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A B S T R A C T

Background. Congenital anomalies of the kidneys and urinary
tract (CAKUT) constitute the most common cause of chronic
kidney disease in the first three decades of life. Variants in four
Forkhead box (FOX) transcription factors have been associated
with CAKUT. We hypothesized that other FOX genes, if highly
expressed in developing kidneys, may also represent monogenic
causes of CAKUT.
Methods. We here performed whole-exome sequencing (WES)
in 541 families with CAKUT and generated four lists of
CAKUT candidate genes: (A) 36 FOX genes showing high ex-
pression during renal development, (B) 4 FOX genes known to
cause CAKUT to validate list A, (C) 80 genes that we identified
as unique potential novel CAKUT candidate genes when per-
forming WES in 541 CAKUT families and (D) 175 genes identi-
fied from WES as multiple potential novel CAKUT candidate
genes.
Results. To prioritize potential novel CAKUT candidates in the
FOX gene family, we overlapped 36 FOX genes (list A) with lists
C and D of WES-derived CAKUT candidates. Intersection with
list C identified a de novo FOXL2 in-frame deletion in a patient
with eyelid abnormalities and ureteropelvic junction obstruc-
tion, and a homozygous FOXA2 missense variant in a patient
with horseshoe kidney. Intersection with list D identified a het-
erozygous FOXA3 missense variant in a CAKUT family with
multiple affected individuals.
Conclusions. We hereby identified FOXL2, FOXA2 and
FOXA3 as novel monogenic candidate genes of CAKUT, sup-
porting the utility of a paralog-based approach to discover mu-
tated genes associated with human disease.

Keywords: congenital anomalies of the kidney and urinary
tract, FOXL2, FOXA2, FOXA3, whole-exome sequencing

I N T R O D U C T I O N

Congenital anomalies of the kidneys and urinary tract
(CAKUT) constitute the most frequent cause of chronic kidney
disease in the first three decades of life [1]. Embryonic kidney
development is a very complex biological process that is regu-
lated precisely by a network composed of many genes and sig-
naling pathways in time and space. Most gene products that
cause CAKUT in humans or mice, if altered, are transcription
factors or are otherwise involved in protein–protein interac-
tions that form large transcription complexes. To date, 40
monogenic genes have been identified to cause CAKUT in
humans, explaining 15–20% of CAKUT patients [2–4]. This
underlines that up to 80% of CAKUT cases are genetically
unsolved. Thus, we surmised that novel genes still remain to be
discovered.

The forkhead (FH) box (FOX) transcription factor family
of genes, which is characterized by the presence of an evolu-
tionary conserved ‘forkhead’ or ‘winged-helix’ DNA-binding
domain, engages in diverse functions during development as
well as maintaining homeostasis of adult tissues [5, 6]. FH is
originally named after the Drosophila melanogaster (Dm)
gene forkhead, whose absence causes a characteristic ‘forked
head’ appearance resulting from the homeotic transforma-
tion of the foregut into a head structure [7]. More than forty
FOX genes have been identified in humans and mice [5]. The
�100-residue FH DNA-binding domain of Fox proteins is
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remarkably conserved across all members of the FOX gene
family (Supplementary data, Figure S1).

The Online Mendelian Inheritance in Man (OMIM) database
lists 15 FOX genes that, if mutated, cause monogenic human
diseases in both a dominant and a recessive manner
(Supplementary data, Figure S1). Notably, of these 15 genes, var-
iants in 4 genes (FOXP1, FOXC1, FOXF1 and FOXC2) have been
associated with isolated or syndromic CAKUT in humans [2, 8–
10]. In addition, according to data in the Mouse Genome
Informatics database (http://www.informatics.jax.org/), a knock-
out mouse model of nine FOX transcription factors showed renal
and urinary defects, among which six FOX genes led to CAKUT
phenotypes (Supplementary data, Table S1). In light of these
findings and the correlation between FOX gene paralogs and hu-
man disease phenotypes, we hypothesized that other members of
the FOX transcription factors that are highly expressed in devel-
opmental kidneys may also represent monogenic causes of
CAKUT similar to the known human monogenic CAKUT genes
(FOXP1, FOXC1, FOXF1 and FOXC2). By whole-exome se-
quencing (WES) analyses in 541 families with CAKUT, we iden-
tified FOXA2 and FOXA3 as novel monogenic candidates of
CAKUT. We also provided further evidence for renal phenotypic
expansion for FOXL2 variants in the blepharophimosis, ptosis
and epicanthus inversus syndrome (BPES, OMIM#110100).

