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Abstract

Natural killer T (NKT) cells play a pivotal role as a bridge between the innate and the adaptive immune response and are
instrumental in the regulation of homeostasis. In this review, we discuss the potential for NKT cells to serve as biodrugs in
viral infections and in cancer. NKT cells are being investigated for their use as a prognostic biomarker, an immune adjuvant,
and as a form of cellular therapy. Historically, the clinical utility of NKT cells was hampered by their low frequency in the
blood, discrepancies in nomenclature, and challenges with ex vivo expansion. However, recent advances in the field have
permitted the development of several NKT cell-based preclinical and clinical strategies. These new developments pave the

way for the successful implementation of NKT cell-based approaches for the treatment of human disease.

NKT cells can directly mediate lysis of infected and can-
cer cells, as well as induce other effector cells through
their expeditious release of cytokines.

Adoptive transfer of NKT cells into cancer patients holds
promise as NKT cells can target these cells and mediate
protection.

Current immunotherapeutic strategies using chimeric
antigen receptors, bispecific T cell engagers, and tumor
vaccines are being developed to harness the potential of
NKT cells.

1 Natural Killer T (NKT) Cells

Natural killer T (NKT) cells are an innate-like population
of CD1d-restricted T lymphocytes that are characterized by
rapid cytokine production following activation [1-4]. NKT
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cells express cell surface markers that are characteristic
of NK cells (CD56, CD161) and T cells, such as a T-cell
receptor (TCR). In addition to their expeditious release of
cytokines, after activation NKT cells also upregulate the
expression of cell death-inducing molecules, such as per-
forin, granzymes, and FAS ligand, which allows them to kill
cancerous and infected cells [5, 6].

CD1d-restricted NKT cells can be further character-
ized based on their TCR expression. Type I invariant NKT
(iNKT) cells express a specific TCRa chain, Val4Jal8 in
mice and Va24Jal8 in humans, in combination with spe-
cific TCRp chains (Vf8.2, 7 or 2 in mice, VP11 in humans)
[7-10]. Type I iNKT cells are also noted by their ability
to be activated by the glycolipid, a-galactocylceramide
(a-GalCer) [11-13], presented in the context of CD1d. Type
I NKT cells are less frequent in humans than in mice, and
make up 0.1-1% of circulating T cells in the blood [14]. In
contrast, type II NKT cells express diverse TCRs, are CD1d-
restricted, but are unresponsive to a-GalCer [15]. They have
been investigated experimentally using type II NKT cell
TCR-CD1d-antigen complexes CD1d-tetramers loaded with
other lipid antigens, specifically phospholipids, sphingolip-
ids, and glycerolipids [16, 17]. The diversity in the TCR rep-
ertoire can make it difficult to thoroughly characterize this
population in humans and can lead to some ambiguity when
investigating CD1d-specific NKT cells and other NKT-like
subpopulations. For example, many human studies investi-
gate CD567CD3* NKT-like cells, but this a heterogeneous
mixture of T cells that includes mucosal-associated invariant
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T (MAIT), yd T cells, activated CD8+ T cells, as well as
CDl1d-restricted type I and type II NKT cells [18]. Type 1I
NKT cells are thought to be present in higher numbers in
humans, compared to type I NKT cells, and gaining a bet-
ter understanding of their regulation is critical. Fortunately,
recent studies from several groups have made significant
progress in this area [19, 20].

