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Abstract 

Background:  Type 2 diabetes (T2D) onset is a complex, organized biological process with multilevel regulation, and 
its physiopathological mechanisms are yet to be elucidated. This study aims to find out the key drivers and pathways 
involved in the pathogenesis of T2D through multi-omics analysis.

Methods:  The datasets used in the experiments comprise three groups: (1) genomic (2) transcriptomic, and (3) epi-
genomic categories. Then, a series of bioinformatics technologies including Marker set enrichment analysis (MSEA), 
weighted key driver analysis (wKDA) was performed to identify key drivers. The hub genes were further verified by 
the Receiver Operator Characteristic (ROC) Curve analysis, proteomic analysis, and Real-time quantitative polymerase 
chain reaction (RT-qPCR). The multi-omics network was applied to the Pharmomics pipeline in Mergeomics to identify 
drug candidates for T2D treatment. Then, we used the drug-gene interaction network to conduct network pharmaco-
logical analysis. Besides, molecular docking was performed using AutoDock/Vina, a computational docking program.

Results:  Module-gene interaction network was constructed using MSEA, which revealed a significant enrichment of 
immune-related activities and glucose metabolism. Top 10 key drivers (PSMB9, COL1A1, COL4A1, HLA-DQB1, COL3A1, 
IRF7, COL5A1, CD74, HLA-DQA1, and HLA-DRB1) were selected by wKDA analysis. Among these, COL5A1, IRF7, CD74, and 
HLA-DRB1 were verified to have the capability to diagnose T2D, and expression levels of PSMB9 and CD74 had sig-
nificantly higher in T2D patients. We further predict the co-expression network and transcription factor (TF) binding 
specificity of the key driver. Besides, based on module interaction networks and key driver networks, 17 compounds 
are considered to possess T2D-control potential, such as sunitinib.

Conclusions:  We identified signature genes, biomolecular processes, and pathways using multi-omics networks. 
Moreover, our computational network analysis revealed potential novel strategies for pharmacologic interventions of 
T2D.
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Introduction
Type 2 diabetes (T2D) is a chronic metabolic disease dis-
tinguished by insulin resistance and elevated blood glu-
cose levels. As a global endemic, recent data from the 
Centers for Disease Control and Prevention (CDC) [1] 
suggested that as of 2019, roughly 28.7 million people in 
the United States (8.7% of the total U.S. population) were 
diagnosed with diabetes, of which about 90–95% have 
T2D. As prolonged hyperglycemia is a high-risk factor for 

†Jiachen Liu and Shenghua Liu contributed equally

*Correspondence:  zhnfy-Daniel@csu.edu.cn

3 Xiangya Medical College, Central South University, No. 138 Tongzipo Road 
Yuelu District, Changsha 410013, Hunan, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03826-5&domain=pdf
http://orcid.org/0000-0003-0615-031X


Page 2 of 17Liu et al. Journal of Translational Medicine          (2022) 20:604 

heart disease, chronic kidney disease (CKD), and nerve 
damage, T2D imposes a substantial economic burden on 
society [2]. In addition, calculations based on epidemio-
logical data suggested that the expenditure on diabetes in 
the U.S. was approximately $327 billion in 2017, includ-
ing $237 billion in direct medical costs and $90 billion in 
lost productivity [3].

Due to the complexity of the onset and progression 
of T2D and the tandem with various diseases, analysis 
from multiple levels could exponentially augment our 
understanding of its pathophysiological mechanism. 
Including genomics, epigenomics, transcriptomics, etc., 
multi-omics analysis [4] can provide a list of disease-
related differences that can be used as biomarkers of the 
disease process and uncover critical pathways in disease. 
For instance, Yang-Tay et  al. discovered the DNMT1-
NT5C2-insulin receptor pathway using the DNA meth-
ylation array data, demonstrating that DNMT1 is 
relevant to the susceptibility of T2D patients [5]. Besides, 
through the single-cell transcriptome analysis, Law-
lor et  al. revealed that PP/gamma cells in T2D patients 
could integrate central and peripheral hunger and satiety 
signals, which increases our accurate knowledge of the 