M A T E R I A L S A N D M E T H O D S

Study participants

This study was approved by the institutional review board
(IRB) of Boston Children’s Hospital as well as the IRBs of

institutions at which families with CAKUT were recruited after
obtaining and archiving written informed consent from
January 2010 to January 2019. About 680 affected individuals
from 541 unrelated families were enrolled and had WES per-
formed on their DNA samples. All patients with CAKUT were
referred to us by their pediatric nephrologist or urologist, who
had made a clinical diagnosis of CAKUT on the basis of renal
imaging studies. CAKUT was defined as demonstration of any
abnormality of number, size, shape or anatomic position of the
kidneys, gonads or other parts of the genital urinary tract that
included at least one of the following: renal agenesis, renal
hypo/dysplasia, multicystic dysplastic kidney, hydronephrosis,
ureteropelvic junction obstruction, hydroureter, vesicoureteral
reflux (VUR), ectopic or horseshoe kidney, duplex collecting
system, ureterovesical junction obstruction, epi/hypospadias,
posterior urethral valves and cryptorchidism.

Whole-exome sequencing and variant calling

WES was performed as previously described [11]. In brief,
genomic DNA was isolated from blood lymphocytes or saliva
samples and subjected to exome capture using Agilent
SureSelect human exome capture arrays (Life Technologies)
followed by next-generation sequencing on the Illumina
HighSeq sequencing platform. Sequence reads were mapped
to the human reference genome assembly (NCBI build 37/
hg19), and variants were called using CLC Genomics
WorkbenchTM (version 6.5.2) software (CLC Bio, Aarhus,
Denmark).

KEY LEARNING POINTS

What is already known about this subject?

• Whole-exome sequencing (WES) is a powerful tool that has helped to identify monogenic causes of congenital
anomalies of the kidneys and urinary tract (CAKUT).

• Forty monogenic genes have been identified to cause CAKUT, explaining 15–20% of CAKUT patients.
• The forkhead box (FOX) transcription factor family of genes, which is characterized by the presence of an

evolutionary conserved ‘forkhead’ or ‘winged-helix’ DNA-binding domain, engages in diverse functions during
development.

What this study adds?

• By overlapping 36 highly expressed FOX genes in developmental kidneys with potential CAKUT candidate genes
resulting from unbiased WES in 591 CAKUT patients, we identified FOXL2, FOXA2 and FOXA3 as potential novel
candidate genes of monogenic CAKUT.

• We identified a de novo FOXL2 in-frame deletion variant in a patient with eyelid abnormalities and left ureteropelvic
junction obstruction, a homozygous FOXA2 missense variant in a patient with horseshoe kidney and a heterozygous
FOXA3 missense variant in a CAKUT family with multiple affected individuals.

What impact this may have on practice or policy?

• We identified FOXA2 and FOXA3 as novel monogenic candidates of CAKUT. We also provided further evidence for
renal phenotypic expansion in FOXL2 variants related to blepharophimosis, ptosis and epicanthus inversus syndrome.

• Our study supports the utility of a paralog-based approach to discover mutated genes associated with human disease.
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Variant filtering to identify novel monogenic causes of
CAKUT

Variant analysis was performed under recessive, dominant
or de novo models, as previously published [4]. Variant analysis
was performed by geneticists and cell biologists, who had
knowledge regarding clinical phenotypes, pedigree structure
and genetic mapping, and in line with proposed guidelines [12].
Sequence variants remaining after WES evaluation were exam-
ined for segregation. Filtering was performed to retain only
alleles with a minor allele frequency (MAF)<0.1%, a widely ac-
cepted cutoff for autosomal dominant disorders. MAF was esti-
mated using combined datasets incorporating all available data
from the 1000 Genomes Project, the Exome Variant Server
(EVS) project, dbSNP145, the Exome Aggregation Consortium
and genome aggregation database (gnomAD). We filtered to re-
tain variants with a probability of being loss-of-function intoler-
ant (pLI) score of >0.3 based on a dominant hypothesis. To
predict deleteriousness of variants, we used the University of
California, Santa Cruz Human Genome Browser for the pres-
ence of paralogous genes, pseudogenes or misalignments, then
scrutinized all variants with MAF<0.1% within the sequence
alignments of the CLC Genomic WorkbenchTM software
program and employed other web-based programs (see ‘Web
resources’). Variants were confirmed by Sanger sequencing and
for segregation of phenotype with genotype.

