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Abstract
The tumor size ratio (TSR), time-to-tumor growth (TTG), and tumor growth rate 
(kG) are frequently suggested as model-based predictors of overall survival (OS) 
for different types of tumors. When the tumor metrics are applied in forecasting 
of the outcome for individual patients at an early stage, the tumor data might be 
sparse resulting in imprecise prediction. This simulation study aimed to inves-
tigate how the tumor follow-up data and estimation approaches influence the 
accuracy in the tumor size metrics and the predicted hazard of death for indi-
vidual patients. Longitudinal tumor size and OS data were simulated using tumor 
growth inhibition and Weibull distribution models, respectively. Based on the 
model and increasing measurement durations, the accuracy (defined as 80–125% 
of the simulated “true” value) in individual metrics and hazard was computed. 
TSR week 6 (TSRw6) accuracy was adequate for 91% of the patients when tumor 
size was measured up to 12 weeks. For TTG and kG metrics, the highest accu-
racy observed was lower (43 and 77%, respectively) and occurred later (42 and 
60 weeks, respectively). The simultaneous (joint) and sequential estimation ap-
proaches resulted in similar accuracies, however, in general, the sequential ap-
proach where individual tumor size parameters are fixed, demonstrated inferior 
estimation properties. The TSRw6 and the model-predicted tumor time course 
(absolute or relative change) had better forecasting properties than TTG or kG. 
The population pharmacokinetic (PK) parameters and data approach performed 
similarly or better than the simultaneous approach and had a better accuracy 
in estimating individuals' hazard of death than the individual PK parameters 
method.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Developed population models have potential to predict tumor response and haz-
ard of death in a new patient at an early stage, facilitating early clinical judgments 
and interventions.
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INTRODUCTION

Population modeling has increasingly been applied to 
evaluate longitudinal tumor size (TS) data and to inves-
tigate TS metrics as predictors of long-term clinical end 
points, such as overall survival (OS) or progression free 
survival.1,2 These models have potential to predict tumor 
response in a new patient at an early stage, facilitating 
early clinical judgments and interventions. If response is 
low, the model can be applied to determine dose modifica-
tions predicted to maximize the efficacy. Moreover, in line 
with the strive for model-informed drug discovery and de-
velopment,3 the models developed based on information 
gathered during phase I/II trials are used to predict the 
efficacy and clinical outcomes of phase III trials, thereby 
assisting “go, no-go” decisions.3,4

The tumor size ratio (TSR),5–10 the time to tumor 
growth (TTG),10–14 or the estimated tumor growth rate 
constant (kG)10,15,16 have been identified as predictors of 
OS in various cancer types. Typically, all available TS mea-
surements within a patient are used in model development 
and for identifying the “optimal” TS metric predicting OS. 
The tumor follow-up or the number of TS measurements 
per patient depends on many factors, like response to 
drug, adverse effects, and mortality. Thus, the available TS 
measurements can be as sparse as one or two in addition 
to baseline. When the data are sparse and contain limited 
information, the individual parameter estimates may not 

deviate from the population mean, leading to shrinkage17 
of parameter estimates. Consequently, the individual pa-
rameter estimates might shrink toward the typical value 
when models are applied at an early stage after initiation 
of therapy. Shrinkage in parameter estimates can lead to 
biased tumor metrics of an individual, influencing the 
evaluation of predictors of survival18 as well as the predic-
tion of hazard for an individual patient.

A TS model, built on longitudinal data, can be linked 
to time to event models of OS by different estimation ap-
proaches, similar to when pharmacokinetic (PK) models 
are associated with pharmacodynamic (PD) models.19 
Estimation of both tumor and OS specific model param-
eters at the same time can be achieved in the simultane-
ous (SIM) approach using a joint tumor-OS model. The 
SIM estimation allows the survival data to influence the 
tumor model fit and account for uncertainties in the 
data. The SIM approach is increasingly been suggested 
and proposed to be superior to individual PK parameters 
(IPPs). However, the population PK parameters and data 
(PPP&D) approach, shown to have good estimation prop-
erties for PK-PD models have rarely been considered. In 
sequential approaches, the tumor model is developed first 
and the developed tumor model is linked to the OS model 
using one of the sequential methods. The two most com-
monly applied sequential methods are IPP and PPP&D. In 
IPP, the empirical Bayes estimates (EBEs) from the tumor 
model are used in the OS model. The EBEs rely, however, 