molecular components of rare islet cells [6]. However, 
unlike single-omics studies, multi-omics studies can be 
more comprehensive and accurate. At present, multi-
omics studies on T2D have received extensive attention. 
For example, to better understand preT2D status, Wenyu 
et al. [7] conducted a cohort study of 106 normal individ-
uals and individuals with prediabetes. Through conjoined 
analysis of transcriptomic and proteomic data, etc., the 
study indicated a new sight in that the gut microbiota 
of insulin-resistant individuals may have a decreased 
response to respiratory viral infection. This could lead to 
the emergence of chronic inflammation, which promotes 
the progression of T2D in preT2D patients. In addi-
tion, by combining GWAS data with other multi-omics 
datasets, Yon Jung [8] revealed the common pathways 
shared by IGF-I and IR, such as glycosaminoglycan bio-
synthesis, etc. It provided assistance for a more compre-
hensive understanding of the molecular mechanism of 
the IGF-I/IR axis. Although previous observations are of 
great significance, by comprehensively using the data of 
genomics, transcriptomics, and epigenomics to explore 
disease-related gene expression signatures, our cognition 
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Fig. 1  The outline of the analysis pipeline. The analysis pipeline of the study is shown graphically to increase organization and readability
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of T2D and the clinical transformation of drug discovery 
can both be advanced.

In this study, more accurate potential key genes and 
their regulatory mechanisms in T2D were identified by 
constructing gene regulatory network through multi-
omics analysis, which contributes to demonstrating 
pathology, and identifying drug targets of T2D (Fig. 1).

Methods
Data source
Gene expression profiles and DNA methylation pro-
files of T2D were filtrated through the Gene Expression 
Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo). Inclusion criteria were as follows: (1) Availability of 
islets from T2D patients in the dataset; (2) Ten or more 
islet samples in the dataset. Three eligible datasets were 
selected, including GSE38642 and GSE21232 (training 
set), and GSE25724 (test set). Additionally, genomics data 
(Nature 536(7614): 41–47.) was retrieved from Merg-
eomics web server. The details of the data are shown in 
Table 1.

Data process
All microarray data were submitted to the GEO data-
base (http://​www.​ncbi.​nih.​gov/​geo). The raw data were 

downloaded as MINiML files. It contains the data for all 
platforms, samples, and GSE records. The extracted data 
were normalized by log2 transformation. The microar-
ray data were normalized by the normalized quantiles 
function of the preprocessCore package in R software 
(version 3.4.1). Probes were converted to gene symbols 
according to the annotation information of the normal-
ized data in the platform. Probes matching multiple 
genes were removed from these datasets; the average 
expression value of genes measured by multiple probes 
was calculated as the final expression value and, as in 
the case of the same dataset and platform but in differ-
ent batches, used the removeBatchEffect function of the 
limma package in the R software to remove batch effects. 
As in different datasets or the same dataset but in differ-
ent platforms, extracting multiple data sets with common 
gene symbols, marking different datasets or platforms as 
different batches, used the removeBatchEffect function 
of the limma package in the R software to remove batch 
effects. The result of the data preprocessing was assessed 
by Density plot. The UMAP plot was drawn to illustrate 
the samples before and after batch effect.

Table 1  Basic information of selected datasets

Dataset Platform Tissue (Homo sapiens) Samples (number) Experiment type Attribute Author/reference

Total T2D Non-T2D

GSE38642 GPL6244 Human islets 30 9 21 Array Test Taneera [56]

GSE25724 GPL96 Human islets 13 6 7 Array Validation Dominguez [57]

GSE21232 GPL8490 Human islets 16 5 11 Array Test Volkmar [58]

Nature 
536(7614): 
41–47

Human 2657 1326 1331 Array Test Fuchsberger [59]