Homozygosity mapping

Homozygosity mapping (HM) was performed based on
WES data. In brief, aligned BAM files were processed using
Picard and SAMtools as previously described [11]. Single nucle-
otide variant calling was performed using the Genome Analysis
Tool Kit [13]. The resulting VCF files were used to generate
HM data and visual outputs using the program Homozygosity
Mapper [14].

Screening for variants in known monogenic causes of
CAKUT

We evaluated WES data for causative pathogenic variants in
the 40 monogenic genes that are currently known to cause non-
syndromic CAKUT, and in the currently known 179 mono-
genic genes for syndromic CAKUT (Supplementary data,
Tables S2 and S3).

Definition of potential novel unique and multiple
candidate genes of CAKUT

As previously described [4], if no causative variants were
found in a known isolated and syndromic CAKUT gene, an
analysis toward identification of potential novel candidate genes
for CAKUT was applied by WES based on the hypothesis (pedi-
gree structure; homozygosity). If no single gene per family
could be prioritized on the basis of genetic criteria, multiple
candidate genes were kept in the family.

Consideration of structural data and evolutionary
conservation for variant evaluation

Protein domain structure depictions and evaluation was
based on the UniProt (Universal Protein Resource) database.

Orthologous proteins used to evaluate evolutionary conserva-
tion were obtained from the Ensemble Genome Browser and
were aligned using the Clustal Omega multiple sequence align-
ment tool (EMBL-EBI).

Predictions of FH domain variants on DNA binding
and protein stability

FOXL2 mutant p.Asn105del and FOXA3 mutant
p.Arg155Gln were modeled based on the structure model-
FOXA3/DNA complex (PDB ID 1VTN) [15]. To understand
the effect of the two variants in the FH domain on DNA bind-
ing and protein stability, free energies (DGs) of intra-protein in-
teraction and protein–DNA interaction were calculated using
the program FoldX. Supplementary data, Table S4 presents the
calculated DDGs from the wild-type (WT).

Web resources

1000 Genomes Browser, http://browser.1000genomes.org
Clustal Omega, http://www.ebi.ac.uk/Tools/msa/clustal
Ensembl Genome Browser, http://www.ensembl.org
EVS, http://evs.gs.washington.edu/EVS
gnomAD, http://gnomad.broadinstitute.org
HGMD Professional 2016.3, https://portal.biobase-interna

tional.com/hgmd
Homozygosity Mapper, http://www.homozygositymapper.

org/
Human fetal Kidney Atlas, https://home.physics.leidenuniv.

nl/�semrau/humanfetalkidneyatlas/
MutationTaster, http://www.mutationtaster.org
OMIM, http://www.omim.org
Phylogeny.fr, http://www.phylogeny.fr/index.cgi
Polyphen2, http://genetics.bwh.harvard.edu/pph2
Sorting Intolerant from Tolerant (SIFT), http://sift.jcvi.org
UCSC genome browser, http://genome.ucsc.edu/cgi-bin/

hgGateway
UniProt Consortium, http://www.uniprot.org/

R E S U L T S

In order to identify potential novel monogenic CAKUT candi-
dates from unbiased WES evaluations in 680 patients from 541
unrelated CAKUT families, we first evaluated the 43 known hu-
man FOX gene family members for distinct temporal-spatial
single-cell mRNA expression pattern, by searching the single-
cell transcriptomics data of human fetal kidney at 16 weeks of
gestation [16]. Thirty-six of these 43 genes showed expression
levels similar to or higher than the expression levels of the four
known CAKUT FOX genes in human developing kidneys
(Figure 1A, Supplementary data, Figure S2). We set the four
known CAKUT FOX genes as positive controls in this cohort
(Figure 1B). We then validated the renal single-cell transcrip-
tomics expression derived list (A) by showing that all four FOX
genes known to cause human CAKUT (list B) were part of the
list (Figure 1A and B). This strengthened our hypothesis that
other FOX genes that are also transcription factors are good
candidate genes for CAKUT. To prioritize potential novel
CAKUT genes in FOX gene family members, we then examined
these 36 FOX genes (Figure 1A) for overlap with two lists (lists
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C and D in Figure 1) of independent CAKUT candidate genes
resulting from our unbiased WES evaluations in 541 unrelated
CAKUT families.