WHAT QUESTION DID THIS STUDY ADDRESS?
Typically, all available tumor size (TS) measurements within a patient are used in 
model development and for identifying the “optimal” TS metric predicting over-
all survival. When the tumor metrics are applied in forecasting the outcome for 
individual patients at an early stage, the tumor data might be sparse resulting in 
imprecise prediction. This simulation study aimed to investigate how the tumor 
follow-up data and estimation approaches influence the accuracy in the TS met-
rics and the predicted hazard of death for individual patients.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE?
TSR week 6 (TSRw6) accuracy was adequate for 91% of the patients when TS was 
measured up to 12 weeks. For time-to-tumor growth (TTG) and tumor growth 
rate (kG) metrics, the highest accuracy observed was lower (43 and 77%, respec-
tively) and occurred later (42 and 60 weeks, respectively). The choice of analysis 
method had relatively little influence on the accuracy of the estimated hazard 
ratio.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This simulation study concludes that for early prediction of treatment outcome 
for an individual patient, TSRw6 or tumor time course is a more promising metric 
than TTG or kG. The simultaneous (joint) and sequential estimation approaches 
resulted in similar accuracies, however, in general, the sequential approach where 
individual TS parameters are fixed, demonstrated inferior estimation properties.
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on the richness of individuals' data and can be sensitive 
to parameter shrinkage18 (i.e., when individual data are 
sparse, the individual estimates rely more on the popula-
tion estimates and the variance of the EBEs becomes lower 
than the estimated variance parameter). Consequently, the 
values of model-derived metrics can be affected, leading 
to biased parameter estimates of the survival model. This 
problem is partially addressed in PPP&D. In the PPP&D 
approach for tumor-OS modeling, the population param-
eters (typical values and estimated between-subject vari-
ability) of the developed tumor model are fixed, but the 
individual tumor size data are kept as dependent variables 
when the OS model parameters are estimated. SIM and se-
quential approaches might influence the quantification of 
the tumor size metric-survival relationship and this may 
affect the forecasting of survival for a new individual. We 
will here use the same abbreviations (PPP&D and IPP), al-
though here it is a PD parameter (TS) rather than PK that 
drives the outcome variable OS.

This study aims to investigate how the sparseness of 
available TS data may influence the accuracy in predic-
tion of different TS metrics and how different estimation 
approaches influence the metrics' value in predicting the 
hazard of death for an individual patient.

METHODS

Simulation of data

Tumor size data

TS data for 1000 subjects were simulated using a simpli-
fied tumor growth inhibition model for bevacizumab plus 
chemotherapy in colorectal cancer12 (Table 1), at baseline 
(time = 0), and at 6, 12, 18, 24, 36, 48, 60, 72, 84, and 96 weeks 
after treatment initiation. Two different tumor follow-up 
conditions were considered, (i) with dropout from tumor 
measurements forced after the first measurement with ε 
20% increase from the tumor nadir, mimicking Response 
Evaluation Criteria in Solid Tumors (RECIST) criteria for 
progression in sum of longest diameter (SLD),20 and (ii) 

without dropout where none of the patients were allowed 
to drop out during the 96-week study period. In addition, 
the advantage of a pretreatment scan (4 weeks before start 
of treatment) was explored in scenario (i) for kG.

The TSR calculated at week 6 (TSRw6), TTG-derived 
based on tumor model parameters, and the simulated 
value of kG were considered as the “true” value of the 
metrics for each simulated individual. The “true” met-
rics for a typical individual were 0.739, 24.8 weeks−1 and 
0.00583 weeks−1 for each metric, respectively.

