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Abstract
The ten–eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three 
TET enzymes have  Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA 
demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are 
involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. 
TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic 
activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent 
regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the 
activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, 
specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of 
TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET 
functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy 
of TET-mutant-related diseases.
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Abbreviations
TET  Ten–eleven translocation
α-KG  α-Ketoglutarate
5mC  5-Methylcytosine
5hmC  5-Hydroxymethylcytosine
5fC  5-Formylcytosine
5caC  5-Carboxylcytosine
TFs  Transcription factors

ARCH  Age-related clonal hematopoiesis
MDS  Myelodysplastic syndromes
AML  Acute myeloid leukemia
ALL  Acute lymphoblastic leukemia
DLBCLs  Diffuse large B-cell lymphomas
PTCL  Peripheral T-cell lymphoma
IFN-γ  Interferon-γ
TNF-α  Tumor necrosis factor-α
TIS  Transcriptional initiation sites
DSBH  Double-stranded beta-helix domain
TDG  Thymine DNA glycosylase
BER  Base excision repair
ES  Embryonic stem cells
IDHs  Isocitrate dehydrogenases
AP site  Apyrimidinic site
AID  Activation-induced cytidine deaminase
5hmU  5-Hydroxymethyluracil
GC  Germinal center
CSR  Class-switch recombination
DSBs  Double-strand breaks
PGCs  Primordial germ cells
CGIs  CpG islands
OGT  O-linked GlcNAc transferase
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SID  Sin3A interacts with the Sin3-interaction 
domain

CoA  Coactivators
PTM  Post-translational modifications
AMPK  AMP-activated protein kinase
C/EBPα  CCAAT/enhancer-binding protein alpha
KLF4  Kruppel-like factor-4
TFCP2l1  Transcription factor CP2 like-1
YBX1  Y box-binding protein-1
FOXK2  Forkhead box protein K-2
KZF1  DNA-binding protein Ikaros 1
NFIL3  Nuclear factor interleukin-3-regulated protein
ATRX  Alpha-thalassemia/mental retardation syn-

drome X-linked transcriptional regulator
CUX1  Homeobox protein cut-like-1
YY2  Yin and yang-2 transcription factor
IκBζ  Inhibitory-kappa-B-zeta

Introduction

Lineage commitment and differentiation of tissue stem/
progenitor cells are tightly controlled by transcriptional 
 programing1,2 and are delicately regulated by an ordered, 
stepwise reconfiguration of the DNA methylome and his-
tone modifications.3–8 Dysregulation of either transcriptional 
programing or the epigenetic machinery will cause diseases 
such as cancers by disrupting cell fate determination and 
differentiation. Thus, a more complete understanding of how 
transcriptional programing and epigenetic functioning col-
laboratively regulate lineage fate and differentiation of stem/
progenitor cells will provide information that will improve 
our understanding of disease pathogenesis and can point the 
way toward the development of novel medications for the 
treatment of diseases.

Transcription factors (TFs) regulate target gene expres-
sion by binding to specific consensus motifs in their enhanc-
ers and promoters.9 The binding motifs of most TFs contain 
CpG dinucleotides. Such TFs have different sensitivities to 
methyl-CpG (mCpG) motifs for DNA binding. Many genes 
have CpG-rich (CpG islands or CGIs) promoters. Meth-
ylation of these promoters is associated with target gene 
repression due to the condensation of local chromatin.8,10,11 
Removing methyl groups from these promoters is required 
for TF binding and gene expression. In genes with non-CGI 
promoters and enhancers, TF-regulated expression of such 
genes is determined by the methylation status of CpG within 
the binding motifs.12–14

The dynamic methylation of DNA is regulated by a balance 
of DNA methyltransferases (including DNMT1, DNMT3a, 
and DNMT3b) and the ten–eleven translocation (TET) family 
of dioxygenases (including TET1, TET2, and TET3).15,16 The 
methylation state of DNA sequences regulates the accessibility 

of key TFs to genetic regulatory elements including promoters 
and enhancers of target genes, which in turn determines cell 
fate.8,17 Disruption of the dynamic methylation programming 
of DNA has been observed in almost all types of hematopoi-
etic malignancies and has emerged as a hallmark of various 
types of hematological cancers, including myelodysplastic 
syndromes (MDS), acute myeloid leukemia (AML), acute 
lymphoblastic leukemia (ALL), diffuse large B-cell lympho-
mas (DLBCLs), and peripheral T-cell lymphoma (PTCL).18–42 
Consistently, somatic mutations of several key regulators of 
DNA methylation including DNMT3A, isocitrate dehydroge-
nase (IDH1), IDH2, and TET2 have been detected in almost 
all types of hematopoietic cancers.43 Detailed studies dem-
onstrated that somatic mutations of DNMT3A and TET2 are 
also frequently detected in small clones in the hematopoietic 
tissue of healthy people, specifically those > 50 years old. The 
frequency of such mutations increases during aging and has 
been called age-related clonal hematopoiesis (ARCH).44–46 
The selective acquisition and expansion of DNMT3A- or 
TET2-mutant clones during aging suggest that ARCH might 
be a consequence of compensatory hematopoiesis against the 
pressure of aging. In support of such a concept, it was found 
that hematopoietic stem and progenitor cells (HSPCs) show-
ing either DNMT3A or TET2 mutations display growth advan-
tages in response to treatment with interferon-γ (IFN-γ) and 
tumor necrosis factor-α (TNF-α), respectively.47,48 Neverthe-
less, people with ARCH showed a 10–12-fold increased risk 
for developing hematopoietic malignancies than age-matched 
ARCH-negative populations.49–51 Thus, as is the case with 
somatic DNMT3A mutations, somatic TET2 mutations are 
founder mutations for almost all types of hematopoietic malig-
nancies, and occur in hematopoietic stem cells (HSCs) during 
aging, and are selected under the pressure of aging-associated 
inflammation. Additional genetic mutations are required for 
the full malignant transformation of TET2-mutant HSCs, 
which drive the abnormal proliferation, lineage commitment, 
differentiation, and survival of HSPCs. In addition, TET1 is 
frequently mutated in B-cell malignancies and TET3 is down-
regulated in HSPCs during aging as well as in the malignant 
cells of many types of hematopoietic cancers.52 Thus, all three 
members of the TET family are involved in the pathogenesis 
of hematopoietic cancers. In this review, we summarize the 
research on TET–protein interaction partners and translational 
modifications of TETs in the regulation of TET function. We 
also discuss the molecular mechanism by which TET proteins 
regulate target gene expression.

The three TET genes and their isoforms

The human TET1 gene is located on chromosome 10q21.3. 
It expresses two transcriptional isoforms owing to the use of 
alternate promoters (Fig. 1a).53 Transcription starting from 



Mechanisms that regulate the activities of TET proteins  

1 3

Page 3 of 23 363

promoter 1a or 1b (distal) produces a 2,136 a.a. full-length 
TET1 protein (2039 a.a. for the mouse), while transcription 
starting from promoter 2 (proximal) in front of exon 2 gives 
rise to a 1465 a.a. short isoform of TET1 (TET1s, 1386 a.a. 
for the mouse).53,54 TET1s lacks a large portion of the TET1 
N-terminus, including the CXXC (CXXC5) domain. Both 
TET1 and TET1s have enzymatic activity. In mice, TET1 is 
primarily expressed in the embryo and is replaced by TET1s 
in adult  tissues53.