Table 2  Basic information on RT‐qPCR analyses

Forward Reverse Amplicon Size

HLA-DQA1 AGA​TGA​GCA​GTT​CTA​CGT​GGA​ ACG​GGA​GAC​TTG​GAA​AAC​ACT​ 207

HLA-DQB1 CCA​TCC​TAA​GGT​GAC​TGT​GTA​TCC​ ATT​CCA​CTG​TGA​GAG​GGC​TTGT​ 278

HLA-DRB1 ACC​TTC​GGG​TAG​CAA​CTG​TC AAA​TCC​TCG​GGA​GAG​TCT​CTG​ 82

COL1A1 GAG​GGC​CAA​GAC​GAA​GAC​ATC​ CAG​ATC​ACG​TCA​TCG​CAC​AAC​ 140

COL3A1 TTG​AAG​GAG​GAT​GTT​CCC​ATCT​ ACA​GAC​ACA​TAT​TTG​GCA​TGGTT​ 83

COL4A1 CCA​GGG​GTC​GGA​GAG​AAA​G GGT​CCT​GTG​CCT​ATA​ACA​ATTCC​ 203

COL5A1 TAC​AAC​GAG​CAG​GGT​ATC​CAG​ ACT​TGC​CAT​CTG​ACA​GGT​TGA​ 136

PSMB9 GGA​GGT​CAG​GTA​TAT​GGA​ACCC​ CCT​GGC​TTA​TAT​GCT​GCA​TCC​ 113

IRF7 CCC​ACG​CTA​TAC​CAT​CTA​CCT​ GAT​GTC​GTC​ATA​GAG​GCT​GTTG​ 202

CD74 GCT​GGA​CAA​ACT​GAC​AGT​CAC​ CAG​GTG​CAT​CAC​ATG​GTC​CT 205

GAPDH ACA​GCC​TCA​AGA​TCA​TCA​GC GGT​CAT​GAG​TCC​TTC​CAC​GAT​ 104

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nih.gov/geo
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Multi‑omics data integration and analysis
To investigate the functional connections among the 
T2D-associated genes, we used Mergeomics, a web 
server for multi-omics data integration, to elucidate dis-
ease networks and predict therapeutics [9]. Mergeomics 
consists of two main libraries, Marker Set Enrichment 
Analysis (MSEA) and Weighted Key Driver Analysis 
(wKDA). In the current study, we used MSEA to assess 
whether known biological processes or pathways were 
enriched for multi-omics data of T2D; wKDA lever-
ages gene network topology (interactions or regulatory 
relations among genes) and edge weight (strength or 
reliability of interactions and regulatory connections) 
information of graphical gene networks to predict poten-
tial key regulators of top T2D-related genes after integra-
tion. The wKDA depth was set at 1 and default incoming 
and outgoing directionality, the minimum overlap of 0.33, 
and edge factor 0.5 were used. Genes were compared 
against the pancreas tissue-specific Bayesian network.

Based on the key driver genes screened above, the 
Cytoscape (version 3.9.1) [10] software was exploited 
for network analysis and visualization. Here, we used 9 
common algorithms (MCC, MNC, Neck, ECC, Degree, 
Closeness, Radiality, Stress, EPC) to evaluate modules. 
Subsequently, we constructed a co-expression network 
of these hub genes via GeneMANIA (http://​www.​genem​
ania.​org/) [11], which is a reliable tool for identifying 
internal associations in gene sets.

Enrichment analyses of hub genes
To uncover the biological function related to the hub 
genes, Gene Ontology (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis were performed using Hiplot (https://​
hiplot.​com.​cn/).

RNA isolation and RT‐qPCR analyses
A total of 6 serum samples (3 serum samples from T2D 
patients and 3 serum samples from healthy controls) 
were evaluated in this study. The total RNA was iso-
lated using RNA extraction kit (TIANGEN) and reverse 
transcribed into cDNA using reverse transcription kit 
(ABI). Real-time quantitative PCR (RT-qPCR) analy-
sis was performed using real‐time PCR kit (ABI). The 
relative mRNA expression levels of PSMB9, COL1A1, 
COL4A1, HLA-DQB1, COL3A1, IRF7, COL5A1, CD74, 
HLA-DQA1, and HLA-DRB1were normalized with the 
GADPH in the same sample. The thermal cycler parame-
ters for the amplification of these genes were as follows: 1 
cycle at 95 °C for 10 min followed by 40 cycles at 95 °C for 
15 s, 60 °C for 15 s, and 72 °C for 30 s. Gene expression 
was evaluated by the 2 − ΔΔCt method. The sequences 
of RT‐PCR primers are the following (5′–3′; Table 2). For 

gene expression using RT- PCR, statistical analysis was 
performed by the unpaired two-tailed t-test.

iTRAQ‑based quantitative proteomic analysis of obese 
diabetic mice
All animal studies were approved by the Animal Care and 
Use Committee of our institution and in accordance with 
relevant guidelines and regulations. Five-week-old male 
Sprague–Dawley (SD) rats initially weighing 160–180  g 
were housed individually in cages at a constant temper-
ature of 24 ± 2  °C with a 12:12-h light–dark cycle. Rats 
were fed a high-fat diet and intraperitoneally injected 
low-dose streptozotocin (32  mg/kg) to induce T2DM 
model. Rats with random blood glucose ≥ 16.7  mmol/L 
on 3 consecutive days were selected [12]. Finally, 4 rats 
were selected in T2D group.

Pancreas tissues were grinded and then dissolved in 
SDT lysis buffer (4% sodium dodecyl sulfate, 100  mM 
Tris–HCl, pH 7.6, Sangon, China). The supernatant 
was collected and quantified after boiling and centri-
fuging. The extracted proteins were treated with the 
method of filter-aided sample preparation (FASP) enzy-
matic hydrolysis. The samples were labeled according to 
the instructions of the iTRAQ Reagents 8-plex kit (AB 
SCIEX, USA). Mascot software 2.6 and Proteome Dis-
coverer software 2.1 (Thermo Fisher Scientific) were 
used to process proteomic data against the rat database 
(Uniprot_RattusNorvegicus_36080_20180123).

