S.	C.,	&	Winters,	E.	A.	(2013).	Indiana	bat	summer	maternity	distri-
bution:	Effects	of	current	and	future	climates.	Ecology and Evolution, 
3,	103–	114.

Maas,	B.,	Karp,	D.	S.,	Bumrungsri,	S.,	Darras,	K.,	Gonthier,	D.,	Huang,	J.	C.	
C.,	Lindell,	C.	A.,	Maine,	J.	J.,	Mestre,	L.,	Michel,	N.	L.,	Morrison,	E.	
B.,	Perfecto,	I.,	Philpott,	S.	M.,	Şekercioğlu,	Ç.	H.,	Silva,	R.	M.,	Taylor,	
P.	 J.,	 Tscharntke,	 T.,	 Van	 Bael,	 S.	 A.,	 Whelan,	 C.	 J.,	 &	 Williams-	
Guillén,	K.	(2016).	Bird	and	bat	predation	services	in	tropical	forests	
and	agroforestry	landscapes.	Biological Reviews, 91,	1081–	1101.

Mammal	 Diversity	 Database.	 (2022).	 Mammal	 diversity	 database	
(Version	1.10)	 [Data	 set].	Zenodo.	https://doi.org/10.5281/ZENO	
DO.7394529

Masson-	Delmotte,	V.,	Zhai,	P.,	Pirani,	A.,	Connors,	S.	L.,	Péan,	C.,	Berger,	S.,	
Caud,	N.,	Chen,	Y.,	Goldfarb,	L.,	Gomis,	M.	I.,	Huang,	M.,	Leitzell,	K.,	
Lonnoy,	E.,	Matthews,	J.	B.	R.,	Maycock,	T.	K.,	Waterfield,	T.,	Yelekçi,	
O.,	Yu,	R.,	&	Zhou,	B.	(2021).	IPCC,	2021:	Summary	for	policy	mak-
ers. In Climate change 2021: The physical science basis. Contribution of 
working group 1 to the sixth assessment report of the intergovernmental 
panel on climate change.	Cambridge	University	Press.

https://doi.org/10.1111/brv.12893
https://doi.org/10.1111/brv.12893
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
https://doi.org/10.3133/ofr20161021
http://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=dismo
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://doi.org/10.5281/ZENODO.7394529
https://doi.org/10.5281/ZENODO.7394529


    |  13 of 14HAMILTON et al.

Mazurek,	M.	J.	(2004).	A	maternity	roost	of	Townsend's	big-	eared	bats	
(Corynorhinus townsendii)	in	coast	redwood	basal	hollows	in	north-
western	California.	Northwestern Naturalist, 85,	60–	62.

McClure,	M.	L.,	Haase,	C.	G.,	Hranac,	C.	R.,	Hayman,	D.	T.	S.,	Dickson,	
B.	 G.,	 McGuire,	 L.	 P.,	 Crowley,	 D.,	 Fuller,	 N.	 W.,	 Lausen,	 C.	
L.,	 Plowright,	 R.	 K.,	 Olson,	 S.	 H.,	 &	 Saupe,	 E.	 (2021).	 A	 hybrid	
correlative-	mechanistic	 approach	 for	 modeling	 winter	 distribu-
tions	of	north	American	bat	species.	Journal of Biogeography, 48, 
1–	16.

McClure,	M.	 L.,	Hranac,	C.	 R.,	Haase,	C.	G.,	McGinnis,	 S.,	Dickson,	 B.	
G.,	Hayman,	D.	T.	S.,	McGuire,	L.	P.,	Lausen,	C.	L.,	Plowright,	R.	K.,	
Fuller,	N.,	&	Olson,	S.	H.	(2022).	Projecting	the	compound	effects	
of	climate	change	and	white-	nose	syndrome	on	north	American	bat	
species.	Climate	change.	Ecology, 3, 100047.

Mcguire,	 L.	 P.,	 &	 Boyle,	 W.	 A.	 (2013).	 Altitudinal	 migration	 in	 bats:	
Evidence, patterns, and drivers. Biological Reviews, 88,	767–	786.

Morganti,	M.,	 Preatoni,	 D.,	 &	 Sarà,	M.	 (2017).	 Climate	 determinants	 of	
breeding	and	wintering	ranges	of	lesser	kestrels	in	Italy	and	predicted	
impacts	of	climate	change.	Journal of Avian Biology, 48,	1595–	1607.

Neubaum,	D.	J.,	&	Aagaard,	K.	(2022).	Use	of	predictive	distribution	mod-
els	to	describe	habitat	selection	by	bats	in	Colorado,	USA.	Journal of 
Wildlife Management, 86,	1–	20.

