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Abstract 

Background:  Pulmonary hypertension (PH) is characterized by progressive pulmonary arterial remodelling, associ-
ated with different severities of inflammation and altered immune processes. Disulfiram eliminates the formation 
of N-gasdermin D (GSDMD) plasma membrane pores to prevent pyroptosis. Pyroptosis is a form of lytic cell death 
characterized by inflammasome activation and proinflammatory cytokine release that acts in the development of PH. 
We sought to investigate whether disulfiram could alleviate hypoxia-induced PH by inhibiting pyroptosis.

Methods:  To investigate whether disulfiram alleviates the progression of pulmonary hypertension, rodents were 
exposed to chronic hypoxia (10% oxygen, 4 weeks) to induce PH. The severity of PH was assessed by measuring 
right ventricular systolic pressure, mean pulmonary artery pressure, and the degree of right ventricular hypertrophy. 
Western blotting was used to measure proteins associated with the pyroptosis pathway, and ELISA was performed to 
measure the secretion of IL-18 and IL-1β, both of which are the primary methods for assessing pyroptosis.

Results:  IL-18 and IL-1β concentrations were higher in patients with PH than in normal controls. Disulfiram sup-
pressed the progression of PH in mice and rats through the alleviation of pulmonary arterial remodelling. Pyroptosis-
related proteins and the inflammasome were activated in rodent models of PH. Disulfiram inhibited the processing 
of GSDMD into N-GSDMD and attenuated the secretion of IL-1β and IL18. In vivo experiments showed that disulfiram 
also inhibited lytic death in HPASMCs.

Conclusions:  Disulfiram treatment reduces PH progression through suppressing vascular remodelling by inhibiting 
GSDMD cleavage and pyroptosis. It might become a novel therapeutic option for the treatment of PH.
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Background
Pulmonary hypertension (PH) is a class of haemdynamic 
disturbances characterized by progressive pulmonary 
arterial remodelling, vasoconstriction and thrombosis 

associated with different severities of inflammation and 
altered immune processes, ultimately leading to right 
heart failure and death [1]. Hypertrophy and prolifera-
tion of human pulmonary artery smooth muscle cells 
(HPASMCs) are considered important pathophysiologi-
cal changes of pulmonary arterial remodelling in PH [2]. 
Although inflammasome activation in pulmonary ves-
sels has been considered a critical factor for pulmonary 
arterial remodelling [3], there are no specific therapeutic 
targets.

Pyroptosis is a form of inflammatory cell death differ-
ent from apoptosis, necrosis, ferroptosis, and autophagic 

†Shunlian Hu, Lu Wang and Yahan Xu have contributed equally to this work.

*Correspondence:  wt7636@126.com

1 Department of Respiratory and Critical Care Medicine, Tongji Hospital, 
Tongji Medical College, Huazhong University of Science and Technology, 
Wuhan 430030, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-022-02279-0&domain=pdf


Page 2 of 13Hu et al. Respiratory Research          (2022) 23:353 

cell death, characterized by the activation of the inflam-
masome and the caspase family and the release of 
numerous proinflammatory cytokines [4]. Pyroptosis is 
broadly classified into classical caspase-1-dependent cell 
pyroptosis and nonclassical caspase-4/5/11-dependent 
cell pyroptosis. Inflammasome complexes, caspase1, the 
gasdermin family, interleukin- 18 (IL-18) and IL-1β are 
pivotal components of caspase-1-dependent pyroptosis 
[5]. Activated inflammasomes, through such components 
as such as nucleotide-binding domains and leucine-rich 
repeat receptors, recruit apoptosis-associated speck-like 
protein containing a caspase-recruitment domain (ASC) 
to assemble into inflammasome complexes to engage 
caspase-1 activation [6]. Among the various inflamma-
some complexes, the nucleotide-binding oligomeriza-
tion domain-like protein 3 (NLRP3)/ASC complex is the 
most well characterized [7]. The NLRP3/ASC complex 
activates caspase-1 to the CI. The caspase-1 fragment 
causes cleavage of the gasdermin D (GSDMD), pro-IL-18 
and pro-IL-1β, leading to the formation of cell membrane 
pores and the release of IL-1β and IL-18 [8]. Pyroptosis 
is involved in the development and progression of PH. 
HPASMC pyroptosis contributes to PH [9–11]. Inhibi-
tion of the NLRP3 pathway attenuates LPS-induced acute 
heart failure in monocrotaline-induced PH rats [12]. The 
absence of ASC has a protective effect in hypoxic PH [13, 
14]. Knockout of caspase-1 attenuates the pathogenic 
features of PH, such as pulmonary arterial remodelling, 
right heart dysfunction, and pulmonary vascular fibrosis 
[15]. IL-1β and IL-18 also drive the apoptosis resistance 
and overproliferation of HPASMCs through several dif-
ferent mechanisms [15–18]. These results indicate that 
pyroptosis plays a significant role in the occurrence and 
progression of PH.