After merging the GSE77943 (including 5 islet samples 
from normal mice), the comparison between the hub 
genes expression of T2D and contorl was performed with 
the T-test. P-value < 0.05 was considered significant.

Analysis of the predictive value of biomarkers
Receiver operator characteristic (ROC) curve analysis 
was performed to predict the diagnostic effectiveness 
of biomarkers by SSPA Statistics 23. The area under the 
ROC curve (AUC) value was utilized to determine the 
diagnostic effectiveness in discriminating T2D from con-
trol samples in the GSE25724 dataset.

Prediction and verification of transcription factors (TFs)
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining (TRRUST) [13] is a database 
for predicting transcriptional regulatory networks, which 
contains the target genes corresponding to transcription 
factors (TFs) and the regulatory relationships between 
TFs. TRRUST currently includes two species: human 
and mouse, containing 8444 and 6552 TFs target regu-
latory relationships of 800 human TFs and 828 mouse 
TFs, respectively. TFs that regulate the hub genes were 
obtained through the TRRUST database, and an adjusted 
P-value < 0.05 was considered significant. Subsequently, 

http://www.genemania.org/
http://www.genemania.org/
https://hiplot.com.cn/
https://hiplot.com.cn/
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we verified the expression levels of these TFs in obese 
diabetic mice with the T-test.

Transcriptional regulation and histone modification 
related to hub genes based on epigenetic data
"Homo sapiens" and "pancreas islet" were jointly searched 
in the Cistrome Data Browser (DB) (http://​cistr​ome.​org/​
db) [14]. Through the analysis and processing of all sam-
ples in the preset process, as well as the evaluation using 
comprehensive quality control indicators, we obtained 
the factors targeting specific genes and visualized them in 
the UCSC genome browser.

Construction of disease network
The gene-disease association networks were created 
using DisGeNet [15], OMIM [16], OpenTargets [17], 
and Genecards databases [18], and genes were selected 
as nodes in the network if retrieved by at least two data-
bases using Venny2.1.0 (http://​bioin​fogp.​cnb.​csic.​es/​
tools/​venny/) [19].

Drug repositioning
Potential drugs for the management of T2D were selected 
using the network based drug repositioning method 
from the Pharmomics pipeline in the Mergeomics web 
server. Drug-target interactions were used to construct 
a drug-target interaction network and visualized using 
Cytoscape v3.9.1. Gene Ontology and KEGG pathway 
analysis can clarify the role of potential targets by gene 
function and signaling pathways. The drug-disease com-
mon targets were converted into Entrez IDs, and then 
the “clusterProfiler” package was installed in the R soft-
ware. According to the converted Entrez IDs, enrichment 
analysis of key target gene GO functions and analysis of 
KEGG signaling pathways were performed with p < 0.05.

Molecular docking
To analyze the binding affinities and modes of interac-
tion between the drug candidate and their targets, Auto-
dockVina 1.2.2, a silico protein–ligand docking software 
was employed [1]. The molecular structures of sunitinib 
were retrieved from PubChem Compound (https://​
pubch​em.​ncbi.​nlm.​nih.​gov/) [2]. The 3D coordinates of 
COL1A1 (PDB ID, 5CTD; resolution, 1.6  Å), COL4A1 
(PDB ID, 1LI1; resolution, 1.9  Å), PSMB9 (PDB ID, 
7AWE; resolution, 2.3  Å), IRF7 (PDB ID, 2O61; resolu-
tion, 2.8 Å), HLA-DQB1 (PDB ID, 1JK8; resolution, 2.4 Å) 
and COL3A1 (PDB ID, 4AE2; resolution, 1.68  Å) were 
downloaded from the PDB (http://​www.​rcsb.​org/​pdb/​
home/​home.​do). For docking analysis, all protein and 

molecular files were converted into PDBQT format with 
all water molecules excluded and polar hydrogen atoms 
added. The grid box was centered to cover the domain of 
each protein and to accommodate free molecular move-
ment. The grid box was set to 30  Å × 30  Å × 30  Å, and 
the grid point distance was 0.05 nm. Molecular docking 
studies were performed by Autodock Vina 1.2.2 (http://​
autod​ock.​scrip​ps.​edu/).

Statistical analysis
Statistical analysis was performed using GraphPad soft-
ware (GraphPad Prism v9.0; GraphPad Software, USA) 
and R software (version 3.4.1).

Results
Multi‑omics data collection and integration
We integrated the multi-omics data, including gene 
expression profiles and epigenomic profiling data 
sets collected from the GEO database (GSE38642 and 
GSE21232) and genomics data retrieved from  Merg-
eomics web server (Table 1).