Similar to classic T-cell subsets, NKT cells develop in
the thymus, but they diverge when they reach the double
positive stage [21]. In fact, iNKT cell development has been
well characterized [22]. Instead of being selected on thymic
epithelial cells, they are selected by other double posi-
tive thymocytes [23]. This selection event is dependent on
engagement between the TCR and CD1d as well as homo-
typic interactions between the signaling lymphocytic activa-
tion molecule (SLAM) family of receptors, which initiate
the NKT cell developmental program by upregulating the
early growth response 2 (Egr2) and promyelocytic leukemia
zinc finger (PLZF) transcription factors [24-28]. iNKT cells
can be divided into subsets similar to CD4 T-helper (Th)
subsets. NKT1 cells express the transcription factor T-box
expressed in T cells (T-bet) and primarily secrete gamma
interferon (IFN-y); NKT2 cells express high levels of GATA
binding protein 3 (GATA3) and PLZF and secrete Th2-type
cytokines, such as IL-4 and IL-13. NKT17 express inter-
mediate levels of PLZF, are RAR-related orphan nuclear
receptor (ROR)yt+ and secrete IL-17 [29-31]. Despite
effector differentiation occurring during thymic develop-
ment, significant plasticity in cytokine production has been
demonstrated after stimulation [32]. Other NKT cell subsets
have been described, such as IL-9 producing NKT cells at
mucosal surfaces, B-cell lymphoma 6 (BCL6) expressing
NKTygy (follicular helper) cells that produce IL-21, and
NKT10 cells, which express the transcription factor Nuclear
Factor, Interleukin 3 Regulated (Nfil3/E4BP4), rather than
PLZF, and produce IL-10 [33-36]. Notably, iNKT cell sub-
sets can regulate other lymphocyte subpopulations develop-
ing around them [37].

In contrast to classic T-cell subsets, the majority of iNKT
cells are tissue resident and do not circulate [38—40]. iNKT
cells express non-lymphoid tissue homing chemokine recep-
tors such as CCR2, CCRS5, and CXCR3. NKT cells have
different modes of activation. Specifically, iNKT cells can
be activated through antigen-dependent and antigen-inde-
pendent mechanisms [41, 42]. For example, iNKT cell effec-
tor functions can be induced by danger signals (ex. toll like
receptor (TLR) signaling) or by cytokines such as IL-12
and IL-18 [43, 44]. In humans, iNKT cells express CD4+,
CD8+, or neither (CD4-CD8-), referred to as double nega-
tive (DN) [16-19]; however, in mice iNKT cells express
CD4+ or are DN [15] because they express the transcrip-
tion factor Th-POK (T-helper-inducing POZ/Kriippel-like
factor), which blocks CD8 expression [45]. While most of
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the reports on a-GalCer-reactive NKT describe iNKT cells,
a-GalCer-reactive, CD1d-restricted NKT cells that use dif-
ferent TCR a-chains have been identified in mice [46] and
humans [47-49]. There are numerous populations of NKT-
like cells, which can express diverse afp TCRs, recognize
different lipid antigens (5), and express a variety of markers
associated with natural killer (NK) cells.

While NKT cells comprise a relatively small popula-
tion of T cells, their ability to bridge innate and adaptive
immune responses establishes them as an important regula-
tory cell population. In addition to their expeditious release
of cytokines, NKT cells can lyse infected or malignant
cells [50-53]. However, NKT cell number and activity are
reduced in multiple cancer types and in chronic infections;
therefore, understanding factors that regulate their devel-
opment and effector functions are of significant interest
[54-56].

2 NKT Cells and Viral Infections

NKT cells are thought to play a key role in controlling viral
infections, primarily due to their production of high levels
of IFN-y and the fact that many viruses have evolved mecha-
nisms to downregulate CD1d-mediated antigen presentation
to NKT cells [57-63]. Studies investigating the contribution
of NKT cells in antiviral immune responses in humans are
limited [64], but in the context of HIV-1, NKT cells have
been shown to be reduced following infection [65-68]. In
addition, in chronically infected patients, iNKT cells have
been reported to have an exhausted phenotype [69]. Impor-
tantly, iNKT cells have been shown to recognize HIV-1-in-
fected DCs, and therefore can play a critical role during the
early stages of infection [65].