Disulfiram (DSF), an FDA-approved drug for alcohol 
addiction, has recently been shown to block pyroptosis 
and cytokine release in cells by inhibiting the binding of 
N-GSDMD to acidic phospholipids in the inner leaflet of 
the cell plasma membrane [19]. Though existing treat-
ments for PH have significantly improved the outcomes 
of patients with PH [20], many patients do not meet the 
expectations. In this study, we investigated whether DSF 
could alleviate right ventricular systolic pressure (RVSP), 
right ventricular hypertrophy (RVH) and vascular 
remodelling in rodent models of hypoxia-induced PH by 
inhibiting the pyroptosis of HPASMCs, providing a novel 
therapeutic option for the treatment of PH.

Materials and methods
Measurements of plasma IL‑1β and IL‑18 in PH patients
The blood samples used in this study were obtained from 
inpatients who underwent right heart catheterization in 
Wuhan Sixth Hospital from 2020 to 2022 (Additional 

file 1: Table S1). Fourteen patients with idiopathic, hered-
itary, pulmonary disease-associated and left heart-asso-
ciated PH and 16 patients without PH were selected for 
this study. Pulmonary artery pressure was measured in 
all patients by right heart catheterization. The diagnostic 
criterion for PH was a mean pulmonary artery pressure 
at rest (mPAP) ≥ 25 mmHg measured by right heart cath-
eter [2].

Cell culture
HPASMCs were obtained from iCell Bioscience (Shang-
hai, China). Cells were cultured in Dulbecco’s modified 
Eagle medium (DMEM) (Keygen, China) supplemented 
with 10% foetal bovine serum (ProCell, China) and 
smooth muscle cell growth supplement (#1052, Sci-
enCell) at 37  °C in a 5% CO2 incubator. Hypoxia was 
induced by growth in a hypoxic incubator at 2% O2.

Animals and treatments
Male animals were selected in this study to avoid hormo-
nal effects. Animals were marked with a numerical code 
to ensure that they were randomly assigned to a differ-
ent group, as follows: (a) normoxia for 28 days followed 
by vehicle (corn oil), (b) normoxia for 28  days followed 
by DSF (HY-B0240, MCE, Shanghai, China), (c) hypoxia 
for 28 days followed by vehicle (corn oil), and (d) hypoxia 
for 28 days followed by DSF. In the hypoxia group, male 
C57 mice and Sprague–Dawley rats were continuously 
exposed to hypoxia (10% O2) in a normobaric hypoxic 
chamber for 4  weeks. The hypoxic environment was 
achieved by supplementing with 100% nitrogen and was 
checked with an oxygen meter (CY-12C, Hangzhou, 
China) to detect the oxygen concentration. The normoxia 
group was in the same room but with 21% O2. Then each 
control group received vehicle (corn oil) and the each 
DSF group received DSF through intragastric administra-
tion at a dose of 50 mg/kg/day after 28 days of hypoxia.

