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Abstract
Natural killer T (NKT) cells play a pivotal role as a bridge between the innate and the adaptive immune response and are 
instrumental in the regulation of homeostasis. In this review, we discuss the potential for NKT cells to serve as biodrugs in 
viral infections and in cancer. NKT cells are being investigated for their use as a prognostic biomarker, an immune adjuvant, 
and as a form of cellular therapy. Historically, the clinical utility of NKT cells was hampered by their low frequency in the 
blood, discrepancies in nomenclature, and challenges with ex vivo expansion. However, recent advances in the field have 
permitted the development of several NKT cell-based preclinical and clinical strategies. These new developments pave the 
way for the successful implementation of NKT cell-based approaches for the treatment of human disease.

Key Points 

NKT cells can directly mediate lysis of infected and can-
cer cells, as well as induce other effector cells through 
their expeditious release of cytokines.

Adoptive transfer of NKT cells into cancer patients holds 
promise as NKT cells can target these cells and mediate 
protection.

Current immunotherapeutic strategies using chimeric 
antigen receptors, bispecific T cell engagers, and tumor 
vaccines are being developed to harness the potential of 
NKT cells.

1  Natural Killer T (NKT) Cells

Natural killer T (NKT) cells are an innate-like population 
of CD1d-restricted T lymphocytes that are characterized by 
rapid cytokine production following activation [1–4]. NKT 

cells express cell surface markers that are characteristic 
of NK cells (CD56, CD161) and T cells, such as a T-cell 
receptor (TCR). In addition to their expeditious release of 
cytokines, after activation NKT cells also upregulate the 
expression of cell death-inducing molecules, such as per-
forin, granzymes, and FAS ligand, which allows them to kill 
cancerous and infected cells [5, 6].

CD1d-restricted NKT cells can be further character-
ized based on their TCR expression. Type I invariant NKT 
(iNKT) cells express a specific TCRα chain, Vα14Jα18 in 
mice and Vα24Jα18 in humans, in combination with spe-
cific TCRβ chains (Vβ8.2, 7 or 2 in mice, Vβ11 in humans) 
[7–10]. Type I iNKT cells are also noted by their ability 
to be activated by the glycolipid, α-galactocylceramide 
(α-GalCer) [11–13], presented in the context of CD1d. Type 
I NKT cells are less frequent in humans than in mice, and 
make up 0.1–1% of circulating T cells in the blood [14]. In 
contrast, type II NKT cells express diverse TCRs, are CD1d-
restricted, but are unresponsive to α-GalCer [15]. They have 
been investigated experimentally using type II NKT cell 
TCR–CD1d-antigen complexes CD1d-tetramers loaded with 
other lipid antigens, specifically phospholipids, sphingolip-
ids, and glycerolipids [16, 17]. The diversity in the TCR rep-
ertoire can make it difficult to thoroughly characterize this 
population in humans and can lead to some ambiguity when 
investigating CD1d-specific NKT cells and other NKT-like 
subpopulations. For example, many human studies investi-
gate  CD56+CD3+ NKT-like cells, but this a heterogeneous 
mixture of T cells that includes mucosal-associated invariant 
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T (MAIT), γδ T cells, activated CD8+ T cells, as well as 
CD1d-restricted type I and type II NKT cells [18]. Type II 
NKT cells are thought to be present in higher numbers in 
humans, compared to type I NKT cells, and gaining a bet-
ter understanding of their regulation is critical. Fortunately, 
recent studies from several groups have made significant 
progress in this area [19, 20].