Survival data

OS data for 1000 individuals were simulated using a 
Weibull distribution12 characterizing the increase in haz-
ard over time and a relationship to one of the three tumor 
metrics, as described in Equation 1.

where, λ and α denote the scale and shape parameters, re-
spectively, t is time, and β is the coefficient related to the 
tumor metric (TM). For kG, the value in log domain was 
applied as the predictor in the survival model. Weibull pa-
rameters and β (βTTG  =  −0.0417) were available from the 
published model.12 For the other metrics, the mean β value 
that was estimated from 1000 simulated survival data sets 
using the published model including a TTG-relationship. 
Then, using the estimated β and Weibull parameters, sur-
vival data were simulated for each TM. In the mean β, values 
were 2.76, and 0.322 for TSRw6 and logkG, respectively. For 
each individual, the “true” relative hazard ratio (rHRi) was 
derived as a ratio between the individual hazard ratio (cal-
culated from the individuals' TM and the related coefficient 
value, i.e., e�⋅TMi) and the typical hazard ratio (calculated 
from population median TM value and the related coeffi-
cient value, e�⋅TM_typical).

To further evaluate the forecasting ability of models, 
additional OS data sets were simulated using the time-
varying predictors absolute TS (TS[t], β  =  0.497) and 
tumor change from baseline (relTS[t], β = 0.731).

(1)h(t) = � ⋅ � ⋅ t�−1 ⋅ e�⋅TM

Parameter Description (unit) Estimate IIV

kG Tumor growth rate (week−1) 0.00583 1.06

KDE Tumor growth inhibition rate (week−1) 0.0498 0.63

λ Exponential decrease in tumor growth 
inhibition rate (week−1)

0.0866 0.63

Baseline Tumor baseline SLD (cm) 9.67 0.71

Additive residual error Unexplained variability (cm) 0.98 -

Abbreviations: IIV, interindividual variability; SLD, sum of longest diameter.

T A B L E  1   Tumor size model 
parameters used in the simulation12
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Accuracy calculations

The accuracy of TS metrics and estimated rHR was de-
fined as percentage deviation from the “true” value. The 
acceptable accuracy for a patient was set to 80–125% 
of the “true” value (Equation  2), which is the same 
threshold as used for acceptance in bioequivalence 
studies. In addition to accuracy, shrinkage17 of the esti-
mated TS metric was calculated on the variance scale18 
(Equation 3).

The study was divided into three parts (Figure 1): (1) the ac-
curacies of forecasted values of TSRw6, kG, and TTG were 
investigated; (2) the accuracies of forecasted values of the 
hazard in the OS models were evaluated and SIM and se-
quential estimation approaches were compared, and (3) the 
accuracy of forecasted survival probabilities was assessed.

1.	 Bayesian estimation of TS metrics: The Bayesian fore-
casting utility, prospective evaluation (proseval) in 
PsN,21 was applied to investigate the accuracy of the 
predicted TS metrics. The proseval function estimates 
individual parameters based on the original model 
without re-estimation of parameters (MAXEVAL = 0 in 
NONMEM) using a successive increase in the number 
of (simulated) tumor size observations. The proseval 
derived tumor metrics were compared to the “true” 
tumor metric for each simulated individual.

2.	 Accuracy of estimated hazard and impact of estimation 
approach on TS-OS model: In this evaluation, the pa-
rameter related to the tumor metric in the hazard (HZ) 

function (i.e., β in Equation  1) was allowed to be re-
estimated for TSRw6, kG, and TTG using the simulated 
TS-OS data sets. The parameter estimate was conse-
quently dependent on the values of the model-derived 
tumor metric that had been estimated based on a vary-
ing number of TS measurements and follow-up times. 
For each individual, the rHR was calculated using the 
estimated β parameter and the individual's derived 
tumor metric (i.e., e�⋅TMi), and the accuracy was calcu-
lated as the percentage deviation from the individual's 
“true” rHR for the metric. The SIM and sequential (IPP 
or PPP&D) estimation approaches were investigated 
for the re-estimation of the hazard.