Haemodynamic analysis and ventricular weight 
measurement
After the mice were anaesthetized, they were intubated 
and ventilated with a small animal ventilator (DW3000-
B, Huaibei Zhenghua Biological Instrument Equipment 
Co., Ltd., Anhui, China) with a tidal volume of 1 ml and 
a respiratory frequency of 100 breaths/min using room 
air. RVSP proceeded immediately after opening the chest. 
Specifically, a needle with 0.45  mm in diameter and 
16 mm in length was carefully inserted into the apex of 
the right ventricle.

After the rats were anaesthetized, the right jugular vein 
was exposed, and a PE-50 curved catheter was inserted 
into the right jugular vein to record the mean pulmonary 
artery pressure (mPAP). All animals were anaesthetized 
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by intraperitoneal injection of sodium pentobarbital 
(30 mg/kg). The RVSP and mPAP were recorded using a 
PowerLab data acquisition system (AD instrument) and 
averaged over at least 10 consecutive heartbeats.

At the end of the haemodynamic measurements, the 
venous blood, heart and lavaged lungs were collected 
from the animals. The blood was centrifuged at 2500 rpm 
for 10  min, and the plasma was collected and stored at 
− 80  °C. The heart was taken to measure the right ven-
tricular hypertrophy index, also referred to as the Fulton 
index [(the weight ratio of the wall of the right ventricle 
to the left ventricle plus septum: RV/(LV + S)]. The right 
lung was frozen in liquid nitrogen, stored at − 80 °C and 
used for subsequent western blot (WB) experiments. The 
left lung was fixed with 4% paraformaldehyde at room 
temperature (r.t.) for subsequent paraffin embedding.

Histological analysis
Fixed left lungs were sectioned at the largest cross-sec-
tion  (5  μm) and subjected to haematoxylin and eosin 
(HE) staining. Histological snapshots were taken under 
a microscope (Olympus, Tokyo, Japan). Distal pulmo-
nary arteries with a diameter of 50–100 μm were selected 
for taking histological snapshots under a microscope 
(Olympus, Tokyo, Japan). The extent of pulmonary artery 
remodelling was quantified by calculating the ratio of the 
inner wall area to the maximum area of the vessel.

Immunofluorescence staining
The paraffin-embedded lung tissue sections were baked 
at 65  °C for 45  min and deparaffinized. Antigen repair 
was conducted using the microwave thermal repair 
method. BSA (10%) was used to block nonspecific anti-
gens for 45 min at r.t. The sections were then incubated 
overnight at 4  °C with the following primary antibod-
ies: α-SMA (1:100, Proteintech). Next, the sections were 
incubated with the secondary antibody corresponding to 
the primary antibody for 1 h at 37 °C. Finally, the nucleus 
was counterstained with DAPI for 10 min. The sections 
were sealed with anti-fluorescence quencher and stored 
at 4  °C in the dark. Fluorescence microscopy was per-
formed on an Olympus fluorescence microscope. The flu-
orescence intensity was quantified using ImageJ software.

Western blot analysis
Total protein was extracted from lung tissues and cells 
into RIPA buffer through ultrasonic lysis, and then the 
total protein concentration was measured using a BCA 
assay kit (Beyotime, Shanghai, China). Standard 10% 
or 12.5% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) was used to separate pro-
teins of different molecular weights. The proteins were 
electrotransferred to polyvinylidene difluoride (PVDF; 

Millipore, USA) membranes by electrophoresis. The 
membranes were blocked with Tris-buffered saline with 
Tween 20 (TBST) containing 5% nonfat skimmed milk at 
r.t. for 1 h. The primary antibody was incubated at 4 °C, 
and the secondary antibody was incubated at r.t. The 
blots were visualized with chemiluminescent reagents 
(Proteintech, China). Semiquantitative analysis was con-
ducted with ImageJ software. The following primary anti-
bodies were used: total and cleaved N-terminal GSDMD 
antibody (TA4012), NLRP3 antibody (T55651), IL1 beta 
antibody (TA5103) were purchased from Abmart (Shang-
hai, China). GSDMD Full Length + N-terminal (A10164), 
caspase-1 (A16792), ASC (A1170), IL18 (A20473) anti-
bodies were purchased from ABclonal (Wuhan, China).