Marker set enrichment analysis (MSEA)
To better understand the biological implications that 
relate to T2D, based on the multi-omic profile, we 
applied marker set enrichment analysis (MSEA) to 
evaluate the biological modules and functional catego-
ries. GO analysis results are mainly enriched in glucose 
homeostasis, carbohydrate homeostasis, and lipopro-
tein particle binding (see Additional file 1: Fig. S1A–C).

In order to identify the regulated modules and poten-
tial association between significant modules (FDR < 0.05 
and MSEA score > 5) and genes in T2D, module-gene 
network were visualized (see Additional file 5: Table S1) 
(Fig. 2A) Of the 32 statistically significant modules, the 
top 10 modules are shown after applying 12 algorithms 
in the plug-in cyto-Hubba (Fig.  2B) (see Additional 
file 5: Table S2), and all 10 modules reported by MSEA 
are implicated in T2D. Besides, we further summarized 
15 SNPs from 28 genes in the top 10 modules to inves-
tigate the aggregate genetic link between the modules 
and T2D (Fig. 2C).

Weighted key driver analysis (wKDA) of T2D‑related genes 
and analysis of hub genes
The wKDA using Mergeomics was used to evaluate 
potential networks and key regulators of type 2 diabetes-
related genes based on multi-omics data. wKDA identi-
fied a network within the 84 genes (Fig. 3A). The top 10 
key drives of the network were further screened (see 
Additional file  5: Table  S3) (Fig.  3B, C), and their full 
names and detailed functional information are shown 

http://cistrome.org/db
http://cistrome.org/db
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://autodock.scripps.edu/
http://autodock.scripps.edu/


Page 6 of 17Liu et al. Journal of Translational Medicine          (2022) 20:604 

(see Additional file 5: Table S4). Based on the GeneMA-
NIA database, we analyzed the co-expression network 
of these genes, which showed the complex PPI network 
with a co-expression of 35.34%, physical interactions 
of 22.12%, and co-localization 25.21%, shared protein 
domains of 8.23% and predicted of 9.10%. (Fig. 3D) GO 
analysis showed that these genes are mainly involved in 
immunoglobulin-mediated immune response, B cell-
mediated immunity, immune receptor activity, and MHC 
class II protein complex (Fig. 3E–H). In addition, KEGG 
pathway analysis showed that they are mainly involved in 
the AGE-RAGE signaling pathway in diabetic complica-
tions and the relaxin signaling pathway (Fig. 3I).

Validation of hub genes
To make the results more reliable, the expression of 
hub genes was subjected to RT-qPCR verification from 
3 T2D patients and 3 controls. No significant difference 
was observed in mRNA level between the control and 
T2D (PSMB9: P = 0.16; CD74: P = 0.64), although there 
were modest trends (Fig.  4A). Besides, the GSE25724 
dataset was used to validate the diagnostic effectiveness 
of the biomarkers for T2D by ROC analysis. (Fig.  4B) 
AUC of more than 0.800 was considered as having the 
capability to diagnose T2D with excellent specificity 

and sensitivity. As shown in Fig.  4B, the AUC values 
of COL5A1, IRF7, CD74, and HLA-DRB1 were 0.928, 
1.000, 0.952, and 0.833, respectively.

Further expression validation of the hub genes was 
performed in obese diabetic mice, which was achieved 
by comparing proteomics data from obese diabetic 
mice and data from the GEO database (GSE77943) 
after normalization and batch effect adjustment. The 
results show that expression levels of PSMB9, COL1A1, 
and COL4A1 had significantly higher in T2D. (Fig. 4C) 
(The expression value of HLA-DQB1, COL3A1, IRF7, 
COL5A1, CD74, HLA-DQA1, and HLA-DRB1 are miss-
ing in proteomics data from obese diabetic mice).