The human TET2 gene is located on chromosome 4q24. 
In contrast to the TET1 and TET3 genes, the ancient TET2 
gene was split during evolution into two genes, IDAX 
(also called CXXC4) and TET2. The IDAX gene is located 
700 kb upstream of TET2 and is transcribed in the oppo-
site direction; it encodes the CXXC domain-containing 
IDAX protein.55 The TET2 gene produces three protein 
isoforms, TET2-a, TET2-b, and TET2-c, because of the 
alternative use of three promoters and associated transcrip-
tional initiation sites (TIS) (Fig. 1a). TET2-b utilizes the 
second promoter in front of exon 1b and produces a 2002 
a.a. full-length TET2 protein (TET2 hereafter, 1912 a.a. 
for the mouse). TET2-a uses the first promoter, which is 
located upstream of the second promoter and produces a 
truncated 1165 a.a. protein terminating at a poly-A site in 
the fourth intron, while TET2-c utilizes the 3rd promoter 

in front of exon 1c and produces a much shorter trun-
cated protein terminating within the  3rd exon. Both TET2-a 
and TET2-c lack enzymatic activity and might function 
as dominant-negative forms of TET2. TET2 is abundant 
in most normal human tissues, while TET2-a is primar-
ily expressed in the human spleen, and TET2-c is weakly 
expressed in most tissues, with the highest levels observed 
in human spleen, bone marrow, fetal brain, and embryoid 
bodies. The dynamic switching of active promoters and 
enhancers regulates TET2-a, TET2, and TET2-c expres-
sion during cell state transitions between pluripotency and 
differentiation.56

The human TET3 gene is located on chromosome 
2p13.1. The CXXC10-1 ORF is about 13 kb upstream of 
the annotated TSS of TET3 with the same orientation as 
the TET3 ORF. TET3 gene encodes three isoforms owing 
to the alternative use of promoters and alternative splic-
ing (Fig. 1a). A 1795 a.a. full-length TET3 protein (TET3 
hereafter; 1803 a.a. for the mouse) is transcribed start-
ing from promoter 2 in front of exon 1b, and a 1660 a.a. 
TET3 short isoform (TET-3 s; 1668 a.a. for the mouse) is 
transcribed starting from promoter 3 in front of exon 2. A 
1713 a.a. oocyte-specific isoform of TET3 (TET-3o) has 
been identified in the mouse, which is transcribed starting 
from promoter 1 in front of exon 1a approximately 5 kb 

Fig. 1  TET genes and TET proteins. A TET1, TET2, and TET3 have 
2, 3, and 3 transcriptional products, respectively, due to the use of 
alternative  promoters, which are regulated by the alternative activa-
tion of enhancers. The green arrow indicates induction of expression; 

the red cross depicts inhibition of expression. B. The corresponding 
protein isoforms of TET1, TET2, and TET3. The structural domains 
of the proteins are indicated
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upstream of the start codon with skipping of exon 1b.57 
Human TET-3o has not been reported.

TET1, TET2, and TET3 share a conserved dioxy-
genase domain at their C-termini (Fig.  1b).58–60 The 
dioxygenase domain is composed of a cysteine (Cys)-
rich domain and a double-stranded β-helix fold (DSβH) 
domain that are compactly arranged to mediate catalytic 
activity. The DSβH domain consists of 3  Fe2+-binding 
sites and one α-ketoglutarate (α-KG)-binding site. In 
addition, full-length TET1 and TET3 proteins contain 
N-terminal CXXC-type zinc-finger domains. CXXC 
regulates the recruitment and binding of TET1 and TET3 
to DNA sequences, and provides a unique regulation 
of the methylation signature for genes associated with 
embryogenesis, gametogenesis, and neuronal devel-
opment.53,61–63 TET2 protein lacks a DNA recognition 
domain and depends upon other DNA-binding proteins 
for interaction with DNA. In addition, the short forms of 
TET1 and TET3, including TET1s, TET-3 s, and TET-3o 
(an oocyte-specific isoform), all lack CXXC domains.54,63 
Therefore, TET1s, TET-3o, and TET-3 s are primarily 
dependent on interaction with other DNA-binding pro-
teins for DNA binding.

The mutations and expression of TET genes 
in the pathogenesis of cancer

The expression of TET genes in cancers

Compared to non-cancerous surrounding tissues, reduced 
levels of 5-hydroxymethylcytosine (5hmC) have been 
reported in multiple types of human cancers, such as 
hematopoietic malignancies, melanoma, lung cancers, 
pancreatic cancers, hormone-receptor-positive breast 
cancers, colon cancers, liver cancers, and glioblastoma 
multiforme, which are all associated with loss-of-function 
TET mutations or decreased expression levels of TET 
proteins.64–74 The reduction of 5hmC results in the aber-
rant methylation of tumor suppressor genes leading to 
tumor formation, progression, and invasion. Studies sug-
gested that low 5hmC is an important marker for early 
diagnosis and predicts poor prognosis in some cancer 
types.73–80 However, in some other cancer types, includ-
ing gastric cancers, lung cancers, triple-negative breast 
cancer, human epidermal growth factor receptor-enriched 
breast cancers, ovarian cancers, and gliomas, levels of 
TET proteins and 5-hmC are increased.81–84 TET proteins 
in such cancers function as oncoproteins, which promote 
cell proliferation and tumor progression. Thus, the roles 
of TET proteins in cancer pathogenesis might be tissue- 
and cell-type-specific.85

The mutations of TET genes in cancers

Loss-of-function TET2 mutations are commonly found in 
blood cells from healthy individuals over 50 years old. 
TET2 mutations in ARCH lead to a premalignant condition 
in hematopoietic tissue, which predisposes to leukemia/
lymphoma transformation. TET2 mutations are commonly 
detected in almost all types of hematopoietic malignan-
cies including MDS, myeloproliferative neoplasms, AML, 
PTCL, and DLBCL.30–42,86 Loss-of-function TET1 and TET3 
mutations are detected in non-Hodgkin B-cell lymphoma, 
including DLBCL, and follicular lymphoma.87–91 In addi-
tion, TET1 is also mutated in 12–15% of T-ALL and 1–5% of 
AML patients.92,93 TET3 mutations are very rarely identified 
in  PTCL37 and chronic lymphocytic leukemia.94 However, 
mutations of the TET1/2/3 genes are infrequent in solid can-
cers and their significance in such cases is unknown.66 In 
prostate cancers, TET2 mutations are detected in 6% of pri-
mary tumors and 20% of metastatic lesions.95 Whether TET2 
mutations contribute to the metastatic advantage of prostate 
cancer needs to be determined experimentally.

Transcriptional regulation of TET1 gene in cancers 
(Fig. 1a)