3.	 Forecasting events: The survival time for each patient 
was forecasted using tumor metrics derived based 
on varying amount of available tumor data (at land-
mark time, s) and “true” parameters from the simu-
lation. In this scenario, in addition to TSRw6, kG, 
and TTG, TS(t), and relTS were also investigated. The 
different landmark times considered were 6, 12, 18, 
24, and 36 weeks. For each patient, the cumulative 
survival probability from the start of the study was 
determined in different prediction time windows (t), 
by fitting the model (MAXEVAL = 0) using the avail-
able data. In these evaluations, t was 6, 12, 18, 24, and 
36 weeks. The time-dependent Brier score (BS) and 
time-dependent area under the curve (AUC) were 
calculated (Equations  4 and 5).22–24 The BS function 
developed by Blanche et al.24 was applied in the com-
putation of BS score and timeROC package in R for the 
time-dependent AUC.

(2)Acceptable accuracy=
estimated value

‘true’ value
⋅100

(3)Shrinkage=1−
variance of estimated metric

variance of ‘true’metric

(4)BS(s, t) = E[X > s]

(5)
AUC(s, t)=P

(
𝜋i(s+ t|s) ∣ s>𝜋j(s+ t|s)<Xi< s+ t,

Xj> s+ t
)

F I G U R E  1   Project workflow: 
1000 tumor size and survival data were 
simulated and during simulation “true” 
values of tumor metrics and hazard ratios 
were obtained. Using varying amount 
of tumor data, the accuracy of tumor 
metrics, estimated hazard, and forecasts 
were analyzed in three different steps. 
AUC, area under the curve; kG, tumor 
growth rate; TSRw6, tumor size ratio 
week 6; TTG, time-to-tumor growth
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where �i is the cumulative survival probability, s is the 
landmark time (6, 12, 18, 24, or 36 weeks), and t is the pre-
diction window for forecasting. The BS is calculated based 
on the events in the prediction window because direct 
comparison between metrics and landmark times is not 
possible. Hence, in the analysis, the calculated BS were 
scaled (sBS; Equation 6) to the base model values (Weibull 
function without predictors).

Simulation and estimation were carried out using the 
nonlinear mixed-effects modeling software NONMEM 
(version 7.4).25 The first-order conditional estimation 
method with interaction was used for assessment of TS 
metrics and the Laplace method was used in the esti-
mation of HZ of death. R (version 3.1) was used for data 
management and graphical analysis. Model development, 
evaluation, and the proseval tool were facilitated by Perl-
speaks-NONMEM (PsN) toolkit (version 4.8), and Pirana 
(version 2.9.9).26

RESULTS

Simulated data

The medians (2.5th and 97.5th percentiles) of the 1000 
simulated TSRw6, TTG, and kG, were 0.841 (0.468 and 
1.09), 24.4 (−2.33 and 122) weeks, and −5.19 (−3.13 and 
−7.25; log scale, week−1), respectively, and the values 
were similar between different follow-up scenarios. The 

median time of the last TS measurement was 36 (6 and 
96) weeks.

Bayesian estimation of tumor size metrics

TSRw6: The accuracy of the TSRw6 metric was adequate 
for the majority of the individuals (>90%; Figure 2, blue 
lines, Figure S1). When measurements at baseline and at 
week 6 were available, about 91% of the individuals had 
acceptable TSRw6 accuracy with shrinkage of 40%. By 
adding the week 12 measurement, the accuracy increased 
to 94% and shrinkage reduced to 27%. The accuracy and 
shrinkage were little affected by the addition of later 
tumor measurements. With a stricter accuracy criterion of 
±10% of “true” TSRw6, the accuracy was 70% for baseline 
plus week 6 measurement, which was improved to 77% 
by allowing a week 12 measurement. Dropout had little 
influence on the results (Figures 2 and S1).