Intersection with 80 novel single CAKUT candidate genes
resulting from unbiased WES evaluations that we performed in
541 unrelated CAKUT families (Figure 1C) identified FOXL2
as a phenotypic expansion for BPES, and FOXA2 as a novel re-
cessive candidate (Figure 1A and C). Intersection with 175
novel multiple CAKUT candidate genes resulting from our un-
biased WES evaluations that we performed in 541 unrelated
CAKUT families (Figure 1D) identified FOXA3 as a novel dom-
inant candidate (Figure 1A and D).

Identification of a de novo FOXL2 in-frame deletion
variant in a patient with eyelid abnormalities and
CAKUT

In family B3061, by trio WES, we identified a de novo in-
frame deletion (c.313_315delAAC; p.Asn105del) in FOXL2 in a
patient who had presented with blepharophimosis and ptosis,
combined with left ureteropelvic junction obstruction (UPJO)
(Table 1, Figure 2). Sanger sequencing of all family members
confirmed the variant to be de novo (Figure 2D). The variant was
absent from the control database gnomAD. The Asn105 in-
frame deletion was located in the FH domain and evolutionarily
well conserved from Homo sapiens to Dm (Figure 2E). To under-
stand the effect of the Asn105 deletion on DNA binding and pro-
tein stability, a mutant model was built based on the structure
model-FOXA3/DNA complex using FoldX. The computational
energy calculation of the mutant model showed that the deletion
of Asn105 is expected to highly destabilize the protein and the
protein–DNA interaction (Supplementary data, Table S4,
Figure 2F). Heterozygous (Het) FOXL2 gene variants are known

to cause BPES (OMIM#110100), which is a rare autosomal domi-
nant disorder.

Identification of a homozygous FOXA2 missense
variant in a patient with CAKUT

Individual B998-21 was a boy of Arabic descent, who was di-
agnosed with horseshoe kidney at age 3 years (Table 1, Figure 3A
and B). As his parents were consanguineous and unaffected, we
hypothesized that the cause of CAKUT in this patient was a re-
cessively inherited homozygous (Hom) variant (Figure 3A). HM
yielded 49 segments of homozygosity with a total cumulative ge-
nomic length of 224.8 Mb (Figure 3C). Following WES evalua-
tion, three potentially deleterious Hom variants were detected
within the Hom peaks. No Hom truncating variant was identi-
fied. Taking into consideration the results from renal expression,
mouse model phenotype, implicated pathway and literature re-
view, the gene FOXA2 was considered as the strongest candidate
gene for a potential role in the development of CAKUT in our pa-
tient (please see Supplementary data, Table S5). Post-WES, a de-
tailed history and medical chart review revealed that he has extra-
renal features including recurrent infection with otitis media and
pharyngitis, asthma, hyperopia, astigmatism and glucose-6-
phosphate dehydrogenase deficiency (G6PD). At 11 years of age,
he was in the 19% percentile for height and 92% percentile for
weight. Re-analysis of his WES data identified a hemizygous vari-
ant in G6PD (NM_000402.3: c.653C>T; p.Ser218Phe) as the
cause of his G6PD phenotype, which has been classified as patho-
genic in Clinvar.

The Hom missense variant (c.155T>A; p.Met52Lys) in
FOXA2 was identified in exon 2 (NM_021784.4). The Met52
residue is located within the transcriptional activation domain
(TAD) of the protein (Figure 3E). This variant was absent from

C 80 single CAKUT
candidate genes,
resulting from
unbiased WES in
541 CAKUT families
cohort

D 175 novel multiple
candidate genes,
resulting from
unbiased WES in
541 CAKUT families
cohort