Prediction and verification of transfer factors (TFs)
Based on the TRRUST database, we found that 8 TFs 
may regulate the expression of these genes (Fig.  5A) 
(see Additional file  5: Table  S5). Further verification, 
we discovered that NFKB1 is highly expressed in the 
T2D group (Fig. 5B) (the expression value of RFXANK, 
RFXAP, RFX5, CIITA, ILF3, and RELA1 missing in pro-
teomics data from obese diabetic mice), which coordi-
nately participated in the regulation of four hub genes 
(IRF7, PSMB9, CD74, and COL1A1).
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Fig. 3  Gene subnetworks and top network key drivers (KDs) of DEGs in T2D. A kidney KDs and subnetworks. B Fold scores of top10 KDs and 
functional modules they belong to. C Key driver network of T2D. D Key drivers and their co-expression genes were analyzed via GeneMANIA. E–I GO 
and KEGG enrichment analysis of the key drivers
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Fig. 3  continued
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Transcriptional regulation and histone modification 
related to hub genes based on epigenetic data
After quality control analysis, ChIP-seq results showed 
that the CTCF binding site was located on the CpG 
islands after the first exon of COL1A1 (Fig. 6A). In addi-
tion, CTCF was also combined with the promoter of 
PSMB9, which contains CpG islands (Fig.  6C). Moreo-
ver, we found that the regulation of hub genes including 
COL1A1, IRF7, PSMB9, COL4A1, and COL5A1 is widely 
related to histone modifications such as histone meth-
ylation and acetylation (Fig. 6A–E). The modification of 
H3K4me3 in pancreatic islets was confirmed to depend 
on the presence of CpG [20], which explains our result 
that CTCF binds near the chromatin region occupied by 
H3K4me3. Concerning chromatin accessibility, highly 
sensitive sites of DNase I were found on COL1A1, IRF7, 
and PSMB9 (Fig.  6A–C), which directly indicated the 
location of regions where transcriptional regulatory ele-
ments can bind.

Drug repositioning based on multi‑omics data

(1)	 Construction of multi-omics network and disease 
network

	 We merged the MSEA network and wKDA net-
work to construct a multi-omics network for repo-
sitioning. The gene-disease association networks 
were created using DisGeNet, OMIM, OpenTargets, 
and Genecards databases, and genes were selected 
as nodes in the network if retrieved by at least two 
databases (Fig. 7A).

(2)	 T2D-targeted screening for candidate drugs
	 According to the above results, a total of 1274 
compounds were screened from the Mergeomics 
database. 17 compounds with intervention records 
from pancreas were proposed to possess thera-
peutic potential against T2D (see Additional file 5: 
Table S6). After excluding compounds that have not 

Fig. 3  continued
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yet been widely used in clinical, sunitinib, a recep-
tor tyrosine kinase inhibitor and chemotherapeutic 
agent used for the treatment of renal cell carcinoma 
(RCC) and imatinib-resistant gastrointestinal stro-
mal tumor (GIST), was considered a potential drug 
of T2D.

(3)	 Network pharmacology approach and molecular 
docking to predict the mechanisms of drugs coun-
teracting T2D.

87 drug genes directly connected to multi-omics net-
work and 33 genes from multi-omics network directly 
connected to drug genes were identified as possible anti-
diabetic targets of sunitinib. (Fig. 7B) The target genes of 
sunitinib were further analyzed by GO and KEGG analy-
ses (see Additional file  2: Fig S2). The results show that 
sunitinib may affect the AGE-RAGE pathways and gluco-
neogenesis, thereby influencing the development of T2D.

To evaluate the affinity of sunitinib for their targets, we 
performed molecular docking analysis. The binding poses 
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and interactions of sunitinib with seven top key drivers 
from targets were obtained with Autodock Vina v.1.2.2 
and binding energy for each interaction was generated. 
(The 3D-structure of the molecular target of COL5A1 
was missing in the PDB database) Results showed that 
each target bound to sunitinib through visible hydrogen 
bonds and strong electrostatic interactions, moreover, 
hydrophobic pockets of each target were occupied suc-
cessfully by sunitinib (Fig. 7C–H; Table 3).

Discussion
The current paper demonstrated the molecular mecha-
nisms associated with T2D progression by combining 
transcriptomic, genomic, epigenetic, and proteomic data. 
At the same time, some less-reported genes and path-
ways that may play key regulatory roles in T2D have been 
identified, which could provide new biomarker options 
for T2D research. In addition, this study conducted drug 
repositioning based on multi-omics data to facilitate the 
clinical translation of potential T2D therapeutics.