COVID-19, the disease caused by the novel coronavirus
SARS-CoV-2, is one of the most devastating global pandem-
ics in modern history [70, 71]. As of August 2022, the coro-
navirus disease 2019 (COVID-19) pandemic has resulted in
581.8 million confirmed cases and 6.4 million deaths have
been reported globally (World Health Organization). The
symptoms from the disease can vary widely, and many stud-
ies have focused on immune profiling of COVID-19 patients
to identify factors involved in susceptibility to infection and
disease pathology [70, 72]. Given the ability of NKT cells
to respond to virally infected cells, several studies have
examined iNKT and NKT-like cells in COVID-19 patients
[18, 73—77]. For example, Liu et al. investigated circulating
iNKT (Va24Ja18*) and NKT-like (CD567CD3%) cells in
49 COVID-19-convalescent individuals (CI) compared to
27 matched SARS-CoV-2-unexposed individuals (UI) [73].
They observed a significant decrease in the percentage of
both iNKT and NKT-like cells in the CI compared to Ul
cohort months after recovery. In a study that recruited three
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cohorts of participants from centers across Germany and
France, it was found that the frequency of circulating NKT-
like cells (CD56*CD3%) served as a predictive biomarker
for disease severity in COVID-19 patients [74]. However, as
noted by Koay and colleagues, the majority of CD56*CD3™*
are not iNKT cells [18]. Moreover, when Koay et al. exam-
ined circulating NKT cells from hospitalized patients using
a-GalCer-loaded tetramers, no significant differences in
iNKTs were observed between COVID-19 patients that were
indicative of disease severity. Taken together, these studies
suggest that infection with SAR-CoV-2 can lead to a reduc-
tion in circulating NKT-like cells and that these cells may
serve as a prognostic or predictive biomarker of disease. In
contrast, additional mechanistic studies are needed to deter-
mine if classic iNKT cells respond to SARS-CoV-2 infected
cells and if the virus utilizes specific mechanisms to subvert
CD1d-mediated antigen presentation. It would be intriguing
to investigate the effectiveness of the adoptive transfer of
NKT cells into virally infected patients, particularly as sev-
eral studies have demonstrated that patients with mutations
in immune-related genes or primary immune deficiency
diseases that result in NKT cell deficiency can also have
increased susceptibility to viral infections [78—80].

3 NKT Cells and Adoptive Imnmunotherapy

One immunotherapeutic strategy that has transformed the
treatment of B-cell malignancies is chimeric antigen recep-
tors (CARs). CARs are synthetic receptors engineered to
contain a single-chain variable fragment (scFv) that permits
specific extracellular antigen recognition and binding and a
CD3( domain, the intracellular domain through which the
TCR signals [81]. Traditionally, T cells are transduced or
transfected with the CAR and then infused into patients for
cancer immunotherapy. CARs consisting of only the extra-
cellular scFv and intracellular CD3( are known as first-gen-
eration CARs. However, these CARs still need endogenous
co-stimulation for T-cell activation against the tumor. The
addition of either one or two co-stimulatory endodomains
to CD3¢, known as second- and third-generation CARs,
respectively, improves proliferation, in vivo persistence, and
antitumor efficacy. Fourth-generation CARs have also been
engineered to include a transgene that encodes for a cytokine
to promote activation of the cell attached to the CAR and
further improve antitumor efficacy [82].

CAR-T cells are very effective for the treatment of B cell
malignancies; however, success in solid tumors has been
limited by the immunosuppressive tumor microenvironment
and due to challenges in the identification of suitable targets.
Given that iNKT cells are CD1d-restricted, they have the
ability to target different tumor types. In neuroblastoma, the
GD2 ganglioside has been shown to be an effective target.

Therefore, Heczey et al. generated and expanded ex vivo
CAR.GD2-NKT cells [83], based on the GD2 antibody
clone 14.G2a. CAR.GD2-NKT cells are cytotoxic against
GD2-positive neuroblasts and against CD1d-positive cells,
indicating the dual-specific cytotoxicity of CAR.GD2-NKT
cells. The inclusion of co-stimulatory endodomains, CD28
(G28z) or 4-1BB (GBBz) or both (G28BBz), resulted in
improved survival of the CAR-NKT cells. To examine the
impact in vivo, CAR.GD2 NKT cells were adoptively trans-
ferred into a metastatic neuroblastoma xenograft model,
and it was found that the inclusion of these co-stimulatory
domains resulted in improved survival. In addition, the
frequency of tumor-infiltrating CAR.GD2 NKT cells was
greater than that of CAR.GD2 T cells demonstrating the
ability of CAR.GD2 NKT cells to localize to tumor sites
[83]. A concern of CAR-T cell immunotherapy has been the
induction of graft versus host disease (GVHD). In a hu-NSG
mice model, it was found that CAR.GD2 NKT cells did not
induce GVHD, indicating the allogeneic potential of CAR-
NKT cells compared to CAR-T cells [83] (Fig. 1).