A 36 FOX genes
that are highly
expressed in
developmental
kidneys

B 4 FOX genes
known to cause
isolated or
syndromic CAKUT

78 174

2 1
29

4

FOXL2
FOXA2

FOXP1
FOXC1
FOXF1
FOXC2

FOXA3

FIGURE 1: Overlapping of FOX gene family members (list A) that are highly expressed in human developmental kidneys with candidate genes
(lists C and D) resulting from unbiased WES evaluations in 680 patients from 541 unrelated CAKUT families. (A) A list of 36 FOX gene family
members that exhibited high expression in developing kidney in single-cell RNA-seq database [16] was generated as a candidate gene list for
CAKUT. (B) Four FOX genes (FOXP1, FOXC1, FOXF1 and FOXC2) that are known to cause CAKUT in humans were used as ‘positive con-
trol’ for the candidate hypothesis that highly expressed developmental kidney genes (A, yellow) represent good candidate genes for CAKUT.
Note that all four genes (blue) do overlap with the candidates. (C) Overview of 80 novel single CAKUT candidate genes (red oval) resulting
from unbiased WES in 541 families with CAKUT. Two FOX genes (FOXL2 and FOXA2) overlap with the list. (D) Overview of 175 novel mul-
tiple candidate genes (green oval) resulting from unbiased WES in 541 families with CAKUT. FOXA3 overlaps with this list.
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the gnomAD database and yielded predominantly deleterious
prediction scores by three algorithms (PolyPhen-2,
MutationTaster and SIFT) (Table 1). The conservation of the
Met residue in position 52 across evolution shows it is well con-
served from H. sapiens to Danio rerio (Dr; Table 1).

Identification of a Het FOXA3 missense variant in a
CAKUT family with multiple affected individuals

Individual A3404-21 was a Serbian boy, who was diagnosed
with left ureterovesical junction obstruction (UVJO) at birth
(Table 1, Figure 4A). As his father presented with right renal
agenesis and left VUR, we hypothesized that the cause of
CAKUT in this family was a dominantly inherited variant
(Figure 4A). Following trio analysis, we detected four poten-
tially disease-causing Het missense variants dominantly inher-
ited from the affected father (Figure 4B). No Het truncating
variants were identified. Taking into consideration the results
from renal expression, mouse model phenotype, implicated
pathway and literature review, the gene FOXA3 was considered
as the strongest candidate gene for a potential role in the devel-
opment of CAKUT in this family (please see Supplementary
data, Table S6). Post-WES, no extra-renal features were noted
in the affected individuals.

The Het missense variant (c.464G>A; p.Arg155Gln) in
FOXA3 was identified in exon 2 (NM_004497.2). The Arg155
residue is located within the FH domain of the protein
(Figure 4C). This variant occurred six times heterozygously in
the gnomAD database and yielded predominantly deleterious
prediction scores by three algorithms (PolyPhen-2,
MutationTaster and SIFT) (Table 1). As shown in Figure 4C,
the Arg155 residue in FOXA3 is well conserved with Arg or the
same positive charged Lys across H. sapiens to Saccharomyces
cerevisiae (Sc). To understand the effect of the missense
change in the FH domain on DNA binding and protein
stability, a mutant model was built based on the structure
model-FOXA3/DNA complex using FoldX. The computational
energy calculation showed that the p.Arg155Gln mutant is
predicted destabilizing for the protein but does not affect
the protein–DNA interaction (Supplementary data, Table S4,
Figure 4D).

Screening for variants in known monogenic causes of
CAKUT

All families were screened for genes known to cause isolated
or syndromic CAKUT, if mutated (Supplementary data, Tables
S2 and S3). However, no likely causative Het or biallelic variants
were detected in those genes.

D I S C U S S I O N

The FOX gene family of transcriptional regulators is an evo-
lutionarily ancient gene family that regulates diverse biologi-
cal processes during development. Taking the following into
consideration: (i) members of paralogous gene families often
share molecular functions, (ii) 36 FOX genes have overlap-
ping temporal-spatial expression patterns in developing kid-
ney in single-cell transcriptomics data (Supplementary data,
Figure S2) and (iii) four FOX genes (FOXP1, FOXC1, FOXF1T
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FIGURE 2: Identification of a de novo FOXL2 in-frame deletion variant in a patient with BPES combining CAKUT. (A) Pedigree and genotype
information for the affected family B3061. Squares indicate males, circles females, filled symbols are affected individuals and open symbols in-
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and FOXC2) have been previously associated with isolated or
syndromic CAKUT in humans [2, 8–10], we tested the hy-
pothesis that 36 FOX genes that are highly expressed in de-
velopmental kidneys may also represent monogenic causes of
CAKUT. By analysis of the WES data in 680 patients from

541 unrelated CAKUT families, we delineated three new
monogenic candidates for CAKUT (FOXL2, FOXA2 and
FOXA3). This also supports the utility of a paralog-based ap-
proach applied to discover mutated genes associated with
human disease.
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Renal phenotypic expansion in FOXL2-related BPES

We identified a de novo in-frame deletion p.Asn105del of
FOXL2 in a patient who presented with BPES and left UPJO.
The p.Asn105del variant was previously reported in a familial