Similar to classic T-cell subsets, NKT cells develop in 
the thymus, but they diverge when they reach the double 
positive stage [21]. In fact, iNKT cell development has been 
well characterized [22]. Instead of being selected on thymic 
epithelial cells, they are selected by other double posi-
tive thymocytes [23]. This selection event is dependent on 
engagement between the TCR and CD1d as well as homo-
typic interactions between the signaling lymphocytic activa-
tion molecule (SLAM) family of receptors, which initiate 
the NKT cell developmental program by upregulating the 
early growth response 2 (Egr2) and promyelocytic leukemia 
zinc finger (PLZF) transcription factors [24–28]. iNKT cells 
can be divided into subsets similar to CD4 T-helper (Th) 
subsets. NKT1 cells express the transcription factor T-box 
expressed in T cells (T-bet) and primarily secrete gamma 
interferon (IFN-γ); NKT2 cells express high levels of GATA 
binding protein 3 (GATA3) and PLZF and secrete Th2-type 
cytokines, such as IL-4 and IL-13. NKT17 express inter-
mediate levels of PLZF, are RAR-related orphan nuclear 
receptor (ROR)γt+ and secrete IL-17 [29–31]. Despite 
effector differentiation occurring during thymic develop-
ment, significant plasticity in cytokine production has been 
demonstrated after stimulation [32]. Other NKT cell subsets 
have been described, such as IL-9 producing NKT cells at 
mucosal surfaces, B-cell lymphoma 6 (BCL6) expressing 
 NKTFH (follicular helper) cells that produce IL-21, and 
NKT10 cells, which express the transcription factor Nuclear 
Factor, Interleukin 3 Regulated (Nfil3/E4BP4), rather than 
PLZF, and produce IL-10 [33–36]. Notably, iNKT cell sub-
sets can regulate other lymphocyte subpopulations develop-
ing around them [37].

In contrast to classic T-cell subsets, the majority of iNKT 
cells are tissue resident and do not circulate [38–40]. iNKT 
cells express non-lymphoid tissue homing chemokine recep-
tors such as CCR2, CCR5, and CXCR3. NKT cells have 
different modes of activation. Specifically, iNKT cells can 
be activated through antigen-dependent and antigen-inde-
pendent mechanisms [41, 42]. For example, iNKT cell effec-
tor functions can be induced by danger signals (ex. toll like 
receptor (TLR) signaling) or by cytokines such as IL-12 
and IL-18 [43, 44]. In humans, iNKT cells express CD4+, 
CD8+, or neither (CD4-CD8-), referred to as double nega-
tive (DN) [16–19]; however, in mice iNKT cells express 
CD4+ or are DN [15] because they express the transcrip-
tion factor Th-POK (T-helper-inducing POZ/Krüppel-like 
factor), which blocks CD8 expression [45]. While most of 

the reports on α-GalCer-reactive NKT describe iNKT cells, 
α-GalCer-reactive, CD1d-restricted NKT cells that use dif-
ferent TCR α-chains have been identified in mice [46] and 
humans [47–49]. There are numerous populations of NKT-
like cells, which can express diverse αβ TCRs, recognize 
different lipid antigens (5), and express a variety of markers 
associated with natural killer (NK) cells.

While NKT cells comprise a relatively small popula-
tion of T cells, their ability to bridge innate and adaptive 
immune responses establishes them as an important regula-
tory cell population. In addition to their expeditious release 
of cytokines, NKT cells can lyse infected or malignant 
cells [50–53]. However, NKT cell number and activity are 
reduced in multiple cancer types and in chronic infections; 
therefore, understanding factors that regulate their devel-
opment and effector functions are of significant interest 
[54–56].

2  NKT Cells and Viral Infections

NKT cells are thought to play a key role in controlling viral 
infections, primarily due to their production of high levels 
of IFN-γ and the fact that many viruses have evolved mecha-
nisms to downregulate CD1d-mediated antigen presentation 
to NKT cells [57–63]. Studies investigating the contribution 
of NKT cells in antiviral immune responses in humans are 
limited [64], but in the context of HIV-1, NKT cells have 
been shown to be reduced following infection [65–68]. In 
addition, in chronically infected patients, iNKT cells have 
been reported to have an exhausted phenotype [69]. Impor-
tantly, iNKT cells have been shown to recognize HIV-1-in-
fected DCs, and therefore can play a critical role during the 
early stages of infection [65].