While CAR.GD2 NKT cells were shown to increase sur-
vival in mice, recurrence of tumor emphasized the need to
enhance in vivo persistence of these transduced NKT cells.
In another set of studies focused on neuroblastoma, GD2.
CAR NKT cells were engineered to co-express IL-15 with
either CD28 or 4-1BB co-stimulatory endodomain, further
denoted by GD2.28z.15 and GD2.BBz.15, respectively, to
evaluate in vivo persistence of CAR-NKTs [84]. However,
through functional testing it was shown that CAR-NKT
cells expressing 4-1BB undergo activation-induced cell
death leading to reduced CAR-NKT cell numbers during
ex vivo expansion. The co-expression of IL-15 with the
CD28 endodomain promoted survival and in vitro functional
fitness of GD2.CAR NKT cells through increased cellular
expansion and greater control over tumor cells. The GD2.
CAR NKT cells with and without IL-15 co-expression were
adoptively transferred into NSG mice. The GD2.28z.15 con-
struct allowed for enhanced in vivo expansion and persis-
tence of NKT cells without significant cytotoxicity [84]. A
close examination of the neuroblastoma nodules in the liver,
spleen, bone marrow, and lungs of NSG mice, revealed that
GD2.28z.15 NKT cells were present at high numbers indi-
cating that these CAR-NKT cells are capable of effectively
infiltrating and persisting in tumor tissues [84] (Fig. 1).

Based on these promising in vitro and in vivo results [83,
84], GD2.CAR-NKT cells are currently being evaluated in
a clinical trial for children with relapsed or resistant neuro-
blastoma (NCT03294954) [85]. The interim results demon-
strated efficacy of autologous CAR-NKT cells, specifically
GD2.CAR-NKT cells with co-expression of IL-15, to effec-
tively and safely expand and traffic to tumor sites in patients
with refractory neuroblastoma. In the past, low numbers
of circulating NKT cells have been a major of concern;
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CAR-NKT cells cancer
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CAR NKT cell

Proinflammatory and
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Fig.1 Advantages of chimeric antigen receptor (CAR)-invariant
NKTs (iNKTs). CAR-iNKT cells can recognize tumor cells through
both their standard iNKT T-cell receptor (TCR) and the specific anti-
tumor antigen CAR, leading to targeted cytotoxicity. The intracellular
portion of the CAR consists of the CD3{ domain for TCR signaling.
The CAR can also be modified to include a co-stimulatory endodo-
main and a cytokine transgene to increase production of pro-inflam-
matory cytokines and enhance overall antitumor efficacy. CAR-iINKT
cells hold great promise for immunotherapy as they overcome various

however, these studies demonstrate that CAR-NKTSs can be
successfully expanded ex vivo on a clinical scale to treat
patients (Fig. 1).

A\ Adis

A) Persistence

CAR-NKT Benefits

B) No induction of GVHD

——— No allogeneic
response
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indirect killing

C) Tumor infiltration and localization to
tumor sites

obstacles that hinder the efficacy of other commonly used immuno-
therapies. CAR-iNKT cells can persist in vitro and in vivo to mini-
mize tumor recurrence. Unlike traditional CAR-T cells composed of
classic CD4 and CDS8 T cells, CAR-iNKT cells do not induce an allo-
genic response against healthy cells and therefore prevent the induc-
tion of graft-versus-host disease (GVHD). CAR-INKT cells can also
infiltrate tumor sites and localize to tumor sites, maximizing their
antitumor potential