To identify markers for T2D and better understand the 
underlying pathways, we performed MSEA using multi-
omics data. In the results, GO terms were enriched in 
“response to hypoxia” and “response to decreased oxy-
gen levels”, implying the stress of oxygen deprivation. 
Hypoxia could activate the hypoxia-inducible factor 
rapidly, leading to the conversion of glucose utilization 
from aerobic to anaerobic metabolism, resulting in β-cell 
dysfunction [21, 22]. Besides, Li et al. found that hypoxia 
may cause intensive apoptotic injury of β cells by destroy-
ing islet vascular integrity [23]. Related to the above, “gap 
junction assembly” and “mitochondrial outer membrane” 
were also enriched. β cells are connected by gap junction, 
which provides electric coupling between β cells, thus 
promoting the regulation of electrical activity and insu-
lin secretion [24]. Studies have confirmed that related 
to the abnormal expression of gap junction proteins, the 
breakdown of mitochondrial redox balance in β cells 
under long-term hyperglycemia will accelerate the dys-
function of β cells [25]. On the other hand, “sulfur com-
pound binding” was also enriched in the GO-based list. 
Sulfur-containing compounds include sulfur-containing 
amino acids, glutathione, etc. Elevated cysteine of sulfur-
containing amino acids is associated with a doubling of 
the risk of insulin resistance [26]. In addition, data from 
a prospective cohort study showed that diabetic patients 
had higher cystathionine and plasma total cysteine and 
lower antioxidants such as taurine [27]. These findings 
suggest that sulfur-containing amino acids may interfere 
with blood glucose levels through oxidative stress. More-
over, the pathways “Leukocyte Transendothelial Migra-
tion” and “Reactome Signaling By Interleukins” were also 
significantly enriched. For islet vascular damage in dia-
betes, neutrophil transmigration across TNF-activated 
endothelial monolayers can be accelerated by co-clus-
tering L-selectin with PECAM-1. And another crucial 
step is the shedding of L-selectin activated by Akt family 
kinases, p38 MAPK signaling pathways, etc. [28]. As pre-
viously mentioned, increased secretion and chemotaxis 
of neutrophils would stimulate β cell apoptosis by reduc-
ing insulin signaling transduction, promoting the occur-
rence of ROS-NLRP3 inflammasome-IL-1β [29].
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Elucidation of T2D driving molecular profiles through 
integrative multi-omic analysis, including genomic, 
epigenomic, and transcriptomic analysis, was the pri-
mary focus of this study. The most prominent finding 
to emerge from the research is that putative ten hub 
genes are associated with T2D. Among these, COL5A1, 
IRF7, CD74, and HLA-DRB1 expression was suggested 
to have diagnostic value in T2D, and the expression lev-
els of PSMB9, COL1A1, and COL4A1 were significantly 
higher in T2D after validation. Besides, the enrichment 
analysis showed the hub genes were significantly associ-
ated with immune-related terms and T2D-related terms, 
which corroborates the findings of a great deal of the 
previous work [30–32]. Chemokines and cytokines are 
jointly involved in the occurrence and development of 
T2D [33, 34], such as serum TNF-α, adiponectin, Growth 
factor 19/21, Interleukin-1 beta (IL-1β), Interleukin-6 
(IL-6), Interleukin-18 (IL-18), and C-reactive protein 

(CRP), which play a central role in the development of 
T2D. According to KEGG analysis, the AGE-RAGE sign-
aling pathway plays a vital role in T2D. In T2D patients, 
elevated blood glucose leads to advanced glycation end 
products [35]; the products of nonenzymatic glyca-
tion/oxidation of proteins/lipids are signal transduction 
ligands for Receptor for AGE (RAGE), which accumu-
late in the vessel wall. Furthermore, the recruitment of 
inflammatory cells bearing Calgranulin B (S100A9), also 
ligands for RAGE, augments vascular dysfunction and 
can subsequently exacerbate the progression of T2D 
[36, 37]. In addition, we found that 8 TFs may regulate 
the expression of these genes. We further verified that 
NFKB1 is highly expressed in T2D patients, which coor-
dinately participated in regulating four hub genes (IRF7, 
PSMB9, CD74, and COL1A1).

In accordance with the present results, previous stud-
ies have demonstrated that HLA-DQB1 [38], COL1A1 
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[39], COL3A1 [40], COL4A1 [41], CD74 [42], and HLA-
DQA1 [38] are highly related to T2D pathogenesis. 
While PSMB9, IRF7, and COL5A1 have not been previ-
ously reported to be associated with T2D in the litera-
ture. PSMB9 is a multicatalytic proteinase complex with 
a highly ordered ring-shaped 20S core structure, which 
encodes a member of the proteasome B-type family, 
also known as the T1B family. An essential function of 
a modified proteasome, the immunoproteasome, is the 
processing of class I MHC peptides, which have critical 

roles in the immune response. The activation of PSMB9 
may be related to the expression of CTCF, which is 
shown in the results. CTCF, also called CCCTC-binding 
factor, encodes a transcriptional regulatory protein with 
11 highly conserved zinc finger (ZF) domains. It has 
been revealed that CTCF-mediated chromatin acces-
sibility changes could help to increase the transcription 
of genes related to important functions of pancreatic β 
cells, thereby increasing insulin secretion and improving 
T2D [43]. Diseases associated with the PSMB9 gene in 
GWAS datasets from the DISEASES Experimental Gene-
Disease Association Evidence Scores dataset revealed 
a potential association between PSMB9 and type 1 dia-
betes mellitus with a standardized value of 1.20753. 
Besides, Phenotypes associated with the PSMB9 gene by 
text-mining GWAS publications from the HuGE Naviga-
tor Gene-Phenotype Associations dataset also suggested 
the potential association between PSMB9 mutations 
and type 1 diabetes. IRF7 encodes interferon regula-
tory factor 7, a member of the interferon regulatory fac-
tor (IRF) family, which has been shown to play a role in 
the transcriptional activation of virus-inducible cellular 