In embryonic stem (ES) cells, pluripotent genes OCT4, 
NANOG, MYC, and SOX2 are strongly enriched in a super-
enhancer upstream of promoter 1 of the TET1 gene, stim-
ulating the expression of TET1 but not TET1s.53 During 
differentiation, TET1 is down-modulated by PRC2 binding 
of the super-enhancer, localized + 40 kb downstream of the 
TET1 TIS.96 HIF-2α binds at − 158 to − 1 bp upstream of 
the TIS of TET1 and induces TET1 expression in response 
to hypoxic conditions.97 In lung epithelial cells, p53 binds 
at − 192 bp/ + 29 bp of the promoter and represses TET1 
expression.84 FOXA1 occupies the TET1 enhancer  + 50 kb 
downstream of TIS and induces TET1 gene expression.98 
During the prepubertal period, gonadotropin-releasing 
hormone (GnRH) stimulates luteinizing hormone-β poly-
peptide expression and differentiation of gonadotropic 
cells by repressing TET1s expression. GnRH plays such a 
role by inactivating a distal enhancer located − 20 to 22 kb 
upstream of the TIS.99 TET2 binds to this enhancer to main-
tain TET1s expression.99 TET1 is down-regulated in many 
types of cancers, such as breast cancer, pancreatic cancer, 
rectal cancer, oral squamous cell carcinoma, lymphoma, 
multiple myeloma, bladder cancer, liver cancer, and non-
small-cell lung cancer, implying a tumor repressive activ-
ity for TET1.78,85,87,100,101 A CGI has been identified in 
the TET1 promoter and exon 1 region. In many types of 
cancers, down-regulation of TET1 might be mediated by 
HMGA2 and PRC2 via epigenetic methylation of the CGI 
promoter.96,102 C/EBPα directly binds to the TET1 promoter 
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and regulates TET1 expression.103 In lung cancer and glio-
blastoma multiforme, epidermal growth factor receptor and 
MAPK activation silence TET1 expression by down-regulat-
ing C/EBPα. In basal-like breast cancer, thyroid carcinoma, 
skin cutaneous melanoma, and lung adenocarcinoma, TNFα 
stimulates NF-κB activation, which represses TET1 expres-
sion by binding to the TET1 promoter.104 In both cellular and 
animal models, inhibition of EGFR signaling restores TET1 
expression.103 In colon cancers,  BRAFV600E downregulates 
TET1 and TET2 expression which results in a hypermeth-
ylation phenotype in the cancer cells.105 TET1 down-regu-
lation is involved in disease initiation and cancer invasive-
ness/metastasis, and is associated with a poor prognosis. In 
breast cancers, down-regulation of TET1 results in HOXA9/
HOXA7 repression, which leads to breast cancer growth and 
metastasis.102 In prostate cancers, TET1 suppresses cancer 
invasiveness by activating the tissue inhibitors of metallo-
proteinases.106 In rectal cancers, TET1 inhibits the WNT 
signaling pathway by up-regulating WNT inhibitors DKK3 
and DKK4. Downregulation of TET1 promotes cancer 
development due to the activation of WNT signaling. Inter-
estingly, a study suggests that TET1 is overexpressed in 40% 
of triple-negative breast cancer patients. In these types of 
cancers, TET1 expression is involved in cancer activation 
pathways including EGFR, PI3K, and PDGF, and is corre-
lated with cell migration, cancer stemness, tumorigenicity, 
and poor survival.107–109 It suggests that TET1 might func-
tion as an oncoprotein and a therapeutic target in these types 
of cancers.85 Furthermore, TET1s is aberrantly expressed 
in multiple cancer types including breast, uterine, and glio-
blastoma. The predominant TET1s activation in cancer 
cells results in dynamic site-specific demethylation outside 
of CGIs, which is associated with worse overall survival in 
breast, uterine, and ovarian cancers.54

Transcriptional regulation of TET2 and TET3 genes 
in cancer

Compared to TET1, the transcriptional regulation of TET2 
and TET3 genes has been studied in  much less  detail 
(Fig.  1a). In ES cells, OCT4 binds to the promoter at 
1788/1795 bp (relative to the TSS) of the TET2 gene and 
promotes TET2 expression.110 In addition, OCT4-SOX2-
binding elements are identified at ∼− 140 kb and − 200 kb 
of the TET2 TSS.111 In response to hypoxia, HIF1α was 
found to repress TET2 expression in melanoma cells.112 In 
pancreatic cells, TGF1β induces the expression of TET2 
by stimulating SMAD4 binding of an enhancer proximal 
to the distal 3’ region of the TET2 gene.70 Decreased TET2 
and 5-hmC were found in ovarian carcinoma tissues and 
colorectal cancer patients, which was associated with high 
tumor grade, pathologic stage, lymph-node metastasis, and 
vascular thrombosis as well as chemoresistance and poor 

clinical outcomes.113–115 GATA6 is a key TF for the differ-
entiation of pancreatic progenitors. In aggressive squamous-
like PDAC subtypes, TET2 is down-regulated due to the 
loss of SMAD4, which is correlated, with a reduction of 
5hmC and GATA6. Metformin and Vitamin C restore 5hmC 
and GATA6 levels by enhancing TET2 stability, reverting 
squamous-like tumor phenotypes and WNT-dependence 
both in vitro and in vivo.70

CGIs have also been identified in the promoter, intron 
1, and intron 2 of the TET3 gene. TET3 is epigenetically 
repressed in gliomas due to the methylation of these CGIs.116 
Loss of TET3 expression was identified in 32% of GCs and 
28% of CRCs.117 TET3 was down-regulated in ovarian can-
cer cells during TGF-β1-induced epithelial–mesenchymal 
transition (EMT) and was correlated with pathological 
grade.  TET3  over-expression was found to suppress ovar-
ian cancer by up-regulating miR-30d, which then blocks 
TGF-β1-induced EMT.118 However, a study suggested that 
increased TET3 levels in ovarian carcinoma are associated 
with poor clinical-pathological status and poor prognosis.119

MicroRNAs regulate the expression of TET genes

The expression of TET proteins is also regulated by micro-
RNA (miR)-mediated post-transcriptional repression.120 
Approximately 30 miRNAs have been identified that repress 
TET2 expression, including miR-7, miR-125b, miR-29b/c, 
miR-26, miR-101, miR142, and Let-7.121 TET1 expression 
is regulated by miR-29 family members including miR-26a, 
miR-767, miR-494, and miR-520b.122–125 In hematopoietic 
tissues, miR-22 promotes HSC self-renewal and leukemic 
transformation by repressing TET2.126 In inflamed mouse 
epithelial cells, inflammatory cytokines such as IL-1β and 
TNF-α repress the expression of TET proteins by inducing 
NF-κB signaling-mediated miR20a, miR26b, and miR29c 
expression.127 In gastric carcinogenesis, miR-26 represses 
TET1/2/3 expression.81 In hepatocellular carcinomas, 
miR29a promotes SOCS1–MMP9 signaling axis-mediated 
tumor metastasis by repressing TET proteins.72 In models 
of type 1 diabetes, miR142-3p targets TET2 and impairs 
Treg differentiation and stability.128 In macrophages, Let-7 
promotes IL-6 by repressing Tet2 expression.129

TETs–TDG–BER system regulates DNA 
demethylation

TET1, TET2, and TET3 are  Fe2+ and α-KG-dependent diox-
ygenases. TETs catalyze the 1st step of demethylation by 
the hydroxylation of 5-methylcytosine (5mC) to 5hmC, and 
further oxidize 5hmC to 5-formylcytosine (5fC) and 5-car-
boxylcytosine (5caC).16 To fully complete the demethyla-
tion process, 5fC and 5caC, the products of TETs, can be 
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replaced by cysteine via either replication-dependent dilu-
tion/passive DNA demethylation or thymine DNA glycosy-
lase (TDG) and base excision repair (BER)-mediated active 
DNA demethylation.59,130 Both 5fC and 5caC are substrates 
for TDG. TDG catalyzes the excision of 5fC and 5caC to 
generate an apyrimidinic site (AP site). By coordinating with 
BER enzymes, TDG mediates the replacement of 5fC and 
5caC with cysteine. Studies suggest that TDG is essential 
in protecting CpG-rich promoters from hypermethylation 
and collaborating with key TFs by actively removing methyl 
groups from enhancers and promoters of target genes.131 
Thus, active dynamic DNA demethylation is primarily medi-
ated by an IDHs–TETs–TDG–BER-driven cytosine modi-
fication system. In addition, it was found that activation-
induced cytidine deaminase (AID)/APOBEC mediates an 
alternative oxidative deamination–demethylation pathway. 
AID/APOBEC is required for DNA demethylation during 
reprogramming of somatic cells and B-cell maturation.132,133 
AID catalyzes cytidine deaminases primarily at 5hmC sites 
to generate 5-hydroxymethyluracil (5hmU). 5hmU is sub-
sequently cleaved by TDG, a single-strand-selective mono-
functional uracil-DNA glycosylase 1 (SMUG1), Nei-like 
DNA Glycosylase 1 (NEIL1), or methyl-CpG-binding pro-
tein 4 (MBD4), and can be replaced by cytosine, as mediated 
by BER enzymes.134 Thus, AID mediates TET-dependent 
DNA demethylation.132,135,136 Furthermore, it was reported 
that both growth arrest and DNA damage-inducible protein 
45a (GADD45a)137,138 and GADD45b play critical roles in 
the demethylation of specific promoters,137–139, and BER 
plays essential roles in genome-wide active DNA demeth-
ylation in primordial germ cells (PGCs).140 Further study 
demonstrated that TDG, AID, and GADD45a form a ternary 
complex in regulating the methylation state of promoters and 
enhancers within the genome. Thus, it is most likely that 
GADD45a/b–TDG–AID–BER altogether mediate active 
DNA demethylation.131

AID is a key enzyme that mediates DNA methylation 
dynamics in germinal center B cells.141–143 AID initiates 
the somatic hypermutation process through deamination of 
cytidine to uridine in the recombined variable region, fol-
lowed by removal of the uracil base by uridine DNA gly-
cosylase and DNA repair by several error-prone BER and 
mismatch-repair enzymes.135 AID further induces the sec-
ond step of antibody diversification, class-switch recombi-
nation, through deamination of bases in the switch region, 
causing double-strand breaks and recombination.136 AID 
is a key regulator of myeloid and erythroid differentiation 
and DNA methylation in HSPCs.133,144 The demethylation 
activity of AID is severely impaired in the absence of TET2, 
without impairment of AID mutability, suggesting that AID 
is dependent on TET2 for its demethylating capacity. This 
explains an AID-dependent hyper-mutagenesis feature and 
tumor development in TET2-deficient animals.