More than half of patients with B-cell lymphomas that are
treated with anti-CD19 CAR (CAR19)-T cell immunother-
apy relapse, indicating the need to develop more effective
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immunotherapeutic strategies [86, 87]. Due to the effector
functions of iNKT cells and the expression of CD1d on these
cells, the generation of a CAR19-iNKT cell holds prom-
ise for a greater anti-tumor effect in B-cell malignancies
[88, 89]. CAR19-iNKT cells exposed to a-GalCer, a potent
iNKT cell agonist, resulted in increased cytotoxicity against
CD1d+ and CD1d+CD19+ targets, but not CD1d-CD19-
and CD1d-CD19+ targets [88]. The interaction of CD1d on
target cells with the CAR19-iNKTcells is important due to
the dual targeting of CD1d and CD19. Compared to CAR19-
T cells, CAR19-iNKT cells had greater proliferation and
expansion in B lineage malignancies. When CAR19-iNKT
and CAR19-T cells were infused into tumor-engrafted NSG
mice with CD1d+CD19+ B cell malignancy, the CAR19-
iNKT cells had improved overall and tumor-free survival,
indicating the enhanced in vivo anti-tumor activity of
CAR19-iNKT cells compared to CAR19-T cells. Therefore,
the use of iNKT cells in a CAR-based immunotherapy could
be effective in cancers that express CD1d. In a study investi-
gating lymphoma in the brain, it was found that the majority
of the mice treated with CAR19-iNKT cells were able to
decrease brain tumor burden below a detectable threshold,
indicating the ability of CAR19-iNKT cells to control and
eliminate brain metastases. Even in mice that relapsed, the
CARI19-iNKT cells were able to persist and lead to a second
remission [87]. Due to the encouraging results from Rotolo
et al. [87] and others, a clinical trial (NCT03774654) has
been initiated for relapsed or refractory B-cell malignan-
cies investigating the efficacy of allogeneic CAR-NKT cells
by utilizing CD19 specific CAR-NKT cells that co-express
CD28 and IL-15.

Moreover, iNKT cells have been shown to induce CD8
T-cell cross-priming, which leads to long-term CD8 T-cell
responses. Recent studies by Simonetta and colleagues dem-
onstrate that allogenic CAR-iNKT cells can induce host CDS8
T-cell cross-priming in a B-cell lymphoma mouse model
[90]. In BALB/c BATF3” mice, which are defective in CD8
T-cell cross-priming, the antitumor effect was decreased
compared to wildtype controls. The authors found that the
co-administration of allogenic CAR-iNKT cells and autolo-
gous CD8 T cells significantly enhanced tumor control and
prolonged survival, compared to treatment with either cell
type alone [90]. These data suggest that the effectiveness of
CAR-iNKT cells is enhanced by the presence of CD8 T-cell
cross priming. Allogenic CAR-iINKT primed CDS8 T cells
were transferred into lethally irradiated BALB/c mice and
resulted in prolonged survival compared to mice receiving
unprimed CD8 T cells. These results suggegst a key role for
allogenic CAR-iNKT treatment in promoting long-term CD8
T-cell anti-tumor responses. Overall, these studies show
that CAR-iNKT cells can induce CD8 T-cell cross-priming
and enhances their antitumor efficacy, as well as highlights

the potential of CAR-iNKT cell therapy as an off-the-shelf
immunotherapy.

Overexpression of chondroitin sulfate proteoglycan-4
(CSPG4), also known as high molecular-weight-melanoma-
associated antigen (HMW-MAA), is associated with the pro-
gression of many types of cancer such as melanoma, breast
cancer, squamous cell carcinoma, mesothelioma, neuro-
blastoma, and sarcoma [91]. Simon et al. [92] developed a
method to generate CSPG4-CAR NKT cells. Specifically,
DNA-based constructs or transient RNA-based constructs
can be used to enable T cells to express CARs. In this study
the authors assessed the effectiveness of transduction using
RNA-based constructs to standard DNA-based transduc-
tion, because of the advantages provided by RNA, such as
the lack of chromosomal integration and genetic alteration,
and potential for decreased side effects. CSPG4-CAR NKTs
were able to eliminate human melanoma cells in vitro by
producing a large amount of pro-inflammatory cytokines.
Cytotoxicity levels were similar between these mRNA-
based CAR NKT cells and traditionally transfected CAR-T
cells when tested against a melanoma cell line A375M [92].
The results from this study show that CAR-NKT cells can
be a safe and effective platform, similar to CAR-T cells for
immunotherapy.