ELISA
ELISA kits for mouse IL-1β (RK00006), human IL-1β 
(RK00001), rat IL-1β (RK00009) and human IL-18 
(RK00176) were obtained from ABclonal (Wuhan, 
China), and mouse IL-18 (EK0433) and rat IL-18 
(EK0592) were obtained from BOSTER (Wuhan, China). 
ELISA was performed according to the manufacturer’s 
instructions.

Hoechst 33,342 and propidium iodide (PI) fluorescence 
staining
Cell death was assessed by Hoechst 33,342 and PI fluores-
cence staining according to the manufacturer’s instruc-
tions (c1056, Beyotime, China). Briefly, HPASMCs were 
seeded in 6-well plates and treated with DSF (10 μmol/L) 
for 24 h with or without hypoxia (2% O2). The cell culture 
supernatant was removed, and cell staining buffer con-
taining 5 μL each of Hoechst 33,342 and PI was added. 
Then the cells were incubated for 25 min at 4  °C in the 
dark. Stained cells were checked under an inverted fluo-
rescence microscope (OLYMPUS IX71). The percentage 
of PI-positive cells in each field was recorded and ana-
lysed using ImageJ software.

Lactate dehydrogenase release assay
LDH release was detected with a lactate dehydrogenase 
cytotoxicity assay kit (C0017, Beyotime, China). Briefly, 
HPASMCs were cultured in 96-well plates until the 
cells proliferated to approximately 60% confluence and 
then were treated with DSF (10  μmol/L) for 24  h with 
or without hypoxia. The cell culture supernatant (120 
μL) was collected and mixed with 60 μL of substrate and 
then incubated for 30 min at r.t. The OD490 was meas-
ured with a full-wavelength microplate reader (Thermo 
Fisher).
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Statistical analysis
For animal experiments, “N” represents the number of 
animals in which the same treatment was performed; 
for cell experiments, “N” represents the number of inde-
pendent experiments performed with primary cells from 
different individuals or cells at different passages. All data 
are expressed as the mean ± SEM. The data were analysed 
for statistical significance with IBM SPSS Statistics soft-
ware (version 23). Graphs were generated with GraphPad 
Prism 8.0 (GraphPad Software, USA). The differences 
were analysed using Student’s t test or one-way ANOVA 
followed by Bonferroni’s multiple comparison test when 
the data followed a Gaussian distribution. Nonparamet-
ric tests (Kruskal–Wallis test) were carried out when data 
were not normally distributed. The experiments followed 
the principle of randomization, and the data analysis 
was performed in a blinded manner whenever possible. 
P < 0.05 was considered statistically significant.

Results
Lung tissue pyroptosis‑related gene expression 
and plasma IL‑1β and IL‑18 concentration in patients 
with PH increase
We downloaded and re-analysed public databases 
GSE113439 and GSE15197 [21, 22] and observed that 
the expression levels of NLRP3, ASC (PYCARD), IL18, 
CASP1 and GSDMD were higher in patients with PH 
than normal controls (Fig.  1A and B). GSE113439 and 
GSE15197 were merged after removing batch effects 
[23]. We integrated GSE113439 and GSE15197, and uni-
fied modal approximation and projection (UMAP) anal-
ysis and expression density plots revealed the spread of 
the respective datasets before and after the removal of 
batch effects (Fig.  1C–F) [23]. We then normalized the 
expression profiles of these 57 samples (Fig.  1G). Gene 
set enrichment analysis (GSEA) of pyroptosis-related 
genes was performed on the integrated dataset (Fig. 1H). 
The genes related to pyroptosis were searched in the 
PubMed database (https://​pubmed.​ncbi.​nlm.​nih.​gov/) 
and the Gene Ontology Resource (http://​geneo​ntolo​gy.​
org/). Finally, 67 genes were collected (Additional file 1: 
Table  S2) [24, 25]. In addition, we observed that the 

levels of IL-18 and IL-1β were significantly higher in PH 
patients than in the control group (Fig. 1I and J).