DNA 5‑hmC is an epigenetic mark of gene 
activation

It should be clarified that 5hmC, 5fC, and 5caC are not 
only intermediates of passive and active DNA demethyla-
tion but also serve as stable epigenetic  marks145,146 and 
have distinct epigenetic regulatory functions because they 
are distributed genome-wide and can be recognized by 
specific reader proteins.147,148 For example, several selec-
tive 5-hmC readers have been identified, such as MeCP2, 
the MBD3/NURD complex, E3 ubiquitin-protein ligases 
(UHRF1 and UHRF2), DNA glycosylases (MPG and 
NEIL3), SALL1/SALL4, Thy28, PRMT1 (CHTOP)-meth-
ylome complex, Recql helicase, RBM14, PRP8, RPL26, 
MSH6, PNKP, and WDR76.148–152 Only three of them, 
NP95/UHRF1, MeCP2, and MBD3, have been confirmed 
in more than one study.149 These proteins bind to 5hmC-
DNA and regulate gene expression by recruiting co-activa-
tors or co-repressors. 5hmC is present in high amounts at 
active enhancers and the gene bodies of highly transcribed 
genes.153 5-hmC is associated with the activating histone 
marks H3K4me1, H3K4me3, and  H3K27ac153–157. This 
explains, in many cases, that gene expression is closely 
related to the 5hmC/5mC ratio of enhancers and/or pro-
moters.158–160 In addition, some of these 5-hmC reader 
proteins bind to 5hmC-DNA and recruit TETs, which 
further recruit TDG-BER complexes for completing the 
remaining steps of DNA demethylation.

The selective DNA binding of TET proteins

Although all 3 TET family members and their isoforms 
have similar catalytic activity as demonstrated by certain 
levels of functional redundancy,161,162 the distinct pheno-
types of Tet1, Tet2, and Tet3 knockout mice, as well as the 
distinct 5hmC/5mC patterns of Tet1, Tet2, and Tet3-defi-
cient cells, suggest significant non-redundant functions for 
the Tet proteins.163–168 Such distinct roles of the three Tets 
are partially explained by their distinct expression profiles 
within developmental tissues. For example, Tet1 and Tet2 
mRNAs levels are abundant in ES cells and PGCs,169,170 
while Tet3 is the only Tet gene expressed at substantial 
levels in oocytes and zygotes.171,172 Tet1 is expressed in 
fetal heart, lung, and brain, and adult skeletal muscle, 
thymus, and ovary, but not in adult heart, lung, or brain. 
Tet2 is primarily expressed in hematopoietic tissues.100,173 
Tet3 is highly expressed in neural progenitor cells where it 
preferentially binds to TSSs and regulates cellular identity 
and genes associated with the lysosomes, autophagy, and 
base excision repair pathways.57,174 The non-redundant 
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functions of the three TETs and their isoforms are also 
determined by their selective binding to genomic DNA 
regions. TET1 has a high affinity for a high density of 
CpG promoters, while TET2 is more commonly located 
at low CpG density promoters.168,174 In mouse ES cells, 
Tet1 primarily regulates 5hmC levels at gene promoters 
and TSSs, whereas Tet2 mainly regulates 5hmC levels 
in gene bodies and exon boundaries of highly expressed 
genes and exons, respectively.165,175 In induced pluripotent 
stem cells (iPSCs), TET1 and TET2 appear to target dif-
ferent genomic regions and promote opposing functions 
in reprogramming-mediated erasure of imprints and naïve 
pluripotent state transitions. TET1 promotes a primed state 
of pluripotency, while TET2 regulates a naïve state of 
pluripotency.165,176,177

DNA binding by TET1 and TET3 is primarily mediated by 
their CXXC domains, while the DNA binding of TET2 and the 
short isoforms of TET1 and TET3 is mediated by interactions 
with partner proteins. Both TET1 and TET3 regulate DNA 
methylation specifically at CpG sites within and around CGIs, 
appearing to show more flexible substrate specificity.178,179 
The TET1-CXXC domain binds CpG-rich DNA irrespective 
of methylation status, while the TET3-CXXC domain binds 
methylated CpG sites with relatively low affinity compared to 
a non-methylated CpG dinucleotide, with the highest affinity 
toward 5caC sequences.61,180,181 In addition, TET1-CXXC also 
binds to TFs FOXA1 and HIF2α, selectively mediating active 
epigenetic modifications at FOXA1 and HIF2α-dependent 
enhancers, respectively.98

TET1 binds CGI chromatin globally via its CXXC to pro-
tect CpG sites within and around CGIs from gaining aber-
rant methylation,178 while TET1s preferentially binds to CpG 
sites at non-CGIs and some targets CGI chromatin.54 Due to 
the selective binding of DNA regulatory regions, the roles 
of TET1 and TET3 are not always the same as their short 
isoforms and in many cases are the opposite. For example, 
compared to neurons, TET1 is highly expressed in glial cells, 
while TET1s is down-regulated. TET1 and TET1s expression 
has opposing effects on synaptic transmission and hippocam-
pal-dependent memory.182 In mice, Tet1 is restricted to early 
embryos, ES cells, and PGCs, whereas Tet1s is preferentially 
expressed in somatic cells. The expression of Tet1 and Tet1s 
switches during development and regulates epigenetic memory 
erasure.53 TET1s is overexpressed in multiple cancer types 
including breast, uterine, and glioblastoma, which is associated 
with worse overall survival.54

The interaction partner proteins of TETs

Many partner proteins of TET1, TET2, and TET3 have 
been identified; however, the interaction regions have been 
defined only for some of them (Fig. 2). Based on available 

information, most of the partner proteins bind to the C-ter-
minal fragment including the DSβH enzymatic domain of 
TETs; only a few of them bind to the N-terminal fragment. 
However, the details of the interaction sites are only well 
known for Sin3A on TET1 and TET3, and O-linked GlcNAc 
transferase (OGT) on TET1. Sin3A interacts with the Sin3-
interaction domain (SID) on TET1 (a.a. 889–903) and TET3 
(a.a. 257–271). Although SID is absent from TET2 and its 
dimeric partner, CXXC4 might mediate the Sin3A–TET2 
interaction.183,184 All three TETs interact with OGT through 
its C-terminal fragment.185–187 Detailed analysis demon-
strated that the last 45 a.a. of the C-terminus (C45) of TET1 
mediates OGT binding.188 However, the detailed binding 
sites of OGT on TET2 and TET3 have not been determined.