Oldfather,	M.	 F.	 (2019).	 Ecoregion	 shapes	 the	 range	 response.	Nature 
Climate Change, 9,	730–	731.

Pease,	B.	S.,	Pacifici,	K.,	Kays,	R.,	&	Reich,	B.	(2022).	What	drives	spatially	
varying	ecological	relationships	in	a	wide-	ranging	species?	Diversity 
and Distributions, 28,	1752–	1768.

Perry,	R.	W.	 (2013).	A	review	of	 factors	affecting	cave	climates	 for	hi-
bernating	bats	in	temperate	North	America.	Environmental Reviews, 
21,	28–	39.

Piccioli	 Cappelli,	 M.,	 Blakey,	 R.	 V.,	 Taylor,	 D.,	 Flanders,	 J.,	 Badeen,	 T.,	
Butts,	S.,	Frick,	W.	F.,	&	Rebelo,	H.	(2021).	Limited	refugia	and	high	
velocity	range-	shifts	predicted	for	bat	communities	in	drought-	risk	
areas	of	the	northern	hemisphere.	Global Ecology and Conservation, 
28, e01608. https://doi.org/10.1016/j.gecco.2021.e01608

Pierson,	E.	D.,	Wackenhut,	M.	C.,	Altenbach,	J.	S.,	Bradley,	P.,	Call,	P.,	Genter,	
D.	L.,	Harris,	C.	E.,	Keller,	B.	L.,	Lengus,	B.,	Lewis,	L.,	Luce,	B.,	Navo,	K.	
W.,	Perkins,	J.	M.,	Smith,	S.,	&	Welch,	L.	(1999).	Species conservation 
assessment and conservation strategy for the Townsend's big- eared bat. 
Idaho conservation effort.	Idaho	Department	of	Fish	and	Game.

Raes,	N.,	&	Ter	Steege,	H.	(2007).	A	null-	model	for	significance	testing	of	
presence-	only	species	distribution	models.	Ecography, 30,	727–	736.

Rainho,	A.,	&	Palmeirim,	J.	M.	(2011).	The	importance	of	distance	to	re-
sources	in	the	spatial	modelling	of	bat	foraging	habitat.	PLoS One, 
6, e19227.

Razgour,	O.	(2015).	Beyond	species	distribution	modeling:	A	landscape	
genetics	 approach	 to	 investigating	 range	 shifts	 under	 future	 cli-
mate	 change.	 Ecological Informatics, 30,	 250–	256.	 https://doi.
org/10.1016/j.ecoinf.2015.05.007

Razgour,	O.,	Forester,	B.,	Taggart,	J.	B.,	Bekaert,	M.,	Juste,	J.,	Ibáñez,	C.,	
Puechmaille,	S.	 J.,	Novella-	Fernandez,	R.,	Alberdi,	A.,	&	Manel,	S.	
(2019).	 Considering	 adaptive	 genetic	 variation	 in	 climate	 change	
vulnerability	 assessment	 reduces	 species	 range	 loss	 projections.	
Proceedings of the National Academy of Sciences of the United States 
of America, 116,	10418–	10423.

Razgour,	O.,	Hanmer,	J.,	&	Jones,	G.	(2011).	Using	multi-	scale	modelling	
to	predict	habitat	 suitability	 for	species	of	conservation	concern:	
The	 grey	 long-	eared	 bat	 as	 a	 case	 study.	Biological Conservation, 
144,	2922–	2930.	https://doi.org/10.1016/j.biocon.2011.08.010

Razgour,	O.,	 Rebelo,	H.,	Di	 Febbraro,	M.,	&	Russo,	D.	 (2016).	 Painting	
maps	with	bats:	Species	distribution	modelling	in	bat	research	and	
conservation. Hystrix, the Italian Journal of Mammalogy, 27,	11753.	
https://doi.org/10.4404/hystr	ix-	27.1-	11753

Rebelo,	H.,	Tarroso,	P.,	&	Jones,	G.	 (2010).	Predicted	 impact	of	climate	
change	 on	 European	 bats	 in	 relation	 to	 their	 biogeographic	 pat-
terns. Global Change Biology, 16,	561–	576.