(two generations) BPES case [23], in which the renal affected
status is not mentioned. Interestingly, Gulati et al. described
one case with co-occurrence of congenital hydronephrosis and
FOXL2-associated BPES [24]. Here we also report a second
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BPES patient with congenital kidney malformations. There
are no data regarding the role of this master transcription
factor in kidney and urinary tract development. However,
according to single-cell RNA sequence data of human
fetal kidneys at developmental week 16, FOXL2 was mainly
expressed in pre-tubular aggregate cells and interstitial cells [16].
It is possible that renal anomalies are a low penetrance
feature of BPES, or that FOXL2 is a novel gene that likely con-
tributes to the CAKUT phenotype. We recommend that
patients with pathogenic or likely pathogenic variants in
FOXL2 should undergo renal ultrasound or other renal imaging
examinations.

FOXA2 genotype and phenotype

Previous studies of mouse models have indicated the critical
role of Foxa2 in the development of ventral midline structures
[25], as well as development of endoderm-derived organs, in-
cluding the liver, lung, gastrointestinal tract and pancreas [26–
29]. There is no defined human phenotype related to FOXA2
variants in OMIM. As shown in Figure 3E and Supplementary
data, Table S7, four different de novo FOXA2 variants have
been reported to be associated with hypopituitarism, hyperinsu-
linism, endodermal organ and craniofacial abnormalities [19–
22]. Interestingly, all four reported de novo variants are located
in the well-conserved DNA binding domain (FH).
Additionally, three patients with a microdeletion of 20p11.21
(only FOXA2 involved) presented with endodermal organ and
craniofacial abnormalities, urogenital and cardiac malforma-
tion, with or without hypopituitarism [17, 18]. In this study, we
identified a likely disease-causing Hom missense variant in the
TAD in a patient who presented with a renal anomaly without
any other extrarenal malformations. FoxA proteins harbor an
N-terminal TAD domain that presumably recruits transcrip-
tional co-factors, which in turn can facilitate other factors to en-
ter the chromatin [30]. These observations suggest an allelism
that differentiates effects of variants located out of the FH do-
main is likely responsible for an isolated or milder phenotype.
The same allelic dosage was observed in FOXC1 variants related
Axenfeld–Rieger syndrome or anterior segment dysgenesis [8],
as well as in FOXL2 variants related to BPES phenotype [31,
32]. In most of the cases, FOXL2 causes BPES in a dominant
manner. Nallathambi et al. reported an in-frame duplication
(p.A228_A232dup), which was located outside of the FH do-
main. The variant is segregated in a large Indian kindred where
Het carriers are unaffected, whereas Hom individuals have the
typical BPES phenotype [32].

Potential mechanisms for FOXAs in CAKUT

FoxAs have been shown to function as pioneer factors to
open chromatin and thus increase the accessibility of other
transcription factors to their target genes [33, 34]. There are no
data regarding the role of FOXA2 and FOXA3 in kidney devel-
opment. scRNA-seq data analysis of 16-week gestation human
fetal kidney shows that FOXA2 is mainly expressed in renal ves-
icle/comma-shaped body cells and s-shaped body cells, with
lower expression levels seen in the distal tubule/loop of Henle
cells (Supplementary data, Figure S2). FOXA3 is specifically

expressed in the ureteric bud/collecting duct cells
(Supplementary data, Figure S2). Previous studies showed that
FOXA2 as a marker of a transient urothelial progenitor cell pop-
ulation is a key regulator of embryonic bladder development
and patterning [35–37]. In this study, we firstly reported a Hom
missense variant in the TAD of FOXA2 in a patient with renal
malformation. Qian and Costa precisely characterized the N-
terminal TAD extending from amino acids 14–93 in Foxa2,
which can enable the binding of other transcription factors to
DNA in chromatin [30]. It is possible that Foxa2 acts, in part, as
a transcriptional regulator of other important transcription fac-
tors involved in renal development such as GATA3 and SOX17,
which are known to cause human CAKUT [38, 39]. A number
of studies have demonstrated that FOXA2, GATA3 and SOX17
were co-localized and probably act in parallel in the specifica-
tion and formation of endoderm [23, 40, 41].

In conclusion, by unbiased WES analyses in 541 families
with CAKUT, we identified FOXA2 and FOXA3 as novel
monogenic candidates of CAKUT. We also provided further
evidence for renal phenotypic expansion for FOXL2 variants in
the BPES (OMIM#110100). We show here the utility of WES
for the identification of novel monogenic candidates of families
with CAKUT.
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