Partner proteins for all 3 TETs

Among all partner proteins, some of them can interact with 
all three TETs. For example, CTCF can interact with all 
three TETs and recruit them to the CTCF-binding sites out-
side of CGIs, regulating DNA methylation and gene expres-
sion.189–192 CXXC4 and CXXC5 interact with the catalytic 
domain of TET2 as well as short isoforms of TET1 and 
TET3, recruiting TETs to DNA.193 As is true for the CXXC 
domain of TET1 and TET3, the CXXC domain in CXXC4 
and CXXC5 proteins preferentially bind to unmethylated 
CGIs in gene promoter regions to maintain hypomethyla-
tion of CGIs.193,194 CXXC5 forms a complex with NANOG, 
OCT4, TET1, and TET2 and positively regulates the tran-
scription of pluripotency genes and TET enzymes.195 Inter-
estingly, CXXC4 negatively regulates TET2 activity by pro-
moting caspase-mediated degradation of TET2 protein.193 
WT1 physically interacts with TET2 and selectively regu-
lates TET2-dependent expression of target genes such as 
RUNX1.196,197 WT1 also interacts with TET1 and TET3 for 
target gene expression.198 In addition, some histone modi-
fiers such as SIRT1, histone deacetylases (HDACs) 1/2, and 
OGT as well as a variety of factors of the BER–DNA glyco-
sylase pathway, including PARP1, MBD4, NEIL1, NEIL2, 
NEIL3, TDG, SMUG1, PARP1, LIG3, and XRCC1, also 
interact with all three TETs.199–201 All these shared inter-
action partners might partially explain the overlapping and 
compensatory functions of the three TET molecules.

Partner proteins that have been identified 
for certain TET proteins

Many of the partner proteins selectively bind to one or 
two of the TETs and their isoforms. Several partner pro-
teins for TET1 have been identified; these include MeCP2, 
EZH2, LSD1, hMOF, and PCNA.151,156,202–205 TET3 
interacts with TFs including REST, ASXL1, MORF4L1, 
VAX1, and thyroid hormone nuclear receptor (TR), as 



 K. Joshi et al.

1 3

363 Page 8 of 23

well as the H3K36 methyltransferases NSD2, NSD3, 
and SETD2, as determined by immunoprecipitation and 
LC–MS/MS.192 Significantly more TET2-interacting part-
ners have been identified, including TFs (C/EBPα, PU.1, 
Klf4, Tfcp2l1, MBD3, MBD3L2, YBX1, FOXK2, IKZF1, 
NFIL3, ATRX, CUX1, YY2, WT1, EBF1, SNIP1, PML, 
and IκBζ158,197,206–211), histone modifiers (SMARCB1, 
SMARCC2, SMARCE1, P300/CBP, HDAC1, HDAC2, 
SIN3A EZH2, HCFC1, NCOR1/2, BAZ1A/B, TOP2A/B, 
MBD2, PHF2, INO80, SAP30BP, TRRAP, WDHD1, 
CHD8, MLLT3, UHRF2, and  CHAF1A148,158,207,212–216), 
and signaling regulators (AMPK, JAK2, 14–3-3Z/D, and 
14–3-3E  proteins202). These selective interacting partners 
of TETs determine the TETs’ functional specificity. For 
example, Mbd3/NURD recruits TET1 to genomic sites 
to regulate the expression of 5-hmC-marked genes in ES 
cells.151 Lin28A binds to active promoters and recruits 
TET1 to regulate gene expression.217 EGR1 recruits 

TET1s to target genes and selectively regulates the expres-
sion of EGR1 target genes by DNA demethylation.218 In 
iPSCs, ZFP281 drives TET1 to the promoter of target 
genes including TET2 to promote primed pluripotency. 
SNIP1 selectively interacts with TET2 (but not TET1 nor 
3), bridging TET2 to TFs, including C-MYC, CDC5L, 
and BCLAF1.208 SNIP1 recruits TET2 to C-MYC tar-
get genes and regulates C-MYC target gene expression. 
TET2–SNIP1–cMYC ternary complex regulates target 
gene expression, playing a crucial role in DNA damage 
response and cellular apoptosis.208 REST recruits neuronal 
TET3 to mediate 5hmC formation and transcriptional acti-
vation.192 TET-3s  also interacts with NSD2, NSD3, and 
SETD2 to regulate gene expression by mediating H3K36 
trimethylation. In addition, TET3 interacts with TR to sta-
bilize it and enhance its function independent of TET3 
catalytic activity.219 TET3 also interacts with histone vari-
ant H3F3A, regulating chromatin modification.192

Fig. 2  Interaction partner proteins of TET proteins. The interacting 
partner proteins of TET1, TET2, and TET3 are listed in a, b, and c, 
respectively. The partner proteins for which the interaction regions 
have been identified are listed under each TET at the correspond-
ing regions. The partner proteins for which the interaction regions 

have not yet been defined are listed on the right side of each TET. 
The partners that are shared by all three TETs are listed in black font, 
while the partners that are specific for one or 2 TETs are listed in red 
font
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Functional subgroups of the partner proteins

Based on their functions, the partner proteins of TETs can 
be divided into four groups: TFs, histone modifiers, signal-
ing molecules, and factors of the BER–DNA glycosylase 
pathway. Most TFs such as NANOG, RUNX1, PU.1, and 
PPARγ bind to regulatory regions of their target genes and 
recruit TETs to regulate target gene expression.203,215,216,220 
The binding motifs of ~ 66% TFs contain CpG dinucleotides. 
The binding of these TFs may be affected by CpG meth-
ylation.7 Based on the binding affinity of methylated CpG 
(mCpG) motifs, TFs can be divided into four types: Meth-
ylPlus TFs (TF1, preferred to bind to mCpG), 5hmC-DNA 
readers (TF2, preferred to bind to 5hmCpG), methylminus 
TFs (TF3, preferred to bind to CpG), and methylation-insen-
sitive TFs (TF4, little affected by methylation)7,8 (Fig. 3). 
The TF1 proteins (such as CEBPB, MBD1, MBD3, MeCP2, 
MBD3L2, GATA3, GATA5. WT1, PRDM14, Nanog, 
ZFP57/KAP1, OCT4, SOX2, HOXB13, KLF4, FOXA1, 
EBF1, and EGR2) preferentially bind to 5mCpG motifs and 
function as pioneer factors to recruit TETs for converting 
5mC into 5hmC.9,197,221–229 The TF2 molecules (such as 
MeCP2, MBD3/NURD complex, UHRF1, UHRF2, MPG, 

NEIL3, and SALL1/SALL4) preferentially bind to 5hmC-
DNA sequences to either recruit TET–BER–DNA glyco-
sylase complexes for fully demethylating DNA or recruit 
co-activators for activation of gene expression,201 while TF3 
(such as AP-1, C-MYC /MAX, N-MYC, ETS-2, C-MYB, 
NF-κB, PAX5, RUNX1/2/3, NRF1, CTCF, CEBPα, CREB, 
and PU.1) bind to CpG motifs to regulate gene expression 
by recruiting TET-histone modification complexes.230,231 On 
the unmethylated DNA sequences, TETs might also play 
a role in maintaining the unmethylated state. Interestingly, 
the IDAX protein binds to unmethylated CpGs and inhibits 
TET2 binding to the demethylated regions through activa-
tion of caspase-mediated degradation, which might help to 
stop the demethylation process.193 Thus, it is most likely that 
the TFs form a hierarchy, which sequentially binds to DNA 
sequences and cooperates with TET proteins and histone 
modifiers to regulate target gene expression. Consequently, 
cell-type-specific TFs mediate a cell-type-specific binding 
pattern of TET proteins (Fig. 3). For example, in mouse 
ES cells, Tet1 uses its CXXC domain to bind to enhancers 
with 5mCpG islands and converts 5mC into 5hmC. Sall4a 
binds to 5hmC at enhancers and facilitates further oxidation 
of 5hmC at its binding site by recruiting Tet2.232 MBD3/

Fig. 3  Subgroups of TET-interacting TFs. The TET-interacting TFs 
can be divided into TF1, TF2, and TF3 based on their binding affin-
ity for 5mC, 5hmC, and 5C, respectively. TF1 can bind 5mC DNA 
and recruits TET to initiate the first step of DNA demethylation by 
converting 5mC to 5hmC. TF2 can bind to 5hmC promoters/enhanc-

ers to turn on gene expression by recruiting co-activators (CoA) or 
to further complete the DNA demethylation elements by recruit-
ing TET–TDG–BER complexes. TF3 binds 5C promoters/enhanc-
ers to promote gene expression by recruiting CoA or regulating gene 
expression by recruiting TET-histone modifiers (HMs)
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NURD binds to 5hmC and recruits TET1 to genomic sites 
to regulate the expression of 5-hmC-marked genes.151 Such 
TET protein-associated sequential binding of TFs to DNA 
sequences is observed in almost all cellular processes by 
regulating the epigenetic landscape and inducing the expres-
sion of fate-determining genes.