TTG: The accuracy of the TTG metric was, in general, 
low compared to the accuracy of TSRw6 (Figure  2, red 
lines, Figure S1). The accuracy of the model predicted that 
the TS metrics improved as the number of measurements 
increased. The percentage of individuals with accept-
able deviation from the “true” TTG increased from 24% 
(shrinkage = 88%) when data up to week 12 was included 
to 43% (shrinkage = 68%) when TS data up to week 48 was 
included and dropout from TS measurements was consid-
ered in the simulations. The later observations (t ≥ week 
48) affected the accuracy marginally. By applying a lenient 
accuracy criterion (±30%), the accuracy increased from 
32% (week 12) to 53% (week 48). When no dropout from 
TS measurements was allowed (i.e., all measurements up 

(6)sBS(s, t) = 1 −
BS(s, t)

BSno link(s, t)

F I G U R E  2   The percentage of individuals in the patient population with adequate accuracy of model-predicted tumor metrics. The 
accuracy while assuming no dropout from tumor follow-up (squares) and while considering dropout due to disease progression (20% 
increase from tumor nadir, circles) are shown for TSRw6 (blue), KG (rose) and TTG (gray). The effect of a pretreatment scan in predicting 
kG (red) due to disease progression is shown in stars. kG, tumor growth rate; TS, tumor size; TSRw6, tumor size ratio week 6; TTG, time-to-
tumor growth
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to 96 weeks were used), the accuracy improved to 65% and 
the associated shrinkage was 44%.

kG: An adequate accuracy of the kG metric was ob-
served for 71% of the population by allowing a week 6 
measurement in addition to baseline (Figure 2, gray lines, 
Figure S1). The associated shrinkage was, however, as high 
as 85%. Addition of later observations improved the ac-
curacy and the percentage of individuals with acceptable 
deviation from the “true” kG was 77% with a shrinkage of 
60% when all TS measurements were used (i.e., 96 weeks 
of measurements) and dropout was allowed (Figure  2). 
When applying 10% as the criteria for acceptable accu-
racy, the percentage of the population with acceptable 
accuracy was 42% with 12 weeks of measurements and 
50% with 96 weeks of measurements. When dropout was 
not allowed in the prediction of kG, the accuracy was in-
creased to 94% (shrinkage = 43%) with all available data.

Addition of a pretreatment scan increased the number 
of individuals having acceptable accuracy and the shrink-
age reduced. At week 6, 73% (shrinkage = 67%) of the pop-
ulations' kG values were estimated accurately and, when 
all tumor measurements were used, the corresponding 
percentage was 79% (shrinkage = 58%).

Accuracy of estimated hazard and impact of 
estimation approach on TS-OS model

Accuracy of estimated relative hazard ratio

The rHR calculated based on the estimated TSRw6 and 
βTSRw6 was associated with the highest accuracy. With 
one post baseline measurement, 77% of the individuals 
had acceptable accuracy when using TSRw6 as predictor; 

whereas with data until week 6, the accuracy was 20% for 
TTG and 56% for kG based rHR (Figure 3). With an ad-
ditional week 12 measurement in TSRw6-based analysis, 
the rHR was accurate for 85% of the individuals. However, 
to achieve maximum accuracy with TTG and kG metrics, 
a longer tumor follow-up was required and it was only 
46% and 62% of individuals, respectively, for TTG and kG. 
The results are shown in Figure 3 (lines connected with 
circled points).

Impact of the estimation approach on the 
estimated hazard ratios

TSRw6: When only week 0 and week 6 measurements 
were used, 77% (IPP) and 78% (PPP&D and SIM) of the in-
dividuals had an acceptable accuracy of the HR (Figure 3). 
By adding a week 12 measurement, the corresponding 
percentages increased to 85% (IPP and SIM), and 86% 
(PPP&D). The accuracy was only slightly improved by 
adding later observations. Accuracy percentages were 88% 
for all three approaches when all tumor data were used 
(Figure 3).