CAR-iNKTs have also been tested in multiple mye-
loma (MM) by using MM-associated antigen CD38 and
B-cell maturation antigen (BCMA) to direct the iNKTs to
the tumor cells [93]. The BCMA-CAR iNKT cells were
designed based on BCMA-CAR T cells and are currently
being tested (clinical trial:NCT02658929) [94]. Previous
work optimized a CD38B1-CAR that targets cells express-
ing high levels of CD38, thereby only targeting MM cells
and not normal healthy cells [95]. BCMA-CAR iNKTs
were able to mediate cytotoxicity against the MM cell line
UMO [93]. UMD cells only express intermediate levels of
CD38, thus treatment with CD38-CAR iNKTs resulted
in ~60% cell lysis. When tested against MM1.s, a CD1d
positive cell line that expresses high levels of BCMA and
CD38, both BCMA-CAR iNKTs and CD38-CAR iNKTs
completely eliminated the tumor cells. Importantly, both
BCMA-CAR iNKTs and CD38-CAR iNKTs were able to
lyse primary MM cells, even those with little or no CD1d
expression. Upon stimulation with a-GalCer, both CD38-
CAR and BCMA-CAR iNKTs were able to expand ex vivo
and maintain their antitumor efficacy [93]. Another recruit-
ing clinical trial is evaluating the use of CAR-iNKT cells
co-expressing CD19 and IL-15 for targeting of B-cell
tumors. This study aims to determine the safety, efficacy,
and feasibility of this allogenic iNKT cell therapy (clinical
trial number NCT04814004; clinicaltrials.gov). Please see
Table I for a summary of strategies targeting NKT cells for
cancer immunotherapy.
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4 Antibody-Based Therapies for Invariant
NKTs (iNKTs)

The implementation of immune checkpoint inhibitors
(ICIs) has completely transformed the treatment of can-
cer [96]. The US Food and Drug Administration (FDA)
approved the first ICI, ipilimumab, a mAb that targets
cytotoxic T-lymphocyte-associated antigen (CTLA)-4
in 2011, and mAbs targeting programmed death (PD)-1
and PD-L1 subsequently received FDA approvals [97].
PD-1 (CD279), a co-inhibitory molecule, is a member of
the CD28 family [98], along with its ligands PD-L1 and
PD-L2. In a study investigating the role of the PD-1 path-
way on a-GalCer-induced iNKT cell anergy in mice, it was
found that of the use of PD-1/PD-L mAbs simultaneously
with a-GalCer treatment blocked the induction of iNKT
cell anergy. In addition, inhibiting PD-1/PD-L interactions
led to an increase in a-GalCer-treatment-induced anti-
tumor responses. PD1 appears to play a critical role in
a-GalCer-induced iNKT cell anergy because it was signifi-
cantly abrogated in PD1-deficient animals [99]. Another
study investigating the role of PD-1/PD-L in human iNKT
cells found that activation with a-GalCer resulted in PD-1
upregulation, whereas PD-L1 blockade enhanced iNKT
cell effector functions, as indicated by Th1 cytokine pro-
duction and cytotoxicity [100].

5 NKT Cell Activation Using Soluble CD1d
Proteins

In addition to PD-L1, tumors cells can express many dif-
ferent inhibitory factors that suppress iNKT cell activa-
tion. In order to overcome these suppressive factors and
a-GalCer-activation-induced anergy, several studies have
investigated the utility of recombinant soluble CD1d pro-
teins loaded with a-GalCer [101-103]. It was found that
a-GalCer/sCD1d can be repeatedly injected in mice with-
out inducing iNKT exhaustion and lead to sustained iNKT
and NK cell activation, as well as DC maturation. Fur-
thermore, the authors found that treatment of HER2+B16
melanoma tumor-bearing mice with a fusion protein
containing a-GalCer/sCD1d and an HER2-specific scFv
antibody fragment resulted in a significant reduction in
tumor burden [101]. Specifically, it was found that liver
iNKT cells from a-GalCer/sCD1d-anti-HER2-treated mice
remained responsive after repeated injections. Mechanisti-
cally, when the authors examined mice injected with either
a-GalCer/sCD1d-anti-HER2 or with a-GalCer/sCD1d pro-
tein, it was found that treatment with the HER2-targeted
a-GalCer/sCD1d protein was able to redirect iNKT, NK,
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and T cells to the tumor site [101]. Another group investi-
gated the function of a bispecific fusion protein composed
of human CDI1d joined to a scFv fragment specific for
CD19, in order to target NKT cells to B-cell malignan-
cies. It was found that following the loading of aGC, the
CD1d-CD19 fusion protein was able to activate iNKT cell
effector function both in vitro and in vivo [102].