Methylation serves as a barrier to reprogramming and 
differentiation.233,234 During induced reprograming of epi-
blast-like cells to PSCs, PRDM14 induces TET1/2-demeth-
ylation-mediated recruitment of OCT3/4 to the enhancers 
of pluripotent genes such as Klf2.235 During the specifica-
tion of PSCs to primordial germ cells, PRDM14, Nanog, 
and OCT4 are capable of binding to 5mCpG sites to initiate 
the stepwise epigenetic modification by recruiting TET1/2 
proteins and other epigenetic modifiers.223 During induced 
reprograming of B cells or embryonic fibroblasts to gener-
ate PSCs, Tet2 is recruited by Klf4 and Tfcp2lƒ1 respec-
tively to drive active enhancer demethylation of chromatin 
and induce pluripotency-related genes.209 Thus, most TF1s 
are fate-instructive pioneer factors that initiate the cellular 
processes such as lineage commitment and differentiation 
by establishing epigenetic configurations,236–240 specifically 
when they collaborate with non-pioneer TFs.241–243

However, such mGpC-binding affinity-based sub-classifi-
cation of TFs is not always accurate because binding affinity 
can be influenced by the surrounding sequence context. In 
addition, many TFs have more than one consensus-binding 
motif, while methylation only influences the binding of 
TFs to certain motifs. Thus, many TF3s can also function 
as pioneer factors, especially in collaboration with other 
TFs. For example, during the differentiation of fibroblasts 
to adipocytes, C/EBPα and CREB heterodimerize and bind 
half-CRE (CGTCA) and half-C/EBP (CGCAA) sequences 
of the tissue-specific methylated promoters to initiate DNA 
demethylation by recruiting TET2.244 This allows the bind-
ing of other TF3s (such as CEBPα/β, c-Jun, JunD, ATF2, or 
PU.1) for transcriptional activation.7 During differentiation 
of pro-B progenitors to pre-B progenitors, PU.1 and E2A 
bind to the 5mC enhancers of target genes and recruit TET2 
and TET3 for stepwise DNA methylation. This is followed 
by the binding of other key B-cell-specific TFs to turn on 
the B-cell differentiation process.214 During induced pre-B-
cell-to-macrophage trans-differentiation, CEBPα collabo-
rates with PU.1 to induce the myeloid cell fate by regulating 
two types of enhancers on myeloid genes, pre-existing ones 
and de novo ones. The pre-existing enhancers are primed 
by PU.1, which maintains chromatin accessibility for the 
binding of CEBPα. In de novo promoters, CEBPα acts as a 
pioneer factor to initiate TET2-mediated demethylation fol-
lowed by PU.1 recruitment.209,245 Therefore, the functional 
identification of pioneer factor(s) for different cellular pro-
cesses is needed to elucidate transcriptional-epigenetic regu-
latory mechanisms for each cellular process.

Among the histone modifiers, most of them are negative 
transcriptional regulators such as the SIN3A complex, the 
NuRD complex, HDAC1, HDAC2, and EZH2, which medi-
ate target gene repression,156,207,246 while some others are 
positive transcriptional regulators, including CBP, hMOF, 
NSD2, NSD3, and SETD2 that promote gene expression via 
modulating  H3K27ac,  H4K16ac, and  H3K36Me on promot-
ers.247 Such TET-related histone modification is independent 
of the catalytic activity of TETs. Furthermore, some of the 
partner proteins such as OGT, PARP1, and VprBP regulate 
the functions of TETs through post-transcriptional modifica-
tions (see the following section).

Post‑translational regulation of TET proteins

The N-terminal sequence of the TET proteins plays a critical 
role in regulating TET activity by interacting with their cata-
lytic domains. Mammalian TETs undergo a plethora of post-
translational modifications (PTMs). However, the functional 
significance of some of these modifications is not yet well 
understood. Some of the well-known PTMs that are com-
monly found on TETs are GlcNAc, phosphorylation, ubiq-
uitylation, acetylation, and  proteolysis210,212,248–251 (Fig. 4).

Phosphorylation regulates the activities of TET 
proteins

Mass spectrometric analysis identified over 10–20 residues 
that can be phosphorylated in each of the TET proteins.248 
However, the role of phosphorylation has only been func-
tionally studied for a few of these residues. During DNA 
damage repair, ATM phosphorylates TET1 on S116, S262, 
and S546, regulating DNA repair.252 The energy sensor, 
AMPK (AMP-activated protein kinase), phosphorylates 
human TET2 on Ser99 (murine Tet2, Ser97), protecting 
TET2 protein from calpain-mediated degradation. Thus, 
active AMPK promotes TET2 stability and facilitates its 
tumor-suppressive function.250,253,254 Several members of 
the 14-3-3 group of adaptor proteins bind to Ser99 phospho-
rylated TET2 and protect it from phosphatase 2A (PP2A)-
mediated dephosphorylation.255,256 The association of 14-3-3 
proteins is impaired in some leukemia-related TET2-mutants 
(around residue Ser99), explaining the reduced protein sta-
bility of these mutant TET2 proteins.255 In diabetic mice, 
high glucose levels impede the tumor-suppressive activity 
of TET2 and accelerate tumor development by blocking 
AMPK-mediated phosphorylation of TET2 and reducing 
TET2 protein levels as demonstrated in xenograft tumor 
models.250 This explains why diabetic patients have an 
increased risk for cancer and cancer patients with diabe-
tes have a poor prognosis as observed in epidemiological 
studies.257,258 The anti-diabetic drug metformin and other 
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AMPK activators such as A769662 display antitumor activ-
ity by activating AMPK-mediated phosphorylation of TET2 
Ser99 and increasing 5hmC levels. Diabetes risk reduction 
diets improve the survival of cancer patients.259 In addition, 
in erythroid progenitor cells, hematopoietic cytokines such 
as erythropoietin (EPO) stimulate JAK2-mediated phospho-
rylation of TET2 on Tyr1939 and Tyr1964 residues, which 
enhances TET2 binding of the TF KLF1 and increases TET2 
activity for the proliferation and differentiation of erythroid 
progenitor cells.260 Consistently, in primary samples from 
patients with myeloproliferative neoplasms,  JAK2V617F 
increases TET2 activity and 5-hmC with genome-wide loss 
of cytosine methylation, leading to increased expression of 
several oncogenic transcripts, such as MEIS1 and HOXA9.260 
In hepatocellular carcinoma patients,  FGFR3∆7–9, a splicing 
mutant of FGFR3, directly interacts with TET2 and phos-
phorylates TET2 on its Y1902 site, leading to the ubiquitina-
tion and proteasome-mediated degradation of TET2.261 Such 
phosphorylation-related down-regulation of TET2 enhances 
cancer cell proliferation through repression of PTEN and 
upregulation of AKT signaling. Interestingly, in CML cell 

lines, the BCR–ABL fusion protein interacts with TET2 and 
sequesters the latter by cytoplasmic compartmentalization 
in a complex tethered by FOXO3a.262 Imatinib treatment 
releases TET2 from the complex and imports TET2 into the 
nucleus together with FOXO3a to activate BIM expression 
by binding to the BIM promoter.262 Whether TET2 is phos-
phorylated by BCR-ABL kinase needs to be determined.