Reed,	T.	E.,	Schindler,	D.	E.,	&	Waples,	R.	S.	 (2010).	 Interacting	effects	
of	phenotypic	plasticity	and	evolution	on	population	persistence	in	
a	changing	climate.	Conservation Biology, 25(1),	56–	63.	https://doi.
org/10.1111/j.1523-1739.2010.01552.x

Samadi,	 S.,	 Mehdi,	 K.,	 Ardavan,	 M.,	 Raoof,	 G.,	 Abazar,	 M.,	 &	 Ouri,	 E.	
(2022).	 An	 insight	 into	 machine	 learning	 models	 to	 predict	 the	
distribution	of	Leucanthemum vulgare	 lam.	in	northwestern	range-
lands	of	 Iran.	Arabian Journal of Geosciences, 15, 836. https://doi.
org/10.1007/s1251	7-	022-	10137	-	y

Schwalm,	C.	R.,	Glendon,	S.,	&	Duffy,	P.	B.	(2020).	RCP8.5	tracks	cumula-
tive CO2	emissions.	Proceedings of the National Academy of Sciences 
of the United States of America, 117,	19656–	19657.

Sherwin,	R.	E.,	Gannon,	W.	L.,	Altenbach,	 J.	S.,	&	Sricklan,	D.	 (2000).	
Roost	Fidelity	of	Townsend's	big-	eared	bat	 in	Utah	and	Nevada.	
Transactions of the Western Section of the Wildlife Society, 36, 
15–	32.

Smeraldo,	S.,	Di	Febbraro,	M.,	Bosso,	L.,	Flaquer,	C.,	Guixé,	D.,	Lisón,	F.,	
Meschede,	 A.,	 Juste,	 J.,	 Prüger,	 J.,	 Puig-	Montserrat,	 X.,	 &	 Russo,	
D.	 (2018).	 Ignoring	 seasonal	 changes	 in	 the	 ecological	 niche	 of	
non-	migratory	species	may	lead	to	biases	in	potential	distribution	
models:	Lessons	from	bats.	Biodiversity and Conservation, 27,	2425–	
2441. https://doi.org/10.1007/s1053	1-	018-	1545-	7

Smith,	A.	B.,	Beever,	E.	A.,	Kessler,	A.	E.,	Johnston,	A.	N.,	Ray,	C.,	Epps,	C.	
W.,	Lanier,	H.	C.,	Klinger,	R.	C.,	Rodhouse,	T.	J.,	Varner,	J.,	Perrine,	
J.	D.,	Seglund,	A.,	Hall,	L.	E.,	Galbreath,	K.,	MacGlover,	C.,	Billman,	
P.,	Blatz,	G.,	Brewer,	 J.,	Castillo	Vardaro,	 J.,	…	Yandow,	 L.	 (2019).	
Alternatives	to	genetic	affinity	as	a	context	for	within-	species	re-
sponse	to	climate.	Nature Climate Change, 9,	787–	794.	https://doi.
org/10.1038/s4155	8-	019-	0584-	8

Speakman,	 J.	 R.,	 &	 Thomas,	 D.	 W.	 (2003).	 Physiological	 ecology	 and	
energetics	of	bats.	In	T.	Kunz,	&	M.	Fenton	(Eds.),	Bat Ecology	(pp.	
430–	490).	University	of	Chicago	Press.

Szewczak,	 J.	M.,	Szewczak,	S.	M.,	Morrison,	M.	L.,	&	Hall,	L.	S.	 (1998).	
Bats	of	the	White	and	Inyo	Mountains	of	California-	Nevada.	Great 
Basin Naturalist, 58,	66–	75.

Thomas,	D.	W.,	Dorais,	M.,	&	Bergeron,	J.	(1990).	Winter	energy	budge	
and	costs	of	arousals	for	hibernating	little	brown	bats,	Myotis luci-
fugus. American Society of Mammalogists, 71,	475–	479.

Thorne,	J.	H.,	Kelsey,	R.,	Honig,	J.,	&	Morgan,	B.	(2006).	The development 
of 70- year- old Wieslander vegetation type maps and an assessment of 
landscape change in the Central Sierra Nevada	(pp.	1–	18).	UC	Davis:	
Information	Center	for	the	Environment.	https://escho larsh ip.org/
uc/item/4fz5r8bh

Thuiller,	W.,	Georges,	D.,	Gueguen,	M.,	Engler,	R.,	&	Breiner,	F.	(2016).	bio-
mod2:	Ensemble	platform	for	species	distribution	modeling.	R	pack-
age	version	4.1-	2.	https://CRAN.R-proje	ct.org/packa	ge=biomod2

U.S.	 Geological	 Survey.	 (2019).	 3D	 Elevation	 Program	 1-Meter	
Resolution Digital Elevation Model. https://www.usgs.gov/the-na-
tio	nal-map-data-delivery

Urbanowicz,	C.,	Pasquarella,	V.	 J.,	&	Stinson,	K.	A.	 (2019).	Differences	
in	 landscape	drivers	of	 garlic	mustard	 invasion	within	 and	across	
ecoregions. Biological Invasions, 21,	 1249–	1258.	 https://doi.
org/10.1007/s1053	0-	018-	1896-	8

Voigt,	C.	C.,	&	Kingston,	T.	(2016).	Bats in the Anthropocene: Conservation 
of bats in a changing world	(p.	600).	Springer	Cham.