In contrast to scFv, which are antibody fragments pro-
duced by fusing one variable region of the heavy chain (VH)
and one variable region of the light chain (VL), bi-specific
T-cell engagers (BiTEs) are composed of two scFvs con-
nected by a short peptide linker [104]. BiTEs typically target
one CD3 molecule and one tumor antigen, such as Blinatu-
momab, which targets CD3 and CD19 [104]. Importantly,
it has been shown that BiTEs can induce potent iNKT cell
responses that can enhance tumor cell death (Fig. 2). It was
shown that when PBMC from healthy donors were cultured
with a CD3xPD-L1 BiTE in the presence or absence of
PD-L1+ human melanoma C8161 cells, the BiTE induced
high levels of IFN-y, due in part to the activation of NKT
cells [105]. Notably, in this study NKT cells were classi-
fied as CD3+CD56+, thus this population is NKT-like
[105]. Lameris and colleagues developed CD1d-specific
single-domain antibodies (VHH), that can elicit potent
iNKT cell activation in the absence of an exogenous anti-
gen like a-GalCer by its intrinsic ability to interact with
CD1d and the type I NKT TCR [106]. Treatment with this
platform greatly enhanced type I NKT cell-mediated anti-
tumor activity in both in vitro and in vivo models [106].
Based on this technology, a bispecific fusion protein com-
posed of two VHH domain antibodies linked via a short, five
amino acid glycine-serine linker, called LAVA-051, has been
developed. LAVA-051 activates Vy9V62 T cells and type I
NKT cells and induces killing of CD1d-expressing tumor
cells, and is currently being tested in the clinic (clinical trial
NCT04887259).

6 Additional Strategies Used to Manipulate
iNKTs

Oncolytic viruses are being investigated as an approach to
enhance antitumor immune responses, due to their ability
to selectively infect and kill tumor cells. Gebremeskel and
colleagues investigated the effectiveness of two different
viruses, vesicular stomatitis virus (VSV) and reovirus, in
combination with a-GalCer-loaded DCs, in immunocom-
petent mouse models of breast and ovarian cancer [107].
The combination of either oncolytic VSV or reovirus with
NKT cell immunotherapy resulted in an increase in sur-
vival of ID8 ovarian cancer tumor-bearing mice. In con-
trast, only treatment with VSV in combination with NKT
cell immunotherapy led to a decrease in metastasis and an
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Fig.2 Bi-specific T-cell engagers (BiTEs) involve the fusion of the
single chain fragment variables of two monoclonal antibodies to bind
both a T cell and a tumor cell with the goal of redirecting T cells to
the tumor cells. Due to the invariant T-cell receptor (TCR) of natural
killer T (NKT) cells, BiTEs are capable of also binding to the CD3

increase in survival in the 4T1 breast cancer model [107]. A
recent study from this group investigated the utility of VSV
expressing IL-15 in combination with anti-PD-1 mAb and
NKT cell-based immunotherapy for the treatment of pancre-
atic cancer [108]. It was found that while tumors relapsed
over time in both subcutaneous and orthotopic Panc02 tumor
models, combination of VSV-IL-15 and NKT cell activation
correlated with immune cell infiltration, decreased pancre-
atic tumor burden, and increased survival, which was further
enhanced by PD-1 blockade [108].