During neuronal differentiation, CDK5 phosphoryl-
ates TET3 on residues Ser1310 and Ser1379 (Ser1318 and 
Ser1387 for the mouse) within its catalytic domain, changing 
its dioxygenase activity.251 Phosphorylated TET3 promotes 
the expression of the neuron-specific TF BRN2, as well as 
neuronal differentiation, through enhancing the enrichment 
of 5hmC and H2A.Z occupancy at the promoter of the BRN2 
gene. Non-phosphorylated TET3 promotes the expression of 
genes that are linked to metabolic processes.251 In response 
to DNA damage, ataxia-telangiectasia and Rad3-related 
kinase (ATR) phosphorylates TET3 on residues Ser42, 637, 
and 1426. TET3 phosphorylated in this way mediates DNA 
oxidation which promotes the ATR-dependent DNA damage 
response.263

Fig. 4  Post-translational modifications of TET proteins. The post-translational modifications of TET1, TET2, and TET3 are listed in a, b, and c, 
respectively. The green arrow depicts the addition of modifications. The Red Cross indicates removal modifications
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GlcNAc regulates the activity of TET proteins

All three TETs interact with OGT.185–187 OGT regulates their 
stability and activities by catalyzing GlcNAc and thereby 
regulating the phosphorylation of the proteins at their 
N-termini and low-complexity insert regions.248,264,265 OGT 
is also involved in the regulation of the binding of TETs 
to some genomic sites.266 At least eight GlcNAc sites have 
been reported for TET1 and up to 20 such have been identi-
fied for both TET2 and TET3.185,248,264,266 Many of these 
GlcNAc sites, such as Ser97 and Ser374 of TET2, Ser362 
and Ser557 of TET3, and Ser950 and Ser2016 of TET1, 
could also be phosphorylated. Thus, GlcNAc represses the 
phosphorylation of the corresponding sites and regulates 
the binding of TETs with other partners.248 In addition, the 
GlcNAc site Thr535 on TET1 enhances this protein's sta-
bility,266 while GlcNAc of TET3 promotes its cytoplasmic 
relocation,265 and GlcNAc of TET2 reduces its enzymatic 
activity by enhancing its nuclear export.187 Furthermore, 
OGT regulates the expression of TET target genes by Glc-
NAc and several other epigenetic modifiers and histones (see 
the following section).

Ubiquitination regulates the activities of the TET 
proteins

VprBP binds the cysteine-rich, dioxygenase domain of all 
three proteins, exerting a critical regulatory function on 
TET dioxygenases in normal tissue development and tumor 
suppression. VprBP induces CRL4VprBP (VprBP-DDB1-
CUL4-ROC1) E3 ubiquitin ligase-mediated monoubiqui-
tylation of TET1 on Lys1589 (Lys1537 in the mouse), of 
TET2 on Lys1299 (Lys1212 in the mouse), and of TET3 on 
Lys994 (Lys983 in the mouse). Such monoubiquitylation 
facilitates TET binding to chromatin and enhances 5hmC in 
corresponding genomic regions.212 TET2 mutations in leuke-
mic cells on either Lys1299 or residues essential for VprBP 
binding result in reduced chromatin binding and activity of 
TET2.212 In addition, mutation of Lys983 of TET3, but of 
neither TET1 nor TET2, also alters the enzyme’s subcellular 
localization from almost exclusively nuclear to mostly cyto-
plasmic. Whether monoubiquitylation selectively regulates 
the subcellular localization of TET3 needs to be determined. 
Interestingly, during HIV infection, the viral protein Vpr 
induces CRL4VprBP–mediated poly-ubiquitination of TET2 
Lys1299, inducing the degradation of TET2 to sustain IL-6 
expression and enhance HIV-1 replication.212,267

Acetylation regulates the activity of TET proteins

During oxidative stress, transcriptional co-activator p300 
acetylates TET2 on Lys110/111 residues to enhance the 
enzymatic activity of TET2 and to protect the protein 

against proteasomal degradation by the inhibition of TET2 
ubiquitination on certain residues in the C-terminal DSBH 
domain.210 TET2 acetylation enhances DNMT1 binding to 
promote protein stability. Consequently, TET2, along with 
TDG, is recruited to chromatin by DNMT1 to prevent abnor-
mal DNA methylation. TET2 Lys110/111 deacetylation is 
mediated by HDAC1/2.207 TET1 and TET3 are also acety-
lated by p300; however, the detailed sites for such modifi-
cations have not been determined.210 In MDS, SIRT1 inter-
acts with the TET2 C-terminal domain (a.a. CD1129–2002) 
and deacetylates it on Lys1472, 1473, and 1478 in  CD34+ 
HSPCs, regulating the stability and function of TET2 pro-
tein. SIRT1-deficient MDS HSPCs exhibit enhanced cell 
growth and self-renewal due to the reduction of TET2 lev-
els.268 The SIRT1 activator SRT1720 inhibits colony forma-
tion in MDS HSPCs and in vivo engraftment in NSGS mice 
by enhancing the tumor repressive activity of TET2.

Other post‑translational modifications of TET 
proteins

The stability of TET proteins is regulated by calpains.269 
TET1 and TET2 are degraded by calpain 1 in mouse ES 
cells, whereas TET3 is degraded by calpain 2 during ES 
cell differentiation.269 TET1 interacts with PARP1/ARTD1 
and is targeted by both noncovalent and covalent PARyla-
tion in TET1’s catalytic domain. The noncovalent binding of 
ADP-ribose polymers decreases TET1’s hydroxylase activ-
ity, while covalent PARylation stabilizes the TET1 enzyme 
and enhances its activity.270–272 In addition, PARP1 also pro-
motes TET1 gene expression by regulating DNA and histone 
modifications on the TET1 promoter.271

Metabolic regulation of TET protein activity

Fe2+ and α-KG, together with  O−2 and vitamin C, func-
tion as TET co-factors and are required for their dioxy-
genase activity.273–276 Both  Fe2+ and α-KG bind to the 
catalytic domain of TETs facilitating the insertion of 5mC 
into their catalytic pocket and providing accommodation 
to the oxidized derivatives of 5mC including 5hmC, 5fC, 
and 5caC.179,277,278 Thus, the dioxygenase activity of TET 
proteins is dependent on the availability of α-KG,  Fe2+, 
and  O2. α-KG is a product of IDHs, a family of metabolic 
enzymes. The IDHs, IDH1, IDH2, and IDH3, catalyze the 
oxidative decarboxylation of isocitrate to α-KG, which is an 
essential step in the tricarboxylic acid cycle. IDH1/2 muta-
tions are commonly detected in gliomas and hematopoietic 
malignancies which lead to the production of the oncome-
tabolite 2-hydroxyglutarate (2HG). Mutations in other genes 
encoding for the metabolic enzymes succinate dehydroge-
nase (SDH) and fumarate hydratase (FH) are prevalent in 
gliomas, cholangiocarcinomas, renal cell carcinomas, and 
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acute myeloid leukemias, among others. SDH and FH muta-
tions lead to the production of the oncometabolites succi-
nate and fumarate, respectively.279–281 An overabundance of 
these oncometabolites influences the catalytic activities of 
TET1/2/3 by competitive inhibition of their α-KG-binding 
site. In activated macrophages, itaconic acid, a metabolic 
product of the IRG1 enzyme, also inhibits the catalytic activ-
ity of TET2 via inhibition of TET2/α-KG binding.282 Thus, 
TET-mediated DNA demethylation is tightly regulated by 
glucose metabolism. Reactive oxygen species (ROS) and 
metal chelators can impede TETs’ oxidizing activities by 
reducing the  Fe2+ availability.283 Vitamin C convents inac-
tive  Fe3+ to active  Fe2+ which promotes TET1/2/3 enzymatic 
activity.284 Thus, in addition to its antioxidant properties, 
Vitamin C regulates gene expression and genomic stability 
by increasing TET-mediated 5hmC formation and promoting 
DNA demethylation.274,285–287

TETs regulate gene expression 
by both enzyme‑dependent 
and ‑independent mechanisms

TETs play critical roles in organ generation during embry-
onic development and tissue regeneration during postnatal 
life.161,175 TETs play such roles by regulating the timed 
expression of the key genes that determine cell identity and 
control cell differentiation. TETs and lineage-specific TFs 
cooperate to influence chromatin accessibility and regulate 
gene expression by (1) promoting site-specific DNA dem-
ethylation (mainly enhancers and CGI-rich promoter ele-
ments) and enzymatic-dependent activity;16,58,156,172,175,277 
and (2) regulating histone modifications via an enzymatic-
independent activity by forming chromatin regulatory com-
plexes with OGT, HDACs, and/or histone acetyltransferases 
(HATs)187,207,288,289 Fig. 5.