H

Fig. 7  continued

Table 3  Molecular docking results of sunitinib

Gene name Molecular targets Estimated 
ΔG (kcal/
mol)

HLA-DQB1 MHC class II HLA-DQ8 − 6.9

COL3A1 Collagen Alpha-1(III) Chain − 8.7

PSMB9 Proteasome subunit beta type-9 − 7.8

COL1A1 Collagen alpha-1(I) chain − 8.4

IRF7 Interferon regulatory factor 7 − 9.5

COL4A1 Collagen alpha-1(IV) chain − 7.3
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genes, including interferon β chain genes. In the results 
of DNase-seq, the cis-acting elements located near the 
TSS region of IRF7 showed high chromatin accessibil-
ity. It means that the transcription of IRF7 may be reg-
ulated in many ways, such as H3K4me3, H3K27ac, and 
H3K9ac, which promote the activation of transcription. 
A previous study has reported that highly expressed IRF7 
in the pancreas is implicated in immunoinflammatory 
diseases such as autoimmune pancreatitis [44] and pan-
creatic ductal adenocarcinoma [45]. In addition, a study 
by Hemin et al. demonstrated that STAT1-IRF7-MHC I 
complex axis was crucial for IFN-α signaling in islets and 
created positive feedback through IRF7-STAT2 cascade 
amplifying signals which accelerated the process of type 1 
diabetes. COL5A1 encodes an alpha chain for one of the 
low abundance fibrillar collagens. Previous work revealed 
that Col5A1, Nqo1, and Notch2 modulated by Ast may 
promote insulin-releasing balance, relieve insulin resist-
ance, and maintain normal size in marginal-zone B cells 
[46]. Besides, diseases associated with COL5A1 gene/
protein from the curated CTD Gene-Disease Associa-
tions dataset suggested the potential association between 
COL5A1 and diabetes mellitus with a standardized value 
of 1.24401 [47]. Hence, the above results provide mean-
ingful clues for the further study of PSMB9, IRF7, and 
COL5A1 in the occurrence and development of T2D, and 
further exploration is needed.

Due to the lack of effective/safe and less expensive 
drugs, drug repositioning appears to be the best tool 
for finding proper targets and predicting latent drugs in 
the therapy for T2D and related complications. Finally, 
17 compounds were expected to have potential thera-
peutic effects on T2D. Among these, sunitinib [48] is a 
multi-target receptor tyrosine kinase inhibitor of vascu-
lar endothelial growth factor receptor (VEGFR), platelet 
derived growth factor receptor (PDGFR), etc. It is often 
used as a chemotherapeutic agent to treat renal cell car-
cinoma (RCC) and pancreatic neuroendocrine tumors. 
Considering that VEGF/VEGFR, PDGF/PDGFR related 
signal pathways play essential roles during the develop-
ment of T2D, such as insulin resistance [49], the expres-
sion of iron metabolism related-proteins [50], islet cell 
inflammation [51], further studies to investigate potential 
therapeutic benefits for sunitinib in T2D are warranted.

Due to the heterogeneity of T2D [52], future T2D 
treatment urgently needs to be personalized. Nowadays, 
nanotechnology has shown great prospects in T2D phar-
macological intervention, such as extending the release 
of anti-diabetic peptides through the hydrogel system 
[53], oracle delivery of nuclear acid therapy with higher 
stability [54], etc. In addition, the use of versatile drug 
delivery nanocarriers after multi-level specific biomarker 
recognition based on multi-omics data may increase the 

targeting effect of drugs and promote the realization of 
personalized T2D treatment [55].

Despite these promising results, questions remain. The 
results of RT-qPCR on the predicted hub genes could only 
show that the expressions of CD74 and PSMB9 were up-
regulated in the T2D group, while the expressions of other 
genes were not detected (Additional files 3, 4). In addition 
to the poor effect of RNA extraction, since the samples 
used for RNA extraction were human serum rather than 
islets, the greater heterogeneity of the gene expression lev-
els of the two could be the cause. For that, it would be prob-
lematic to demonstrate the expression of predicted genes in 
islets due to the inaccessibility of normal human islets and 
the potential ethical issues involved.
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