DSF attenuates the progression of pulmonary 
hypertension in mice
To evaluate whether DSF elicits its action in the pro-
gression of PH, we assessed the pulmonary and right 
heart haemodynamic parameters as well as lung histo-
logical changes in hypoxia-induced PH mice after DSF 
treatment (Fig.  2A). DSF significantly attenuated PH by 
reducing RVSP to 82.0% (vehicle, 29.01 ± 0.35  mmHg 
versus DSF, 23.79 ± 0.80 mmHg; Fig. 2B) and RV/(LV + S) 
to 78.8% (vehicle, 0.33 ± 0.007 versus DSF, 0.26 ± 0.004; 
Fig.  2C). Histopathological analysis revealed that DSF 
treatment moderately inhibited hypoxia-induced pulmo-
nary vascular remodelling, manifested by a reduction in 
medial wall thickness (%): medial area/cross-sectional 
area (CSA) (Fig. 2D and E).

DSF attenuates the progression of pulmonary 
hypertension in rats
To evaluate the therapeutic effect of DSF in hypoixa-
treated rats, oral DSF (50 mg/kg) was applied to rats after 
4 weeks of hypoxia once a day (Fig. 3A). HE staining and 
α-SMA immunofluorescence staining showed increased 
artery wall thickness and a narrowed vascular lumen 
after 28 days of hypoxia in rats, and treatment with DSF 
partially reversed this vascular remodelling. Specifically, 
DSF markedly attenuated the increase in RVSP (DSF, 
27.95 ± 1.74  mmHg versus vehicle, 35.65 ± 1.43  mmHg; 
P ≤ 0.001; Fig. 3B) and medial area/CSA (%) (Fig. 3D and 
E) in hypoxia-treated rats. In addition, rats with hypoxia-
induced PH treated with DSF exhibited improvements in 
right heart failure, such as in a lower RV/(LV + S) (DSF, 
0.34 ± 0.01 versus vehicle, 0.41 ± 0.01; P ≤ 0.001; Fig. 3C). 
These results indicate a reduction in the severity of PH in 
rats treated with DSF.

DSF inhibits the formation of N‑GSDMD and the release 
of IL‑18 and IL‑1β in the lung tissue of hypoxia‑induced PH 
in mice and rats
The accumulation of N-GSDMD on the cell mem-
brane and the formation of membrane pores promote 
membrane rupture that causes IL-1β and IL-18 release, 

Fig. 1  Patients with pulmonary hypertension (PH) have high expression levels of canonical caspase-1-dependent pyroptosis genes. A The gene 
expression levels of NLRP3, IL18 and CASP1 in the lung tissue of patients with PH (n = 15) and control subjects (n = 11). The database is GSE113439. 
B The gene expression levels of ASC and GSDMD in the lung tissue of patients with PH (n = 18) and control subjects (n = 13). The database is 
GSE15197. C An unnormalized UMAP plot of GSE113439 and GSE15197. D A normalized UMAP plot of the GSE113439 and GSE15197. E An 
unnormalized expression density plot of GSE113439 and GSE15197. F A normalization expression density plot for GSE113439 and GSE15197. 
G Normalized expression distribution plots for GSE113439 and GSE15197. H GSEA of the pyroptosis gene set. Normalized enrichment score 
(NES) = 1.5578, nominal P value = 0.0301. I Plasma IL-1β levels in patients with PH increase. J Plasma IL-18 levels in patients with PH increase. Values 
are the mean ± S.E.M. and were analysed by the unpaired two-tailed Student’s t test. *P < 0.05 vs. the normal control