TETs regulate gene expression by enzymatic 
activity‑dependent site‑specific DNA demethylation

TET proteins collaborate with lineage-specifying TFs in 
cells, promoting the expression of cell-type-specific genes 

Fig. 5  TETs regulate gene expression by both enzyme-dependent and 
-independent mechanisms. After binding to DNA regulatory regions, 
TETs regulate target gene expression by (1) enzymatic demethylation 

of 5mC; and (2) recruiting histone modifiers, including OGT, Sin3A/
HDACs, or HATs.
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by demethylation of enhancers of target genes. ChIP-seq 
assays demonstrated that the top enriched binding motifs of 
TET proteins in DNA are enriched with binding sites for lin-
eage-specifying TFs of the respective cell types, maintaining 
5hmC and demethylation state in the active enhancers of tar-
get genes in an enzyme-dependent fashion.12,30,175,222,290,291 
For example, in ES cells, TET1/2 together with master self-
renewal TFs, including SOX2, KLF4, ESRRG, POU5F1, 
and NANOG, bind enhancers of the target genes that are 
essential for the maintenance of self-renewal.14 In myeloid 
cells, TET2, together with key myeloid differentiation TFs 
such as ERG, RUNX1, CEBPA, and GATA1 bind enhancers 
of genes that are necessary for myeloid lineage commitment 
and differentiation.14 Loss of TET2 causes down-regulation 
of cell-type-specific genes due to the widespread reduction 
of 5hmC and increased methylation of their enhancers, alter-
ing cell fate.14,292

In many types of cancers, TET proteins function as tumor 
suppressors by activating the expression of tumor repres-
sive genes. For example, in gastric cancer, TET1 inhibits 
the AKT and FAK signaling pathways by demethylation of 
the PTEN gene promoter.68 In colon cancer, TETs suppress 
the proliferation of cancer cells by demethylating DKK gene 
promoters, inhibiting the Wnt signaling cascade.293 In pan-
creatic cancer, TET1 restricts the cell cycle of cancer cells 
by up-regulating negative cell cycle regulators such as p16.69 
In these types of cancers, restoration of the enzymatic activ-
ity of TETs is a potent treatment strategy. However, in some 
other types of cancers, TET proteins function as putative 
oncoproteins and promote stemness in the cancer stem-like 
subpopulation that drives aggressiveness and chemoresist-
ance. For example, in ovarian cancers, TET1 induces the 
expression of cancer stem cell genes, which reprograms epi-
thelial cancer cells into a cancer stem-like state.82 In glio-
mas, TET1 and TET3 promote stemness and self-renewal 
of tumor cells by regulating the expression of core stem 
cell genes.294,295 In breast cancers, TET1 and TET3 coop-
eratively induce cancer stem-like cells by activating the 
TNFα–p38–MAPK signaling axis.296 In such types of can-
cers, high levels of TET proteins promote a subpopulation 
of the slow-growing chemoresistant stem-like cells that are 
associated with disease relapse and poor prognosis.297 In 
addition, TET proteins also regulate EMT and cancer metas-
tasis in a context-dependent manner.97,118,296,298 Thus, target-
ing TET enzymes for cancer therapy must also be strategized 
for context dependence.

TETs regulate gene expression via enzymatic 
activity‑independent histone modifications

Through their enzymatic-independent activities, TET 
proteins primarily repress gene expression. For example, 
TET proteins recruit OGT to histones at the promoters of 

target genes and regulate target gene expression by medi-
ating OGT-dependent GlcNAc of TFs, epigenetic regula-
tors, and histones.89,90,299 GlcNAc of H2B on Ser112 is 
required for subsequent Lys120 monoubiquitination and 
PRC1-mediated gene silencing.300 GlcNAc of RING1B on 
Ser278 and Thr250/Ser251 residues promotes the binding 
of RING1B to CBX7 and RYBP to form PRC1, resulting 
in  H2BK118 ubiquitination and silencing of a specific subset 
of genes.301 In the PRC2 complex, EZH2 is modified by 
GlcNAc on Ser75, which results in its being stabilized, thus 
negatively regulating tumor suppressor genes.302 In addi-
tion, TET proteins recruit Sin3A/HDAC1/2 to target genes, 
repressing target gene expression by deacetylation of histone 
H3K27.205,207 However, TET proteins also promote some 
target gene expression via enzymatic-independent activity. 
For example, via OGT-mediated GlcNAc of HCF1 (Tyr17, 
19, 21, and 22), the key component of H3K4 methyltrans-
ferase SET1/COMPASS complexes, TET proteins promote 
chromatin binding and  H3K4me3, inducing target gene 
expression.185–187,264,266,303,304 TET1 also upregulates the 
expression of proliferation and DNA damage repair genes 
by recruiting the HAT protein MOF to promoters, acety-
lating H4K16.247 TET3 promotes transcriptional activation 
in neurons by recruiting NSD2, NSD3, and SETD2, thus 
mediating H4K36 trimethylation.

Prospective

The activity of TET proteins shapes the local chromatin 
environment at enhancers and promoters to facilitate the 
binding of TFs and affect gene expression patterns.14 Muta-
tions or dysregulations of TET proteins lead to abnormal 
DNA methylation patterns and epigenetic chromatin modi-
fications, driving disease development. Although TET1 and 
TET3 have their DNA-binding CXXC domains which medi-
ate region-specific DNA binding and demethylation, TET2 
and the short forms of TET1 and TET3 rely on interactions 
with TFs for DNA binding. Thus, the regions of DNA bind-
ing of these TETs must conform to cell-type specificity, 
which is controlled by cell-type-specific TFs.

Based on their binding affinity to methylated DNA, TFs 
form a hierarchy in DNA binding, chromatin modification, 
and gene regulation. First, the methylation-insensitive pio-
neer TFs bind to methylated DNA to initiate DNA dem-
ethylation by recruiting TET proteins to convert 5mC to 
5hmC.305 Next, the secondary level of TFs (5hmC readers) 
binds to 5hmC-DNA to activate gene expression by recruit-
ing co-activators or to further complete DNA demethylation 
by recruiting a TET–TDG–BER complex. Finally, the third-
level TFs (methylation-sensitive) occupy the unmethylated 
DNA to control gene expression by recruiting co-activators 
or co-repressors. Such sequential and cooperative binding 
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of TFs and TETs leads to a relatively large open region of 
chromatin, which forms a super-enhancer in the target genes 
to determine the fate of cells.231 Many TFs can bind TET 
proteins. However, the hierarchy of these TFs has not yet 
been well characterized. Thus, the manner in which these 
TFs cooperate with TET proteins in the regulation of target 
gene expression needs to be better elucidated in the future.

Both positive and negative regulatory effects of TET pro-
teins on target gene expression have been reported. TET 
proteins activate the expression of target genes primarily 
by enzymatic activity-mediated DNA demethylation and/
or by OGT-regulated SET1/COMPAS-mediated H3K4 
trimethylation, while they repress the expression of target 
genes by recruiting SIN3A/HDAC1/2 or OGT-regulated 
PRC1. It is still unknown how such positive and negative 
regulatory mechanisms are coordinated in regulating target 
gene expression. Furthermore, the activity of TET proteins 
is regulated by many types of post-translational modifica-
tions. Detailed study of the molecular mechanisms by which 
the activities of TET proteins are regulated and how TET 
proteins selectively regulate target gene expression will pro-
vide useful information for designing medications for a new 
generation of TET-related disease treatments.
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