As highlighted above, there are many strategies utilized
by tumors to evade or suppress NKT cell-mediated antitu-
mor immune responses and several groups are developing
strategies to restore NKT cell effector functions (Fig. 3). One
subset of immunosuppressive cells are myeloid-derived sup-
pressor cells (MDSCs), which have been implicated in fos-
tering an immunosuppressive tumor environment through
secretion of cytokines such as TGF-p and IL-10, which
supports the development of regulatory T cells (Tregs). Ko

chain of NKT cells crosslinking them to antigen-specific tumor cells
and allowing for direct NKT cell-mediated killing. Similarly, fusion
of the scFV region of a HER2 antibody to a soluble CD1d loaded
with aGalCer activates NKT cells to target and directly kill HER2
positive tumor cells

and colleagues sought to investigate whether MDSCs loaded
with o -GalCer and tumor-specific peptide could serve as
antigen-presenting cells and induce antigen-specific immune
responses [109]. It was found that the inclusion of an NKT
cell agonist significantly enhanced anti-tumor immunity.
Moreover, in a study employing a B16F10 melanoma
model, it was found that injection of a-GalCer resulted in
an increased number of tumor-infiltrating, IFN-y-producing
NKT cells in the tumor, and favored iNOSYTF4/80TCD11b™*
macrophages (M1) over the CD206"F4/80*CD11b* mac-
rophages (M2) in the spleen and tumor, and a concomi-
tant reduction in tumor burden [110]. Importantly, it was
found that depletion of F4/80+ macrophages completely
abrogated the a-GalCer-induced reduction in tumor growth
[110], which further suggests a role for targeting monocytes
and macrophages in iNKT cell-based immunotherapeutic
strategies. In fact, there have been several clinical studies
investigating the efficacy of NKT-cell based immunother-
apy (see Table 1). In an open-label, single-arm, phase II
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Fig.3 In addition to promoting direct natural killer T (NKT)-cell
mediating killing of tumor cells, target treatments and immunothera-
pies have been developed to enhance the ability of NKT cells to indi-
rectly eliminate tumor cells. Activated NKT cells produce cytokines,
such as IFN-y, TNF-a, and GM-CSF, that can help promote the acti-
vation of NK cells, CD8+ T cells, and in combination with CD40/

clinical trial (UMINO00007321) in patients with advanced
or recurrent non-small-cell lung cancer (NSCLC) refractory
to first-line chemotherapy, blood-derived a-GalCer-pulsed
antigen presenting cells (APCs) were intravenously admin-
istered to 35 patients [111]. The mean estimated survival
time (MST) estimated for all 35 patients was 21.9 months
(95% 14.8-26.0), with one patient showing partial response.
The administration of a-GalCer-pulsed APCs significantly
increased the number of NK cells, IFN-y-producing cells,
and effector CD8™T cells, but did not cause any severe
adverse events [111]. The results from the trial warrant fur-
ther randomized trials.

7 Discussion
It is time to finally harness the potential of iNKT cells

and develop strategies to facilitate their use in the clinic.
Recent clinical studies have demonstrated that they can be

A\ Adis

CDA40L interactions lead to the maturation of dendritic cells (DCs),
further enhancing anti-tumor immune responses. Oncolytic viruses
can increase antigen presentation. a-GalCer-loaded DCs increase the
activation of invariant NKT (iNKT), NK, and T cells. CD1d-antibody
fusion proteins increase the cytotoxicity of iNKT, NK, and T cells
against tumor cells

used in CAR-based strategies, can enhance graft versus
leukemia (GvL) responses, and serve as a prognostic or
predictive biomarker in many disease contexts. In fact,
elegant preclinical studies from Dr. Yang’s group have
investigated the in vivo efficacy of hematopoietic stem
cell-engineered iNKT (HSC-iNKT) cell-based therapy for
the treatment of melanoma and multiple myeloma [112,
113]. However, due to challenges inherent to the field such
as the nomenclature (iNKT vs. NKT-like), low circulating
frequency in human blood, and relatively limited number
of investigators focused on therapeutic strategies targeting
unconventional lymphocytes, their implementation into
clinical practice has been slow. Given the recent prom-
ising results using CAR-iNKTs, bispecific platforms and
monocyte-based approaches, these nonconventional lym-
phocyte subpopulations are important therapeutic targets
for the treatment of cancer and infectious diseases.
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