TTG: The percentage of the population with accurate 
HR was always lower than 50% despite inclusion of more 
tumor data or the chosen estimation approach (Figure 3). 
With baseline and week 6 data only, the accuracy was 20% 
(IPP), 31% (PPP&D), and 28% (SIM). The accuracy was 
highest at week 48; 51% for PPP&D, 46% for SIM, and 37% 
for IPP.

kG: When baseline and week 6 tumor data were used, 
the percentage of population with acceptable accuracy 
was 56% (IPP), 57% (PPP&D), and 58% (SIM). The ac-
curacy was little affected by adding week 12 to week 24 

F I G U R E  3   The percentage of individuals in the patient population with adequate accuracy of re-estimated hazard ratio. The accuracy 
while using different metrics; TSRw6 (blue), kG (rose), and TTG (gray), TS(t) (red). The different estimation methods used were sequential 
(IPP-round points, PPP&D-square) and simultaneous (SIM-triangle). IPP, individual PK parameters; kG, tumor growth rate; PPP&D, population 
pharmacokinetic parameters and data; SIM, simultaneous; TSRw6, tumor size ratio week 6; TS(t), absolute tumor size; TTG, time-to-tumor growth
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measurements, whereas adding tumor data beyond week 
24 increased the accuracy (median TTG was 24 weeks) 
and it was 62% (IPP), 65% (PPP&D), and 63% (SIM) when 
all tumor data were used (Figure 3).

Forecasting events

TSRw6: The sBS score with tumor data until week 6 was 
calculated as 0.21 (s = 6, t = 6 weeks), indicating that ad-
dition of TSRw6 as predictor of OS improved the forecasts 
for the prediction window of 6 weeks, compared to the 
model without the predictor. The accuracy in forecasts 
was little influenced by an increased prediction window, 
and for the prediction window week 36, sBS was 0.29. The 
calculated AUC was greater than 95% and the value was 
marginally affected by the prediction window. The addi-
tional tumor follow-up data did not improve the forecasts 
any further (Figure 4).

TTG: The accuracy of forecasts based on TTG metric 
was poor for all the landmark times and prediction win-
dows tested in the current study (Figure 4). The sBS val-
ues were less than zero, in other words, the model without 
TTG as predictor forecasted the events more accurately 
than the TTG based TS-OS model. The AUC was greater 
than 95% for s = 6, 12, 18, and 24 weeks and the AUC was 
around 90% for s = 36 weeks.

kG: For a tumor follow-up until week 36 and a predic-
tion window of 24 weeks, the kG-based OS forecast had 

better accuracy (sBS = 0.1) than the base model. However, 
the forecasts based on kG before week 36 did not show 
any improvement over application of a model without any 
predictors. The calculated AUC was greater than 95% for 
the landmark times investigated (Figure 4).

TS(t) and relTS: The time-varying predictors TS(t) and 
relTS had better accuracy in forecasting events compared 
to the base model, in all different landmark times and pre-
diction windows evaluated in the current study (Figure 4). 
TS(t) showed nearly a 10 times improvement in sBS 
(sBSTS(t) = 0.4 vs. sBSrelTS = 0.06) compared to relTS fore-
casts. The AUC values were above 95% for both metrics 
in all landmark times, except for TS(t) when s = 36 weeks, 
where the AUC was 90%.

DISCUSSION

In this study, the influence of the richness of TS data on 
the predictability of tumor metrics and hazard of death 
was investigated for a tumor size-OS model. TSRw6 was a 
more accurately predicted metric, and predicted individu-
als' hazard of death better, compared to TTG or kG. The 
PPP&D method resulted in accuracies of hazard of death 
that were similar or improved (for TTG) to simultaneous 
estimation, and better than those from the commonly ap-
plied IPP estimation method.