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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which are characteristic of cell pyroptosis. Pyroptosis 
plays a role in the development of PH, and DSF was 
recently found to inhibit pyroptosis [19]. We detected 
the expression of canonical pyroptosis pathway-related 
proteins in hypoxia-treated mouse lung tissue by WB. 
The results showed that the expression of NLRP3, 
ASC, caspase1 and GSDMD in the hypoxia group was 
higher than that in the normoxia group (Figs.  4A–C, 
5A–E). Although the expression of NLRP3, ASC, cas-
pase1 and GSDMD showed no significant changes in 
the lung tissue of mice and rats exposed to hypoxia 
with DSF treatment, the expression of N-GSDMD was 
reduced. These results indicated that DSF treatment 
after hypoxia had no inhibitory effect on the changes 
in NLRP3, ASC, caspase1 and GSDMD. Furthermore, 
inhibiting pyroptosis reduced the release of inflamma-
tory cytokines. Therefore, we used ELISA to detect the 
expression of IL-18 and IL-1β and found that the IL-18 

and IL-1β concentrations in the plasma of hypoxia-
treated mice and rats were significantly reduced after 
DSF treatment (Figs. 4D, E, 5F, G).

DSF inhibits pyroptosis of HPASMCs under hypoxic 
conditions
Inflammatory changes and immune dysregulation influ-
ence the development and progression of PH, in which 
cell pyroptosis plays an important role. First, the changes 
in pyroptosis of HPASMCs under hypoxic conditions 
after DSF treatment were observed. The results showed 
that DSF reversed hypoxia-induced pyroptosis (Fig.  6A 
and B). Furthermore, we continued to explore the expres-
sion of pyroptosis-related proteins in HPASMCs under 
hypoxic conditions after DSF treatment. The results 
demonstrated that DSF did not change the upregulation 
of NLRP3, ASC, CI.caspase1, caspase1, IL-1β, IL-18 and 
GSDMD were induced by hypoxia in  vivo (Fig.  6B–G). 

Fig. 2  DSF attenuates the development of hypoxia-induced PH in mice. A Experimental design timeline of DSF therapy in hypoxia-induced 
PH in mice. B, C RVSP and RV/(LV + S) of mice that were treated with DSF after 4 weeks hypoxia (n = 6 each). D HE-stained images and 
immunofluorescence images of α-smooth muscle actin (green) expression in the pulmonary arteries from mice subjected to hypoxia and therapy 
with DSF. Scale bar: 50 μm, (n = 6 each). E Statistical annalysis of the ratio of medial area/CSA (pulmonary arteries with diameter 50–100 μm) 
for mice exposed to hypoxia and given DSF (n = 6 each). Values are the mean ± SEM. Statistical significance was analysed by one-way ANOVA 
test followed by Bonferroni’s multiple comparison test or the Kruskal–Wallis test. *P < 0.05 vs. vehicle, and #P < 0.05 vs. normoxia (n = 5 each). i.g.: 
intragastric
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However, it effectively inhibited the production of 
N-GSDMD, which reduced plasma membrane pore 
formation and cell pyroptosis (Fig.  6D). Similarly, cell 
culture supernatants were assayed for IL-1β and IL-18 
concentrations by ELISA. The release of IL-1β and IL-18 
was reduced as well (Fig. 6H and I).

Discussion
The primary findings of this study are as follows: (a) 
The expression levels of lung tissue pyroptosis path-
way-related genes were increased in patients with 
PH. (b) Plasma IL-1β and IL-18 levels in patients with 
PH increased. (c) DSF attenuated the development of 
hypoxia-induced PH in mice and rats. (d) DSF inhibited 
the formation of N-GSDMD and the release of IL-18 and 

IL-1β in the lung tissue of hypoxic mice and rats. (e) DSF 
inhibited HPASMC pyroptosis under hypoxic condi-
tions. In the in vivo experiments, DSF partially reversed 
the progression of experimental PH, as evidenced mainly 
by the decreases in RVSP, mPAP, and the degree of right 
ventricular hypertrophy. In the in vitro experiments, DSF 
inhibited the cell membrane perforation and lytic death 
in HPASMCs.