Waldock,	C.,	 Stuart-	Smith,	R.	D.,	Albouy,	C.,	Cheung,	W.	W.	 L.,	 Edgar,	
G.	J.,	Mouillot,	D.,	Tjiputra,	J.,	&	Pellissier,	L.	(2021).	A	quantitative	
review	of	abundance-	based	species	distribution	models.	Ecography, 
2022(1).	https://doi.org/10.1111/ecog.05694

Webb,	 M.	 (2019).	 MOHC HadGEM3- GC31- LL model output prepared 
for CMIP6 CFMIP.	 Earth	 System	 Grid	 Federation.	 https://doi.
org/10.22033/	ESGF/CMIP6.435

Whiting,	 J.	 C.,	 Doering,	 B.,	 Aho,	 K.,	 &	 Rich,	 J.	 (2021).	 Long-	term	 pat-
terns	of	cave-	exiting	activity	of	hibernating	bats	in	western	North	
America.	Scientific Reports, 11,	1–	9.	https://doi.org/10.1038/s4159	
8-	021-	87605	-	0

https://doi.org/10.1016/j.gecco.2021.e01608
https://doi.org/10.1016/j.ecoinf.2015.05.007
https://doi.org/10.1016/j.ecoinf.2015.05.007
https://doi.org/10.1016/j.biocon.2011.08.010
https://doi.org/10.4404/hystrix-27.1-11753
https://doi.org/10.1111/j.1523-1739.2010.01552.x
https://doi.org/10.1111/j.1523-1739.2010.01552.x
https://doi.org/10.1007/s12517-022-10137-y
https://doi.org/10.1007/s12517-022-10137-y
https://doi.org/10.1007/s10531-018-1545-7
https://doi.org/10.1038/s41558-019-0584-8
https://doi.org/10.1038/s41558-019-0584-8
https://escholarship.org/uc/item/4fz5r8bh%3e
https://escholarship.org/uc/item/4fz5r8bh%3e
https://CRAN.R-project.org/package=biomod2
https://www.usgs.gov/the-national-map-data-delivery
https://www.usgs.gov/the-national-map-data-delivery
https://doi.org/10.1007/s10530-018-1896-8
https://doi.org/10.1007/s10530-018-1896-8
https://doi.org/10.1111/ecog.05694
https://doi.org/10.22033/ESGF/CMIP6.435
https://doi.org/10.22033/ESGF/CMIP6.435
https://doi.org/10.1038/s41598-021-87605-0
https://doi.org/10.1038/s41598-021-87605-0


14 of 14  |     HAMILTON et al.

Zamora-	Gutierrez,	V.,	Pearson,	R.	G.,	Green,	R.	E.,	&	Jones,	K.	E.	(2018).	
Forecasting	the	combined	effects	of	climate	and	land	use	change	
on	Mexican	bats.	Diversity and Distributions, 24,	363–	374.

Zanini,	F.,	Pellet,	J.,	&	Schmidt,	B.	R.	(2009).	The	transferability	of	distri-
bution	models	across	 regions:	An	amphibian	case	study.	Diversity 
and Distributions, 15,	469–	480.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Hamilton,	N.	M.,	Morrison,	M.	L.,	
Harris,	L.	S.,	Szewczak,	J.	M.,	&	Osborn,	S.	D.	(2022).	
Predicting	habitat	suitability	for	Townsend's	big-	eared	bats	
across	California	in	relation	to	climate	change.	Ecology and 
Evolution, 12, e9641. https://doi.org/10.1002/ece3.9641

https://doi.org/10.1002/ece3.9641

	Predicting habitat suitability for Townsend's big-eared bats across California in relation to climate change
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study area and survey data
	2.2|Ecogeographical factors
	2.3|Species distribution modeling
	2.4|Estimating range shifts

	3|RESULTS
	3.1|Current models
	3.1.1|State-wide models
	3.1.2|Ecoregion-specific models

	3.2|Changes in distribution
	3.2.1|State-wide models
	3.2.2|Ecoregion models


	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