The study results indicate that the model-derived 
TSRw6 metric has potential for early prediction of the 

F I G U R E  4   Scaled BS score (sBS) and AUC relating to forecasts of survival events based on tumor metric derived at landmark times 6, 
12, 18, 24, and 36 weeks (columns) and for prediction windows 6, 12, 18, and 24 weeks (points). The tumor metrics; TSRw6 (blue), kG (rose), 
TTG (gray), TS(t) (red), and relTS (yellow). AUC, area under the curve; kG, tumor growth rate; relTS, tumor change from baseline; TS, 
tumor size; TSRw6, tumor size ratio week 6; TTG, time-to-tumor growth
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treatment effect because it was sufficient to have fewer 
tumor measurements for deriving the metric with ad-
equate adequacy. The TSRw6 was associated with an 
acceptable shrinkage (<30%) and the effect of tumor fol-
low-up time (>week 6) had little influence on shrinkage 
in TSRw6, which is in line with the study results by Ribba 
et al.18 Moreover, the TSRw6 metric demonstrated a rea-
sonable accuracy for predicting hazard of death across 
all estimation methods. Addition of one extra measure-
ment at week 12 in the prediction of TSRw6 improved 
the accuracy of the metric and estimated relative hazard. 
Therefore, it would be recommended to study patients 
for at least 12 weeks to make reasonable predictions of 
survival probability for an individual using the model-
derived TSRw6 metric. This metric may have potential to 
be applied in clinical practice to evaluate the therapy and 
model-informed precision dosing for a patient.

In the study by Ribba et al.18 the shrinkage of TTG was 
reported to be above 40% and similar results (shrinkage 
>50%) were found in the current study for IPP method. 
The high shrinkages of TTG mostly from kG shrinkages 
as it was high (>40%), whereas TSRw6 had a much better 
shrinkage (<30%). As expected, the accuracy of the TTG 
estimation improved when tumor data indicating that the 
nadir has passed was included. The analytical solution of 
TTG can conveniently provide an insight on time to pro-
gression, however, as the results demonstrated, the uncer-
tainty in the prediction is high when TS is only measured 
every 6 weeks, and before TTG has occurred.

The shrinkage in kG was high (60%) when tumor 
dropout was considered, although the accuracy of kG im-
proved with the addition of tumor data after disease pro-
gression (i.e., when the data contained more information 
on tumor regrowth). These results are in line with find-
ings in a study by Murphy et al.27 where the uncertainty 
of model-estimated doubling time (derived from kG) was 
investigated in seven ordinary differential equation mod-
els of tumor growth (exponential, Mendelsohn, logistic, 
linear, surface, Gompertz, and Bertalanffy). Murphy et al. 
found that depending on the time of available tumor data 
(60 or 120 days), and presence or absence of a chemother-
apy effect, the model-derived doubling time of an indi-
vidual's tumor could vary 6 to 12-fold, depending on the 
choice of tumor model used in the model fitting.27 Our 
results indicate that the estimated doubling time could 
range between a factor of 0.03 and 12.6 of the “true” dou-
bling time, depending on the number of available tumor 
measurements for a given model. It should be noted that, 
in the current study, we have explored only one struc-
tural model and the results could vary with other tumor 
models. It could therefore be wise to be cautious in using 
model-based kG when predicting OS. The current study 
emphasizes the importance of following the tumor size 

for at least 6–12 weeks after disease progression for more 
accurate estimation of individual kG values.

We also explored a simulation scenario where one 
tumor measurement was collected 4 weeks before initi-
ation of therapy, reflecting a screening measurement in 
addition to a baseline measurement, which would en-
able gathering more information about the natural tumor 
growth rate. However, using the published parameters,12 
this addition resulted in only marginal improvement in 
the accuracy and the shrinkage associated with the param-
eter. The kG value used in the study (0.00583 week−1)12 in-
dicates a tumor doubling time of 119 weeks, and a tumor 
measurement 4 weeks prior to treatment may not inform 
the model sufficiently about tumor growth rate as antici-
pated. In fast growing tumors, an additional TS measure-
ment may be more valuable.