Hypoxia is one of the most common stimuli that induce 
cellular pyroptosis. The combination of hypoxia and 
pyroptosis is involved in various diseases, such as brain 
injury [26, 27], cancer [28], and myocardial ischaemia/
reperfusion [29, 30]. The first step in pyroptosis involves 
inflammasome assembly and activation. The intimate 
link between hypoxia and NLRP3 inflammation has been 

Fig. 3  DSF attenuates the development of hypoxia-induced PH in rats. A Timeline of DSF therapy in hypoxia-induced PH in rats (n = 5 each). 
B, C RVSP and RV/(LV + S) of rats that were treated with DSF after 4 weeks of hypoxia (n = 5 each). D Representative HE lung sections and 
immunofluorescence images of α-SMA (green) in rats exposed to hypoxia and treated with DSF. Scale bar: 50 μm (n = 5 each). E Quantification 
of the medial area/CSA in hypoxia-treated rats treated with DSF (n = 5 each). Values are the mean ± SEM. Statistical significance was analysed by 
one-way ANOVA followed by Bonferroni’s multiple comparison test or the Kruskal–Wallis test. *P < 0.05 vs. vehicle, and #P < 0.05 vs. normoxia (n = 5 
each)

(See figure on next page.)
Fig. 4  DSF inhibits the formation of N-GSDMD and the release of IL-18 and IL-1β in the lung tissue of PH mice. A Representative WB images and 
analysis of caspase-1 and CI. caspase-1 and IL-1β (n = 5 each). B Representative WB images and analysis of GSDMD, N-GSDMD and IL-18 (n = 5 each). 
C Representative WB images and analysis of NLRP3 and ASC. D, E ELISA detection of inflammatory factors (IL-18 and IL-1β) in the plasma, (n = 6 
each). Values are the mean ± SEM. Statistical significance was analysed by one-way ANOVA followed by Bonferroni’s multiple comparison test or the 
Kruskal–Wallis test. *P < 0.05 vs. vehicle, and #P < 0.05 vs. normoxia
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Fig. 4  (See legend on previous page.)
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Fig. 5  DSF inhibits the formation of N-GSDMD and the release of IL-18 and IL-1β in the lung tissue of hypoxia-induced PH rats. A Representative WB 
images and analysis of caspase-1 and CI. caspase-1. B Representative WB images and analysis of IL-18. C Representative WB images and analysis of 
IL-1β. D Representative WB images and analysis of GSDMD and N-GSDMD. E Representative WB images and analysis of NLRP3 and ASC. F, G ELISA 
detection of inflammatory factors (IL-18 and IL-1β). Values are the mean ± SEM. Statistical significance was analysed by one-way ANOVA followed by 
Bonferroni’s multiple comparison test or the Kruskal–Wallis test. *P < 0.05 vs. vehicle, and #P < 0.05 vs. normoxia (n = 5 each)
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Fig. 6  DSF inhibits pyroptosis of HPASMCs under hypoxic conditions. A PI staining of pyroptotic HPASMCs under hypoxic conditions was 
significantly reduced after DSF treatment (10 μmol/L). Red: propidium iodide (PI); Blue: Hoechst 33,342. Scale bars = 100 µm (n = 5). B DSF reduced 
the release of LDH in HPASMCs subjected to hypoxia for 24 h (n = 4). C Representative WB images and analysis of caspase-1 and CI. caspase-1 
(n = 3). D Representative WB images and analysis of GSDMD and N-GSDMD (n = 3). E Representative WB images and analysis of NLRP3 and ASC 
(n = 3). F, G Representative WB images and analysis of IL-18 and IL-1β (n = 3). H, I ELISA detection of the inflammatory factors IL-1β and IL-18. Values 
are the mean ± SEM. Statistical significance was analysed by one-way ANOVA followed by Bonferroni’s multiple comparison test or the Kruskal–
Wallis test. *P < 0.05 vs. vehicle, and #P < 0.05 vs. normoxia
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well described [31–34]. Hypoxia/reoxygenation activates 
NLRP3 inflammasome-mediated pyroptosis by upregu-
lating reactive oxygen species (ROS) production [35]. 
Hypoxia-induced ROS contribute to myoblast pyropto-
sis in obstructive sleep apnoea via the NF-κB/hypoxia-
inducible factor 1α (HIF-1α) signalling pathway [36]. 
HIF-1α may regulate inflammatory responses through 
the NLRP3 inflammasome complex [37, 38]. ROS and 
HIF-1α are involved in the development and progression 
of PH as the initial cellular response to hypoxic stimuli.

Both preclinical and clinical studies support the role 
of inflammasomes in the progression of PH [13, 39–41]. 
Acute and chronic inflammation responses characterize 
the vascular remodelling processes in PH. The initiation 
of inflammatory cascade plays a key role in pyroptosis 
and its follow-up reaction [42]. Further, most research 
on inflammasome activation has focused on special-
ized immune cells. A growing number of studies reveal 
that cell pyroptosis occurs in multiple cell types, includ-
ing vascular smooth muscle cells (VSMCs), neutrophils, 
epithelial cells, dendritic cells, macrophages, endothe-
lial cells, and cardiomyocytes [25, 43–47]. First, IL-1β 
receptor and IL-18 receptor are expressed at high lev-
els on fibroblasts and VSMCs [48–50]. IL-18 and IL-1β 
expressed by VSMCs play important roles in cardiovas-
cular disease [51–54]. Moreover, VSMCs can induce 
monocytes to express IL-1β and IL-18, which in turn pro-
mote the proliferation and migration of VSMCs [55, 56]. 
As mentioned earlier, both IL-18 and IL-1β can promote 
the proliferation and hypertrophy of HPASMCs, leading 
to pulmonary artery remodelling. Furthermore, inhibi-
tion of NLRP3/caspase-1/IL-1β signalling pathway can 
alleviate diabetic vascular remodelling [57]. GSDMD, an 
executor of pyroptosis, is strongly increased in patients 
with primary PH and in rodent PH models [58–61].

DSF, an FDA-approved drug for the treatment of alco-
hol addiction, has recently been repurposed as a drug 
for the treatment of cancer and other diseases. DSF is 
involved in various stress-response pathways in cells, 
such as antibacterial, anti-inflammatory, anti-obesity and 
anticancer pathways. More specifically, DSF has been 
leveraged to treat cancer by upregulating ROS, DNA 
damage, and enzymatic inhibition to inhibit the prolif-
eration of cancer cells [62]. DSF inhibits the viability of 
hepatocellular carcinoma cells by disabling the HIF-
mediated hypoxia signalling pathway [63]. It also inhib-
its N-GSDMD plasma membrane pore formation and 
inhibits the formation of neutrophil extracellular traps 
[19, 64]. These findings suggest the potential value of DSF 
after 60 years of research.

Pulmonary vascular remodelling is an important mani-
festation of the development and progression of PH, as 
evidenced by the hypertrophy and hyperproliferation 

of HPASMCs. IL-18 and IL-1β act as bridges to tightly 
link pyroptosis and pulmonary vascular remodelling. As 
described above, both IL-18 and IL-1β have a role in pro-
moting the proliferation and hypertrophy of HPASMCs. 
This suggests that DSF inhibits PASMC proliferation and 
hypertrophy by reducing pyroptosis, which ultimately 
slows the process of pulmonary artery remodelling.

Conclusion and perspectives
In this study, we found that the DSF-triggered reduction in 
pyroptosis in the lungs was mainly derived from reduced 
N-GSDMD production in HPASMCs in hypoxia-exposed 
mice and rats rather than from the NLRP3-ASC-caspase1-
GSDMD pathway. The reduced release of IL-18 and IL-1β 
following DSF treatment is consistent with the downregula-
tion of pyroptosis. This suggests that DSF exerts beneficial 
effects on PH by inducing reduced N-GSDMD production 
in HPASMCs. There is an unmet demand for therapeutic 
approaches concentrating on pulmonary vascular remodel-
ling in the clinic. Our results suggest that DSF may become 
a therapeutic option for PH patients.
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