In the present study, we compared SIM (“joint”) and 
sequential estimation approaches to understand how the 
choice of method can affect the accuracy of the estimated 
rHR. The SIM and PPP&D methods were found to perform 
equally good when connecting PK and PD models by Zhang 
et al19 The IPP approach was demonstrated to be inferior19,28 
when parameters were associated with high shrinkage. 
PPP&D equaled or provided better results compared to the 
SIM method in several scenarios tested. From the current 
study results, we conclude that the PPP&D approach would 
be the preferred choice because it had shorter runtimes 
(7 min vs. 19 min) compared to the simultaneous approach 
and better accuracy than IPP. Moreover, it performed the 
best for TTG, although TTG was performing overall the 
worst. An alternative would be the ‘individual PK param-
eter estimates and their uncertanity’ method that has been 
demonstrated to have similar properties as PPP&D.28

In clinical trials, usually the change in the SLD is used 
in the evaluation of treatment response. Moreover, often 
the dynamic changes are categorized into best overall re-
sponse. This categorization of continuous tumor changes 
into categories will lead to loss of information.29 To ad-
dress the dynamic characteristics of the tumor, a model-
based approach has been recommended and, in the past 
decade, the approach has gained increasing popularity in 
drug development.30 Established relationships also have, 
however, the potential to be used in clinical practice. The 
model-derived individual maximum a posteriori parame-
ter values could be applied in the predictions of the in-
dividuals' tumor metric and clinical outcome given an 
available model.30,31 The current study demonstrated the 
accuracy of predictions of both the metrics and in the haz-
ard of death. The TSRw6, TS(t) and relTS showed better 
forecasts of death events compared to TTG and kG, and 
the current study warrants a more cautious screening and 
interpretation of tumor metrics in population modeling of 
tumor-OS and their applications.
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The TS measurements were simulated in accordance 
with planned tumor data collection timepoints, as per 
original clinical trial protocol. However, in most clinical 
trials, the measurements are not collected at exact time-
points and this was not considered in the current study. 
The benefit of evaluating model-predicted TSRw6 over ob-
served TSRw6 was out of the scope for the current study. 
The model derived TSRw6 has the advantage that it can be 
estimated regardless of when the actual measurement was 
done, thereby allowing flexibility in the time of TS mea-
surements. The kG parameter used in the current study 
(0.00583/week) corresponds to a slow growing tumor 
(~2.5 year doubling time). The absolute bias was similar 
for patients with kG values below and above the typical 
value of kG, although a kG less than the typical estimate 
was associated with under prediction, whereas a kG above 
the typical estimate was more often associated with over-
prediction. The TGI model, used in the simulations, has 
been used for different anticancer drug classes in various 
indications.5–15 It should, however, be acknowledged that 
the actual accuracy values will depend on model structure 
and parameter values. This work suggests that before a 
tumor metric from a TGI model is used for forecasting, 
it would be advisable to explore its potential for obtain-
ing satisfactory accuracy. Another assumption made in 
our simulation study is that all patients were enrolled at 
the same time (i.e., all patients had the possibility to be 
followed for 96 weeks). In addition, the dropout due to 
disease progression was only on the basis of 20% increase 
in TS from tumor nadir. In clinical trials, progression and 
subsequent dropout can, for example, also be due to new 
lesion appearance, drug intolerance, or loss of follow-up 
due to other reasons. In the current study, a univariate 
analysis (i.e., the accuracy of one predictor), was evalu-
ated at a time, however, in TS-OS model development, 
multiple predictors are typically tested. If the approach 
used in such a multivariate TS-OS analysis is IPP, shrink-
age effects from multiple parameters could influence the 
results, which was not investigated in the current study.

CONCLUSIONS

This simulation study demonstrates that TSRw6 and the 
model-predicted tumor time course (absolute or relative 
change) had better forecasting properties than TTG or kG 
for early prediction of treatment outcome for an individual 
patient, because fewer measurements are needed for ad-
equate estimation of the metric. A week 12 measurement, 
in addition to baseline and a week 6 measurement, appears 
to be beneficial for estimating an individual's TSRw6. This 
study also highlights that the use kG or TTG could be 
problematic in evaluating early treatment response and 

predicting hazard of death for an individual patient. The 
PPP&D approach performed similarly or better than the 
simultaneous approach and had a better accuracy in esti-
mating individuals' hazard of death than the IPP method.
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