COVID-19, the disease caused by the novel coronavirus 
SARS-CoV-2, is one of the most devastating global pandem-
ics in modern history [70, 71]. As of August 2022, the coro-
navirus disease 2019 (COVID-19) pandemic has resulted in 
581.8 million confirmed cases and 6.4 million deaths have 
been reported globally (World Health Organization). The 
symptoms from the disease can vary widely, and many stud-
ies have focused on immune profiling of COVID-19 patients 
to identify factors involved in susceptibility to infection and 
disease pathology [70, 72]. Given the ability of NKT cells 
to respond to virally infected cells, several studies have 
examined iNKT and NKT-like cells in COVID-19 patients 
[18, 73–77]. For example, Liu et al. investigated circulating 
iNKT (Vα24Jα18+) and NKT-like  (CD56+CD3+) cells in 
49 COVID-19-convalescent individuals (CI) compared to 
27 matched SARS-CoV-2-unexposed individuals (UI) [73]. 
They observed a significant decrease in the percentage of 
both iNKT and NKT-like cells in the CI compared to UI 
cohort months after recovery. In a study that recruited three 
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cohorts of participants from centers across Germany and 
France, it was found that the frequency of circulating NKT-
like cells  (CD56+CD3+) served as a predictive biomarker 
for disease severity in COVID-19 patients [74]. However, as 
noted by Koay and colleagues, the majority of  CD56+CD3+ 
are not iNKT cells [18]. Moreover, when Koay et al. exam-
ined circulating NKT cells from hospitalized patients using 
α-GalCer-loaded tetramers, no significant differences in 
iNKTs were observed between COVID-19 patients that were 
indicative of disease severity. Taken together, these studies 
suggest that infection with SAR-CoV-2 can lead to a reduc-
tion in circulating NKT-like cells and that these cells may 
serve as a prognostic or predictive biomarker of disease. In 
contrast, additional mechanistic studies are needed to deter-
mine if classic iNKT cells respond to SARS-CoV-2 infected 
cells and if the virus utilizes specific mechanisms to subvert 
CD1d-mediated antigen presentation. It would be intriguing 
to investigate the effectiveness of the adoptive transfer of 
NKT cells into virally infected patients, particularly as sev-
eral studies have demonstrated that patients with mutations 
in immune-related genes or primary immune deficiency 
diseases that result in NKT cell deficiency can also have 
increased susceptibility to viral infections [78–80].

3  NKT Cells and Adoptive Immunotherapy

One immunotherapeutic strategy that has transformed the 
treatment of B-cell malignancies is chimeric antigen recep-
tors (CARs). CARs are synthetic receptors engineered to 
contain a single-chain variable fragment (scFv) that permits 
specific extracellular antigen recognition and binding and a 
CD3ζ domain, the intracellular domain through which the 
TCR signals [81]. Traditionally, T cells are transduced or 
transfected with the CAR and then infused into patients for 
cancer immunotherapy. CARs consisting of only the extra-
cellular scFv and intracellular CD3ζ are known as first-gen-
eration CARs. However, these CARs still need endogenous 
co-stimulation for T-cell activation against the tumor. The 
addition of either one or two co-stimulatory endodomains 
to CD3ζ, known as second- and third-generation CARs, 
respectively, improves proliferation, in vivo persistence, and 
antitumor efficacy. Fourth-generation CARs have also been 
engineered to include a transgene that encodes for a cytokine 
to promote activation of the cell attached to the CAR and 
further improve antitumor efficacy [82].

CAR-T cells are very effective for the treatment of B cell 
malignancies; however, success in solid tumors has been 
limited by the immunosuppressive tumor microenvironment 
and due to challenges in the identification of suitable targets. 
Given that iNKT cells are CD1d-restricted, they have the 
ability to target different tumor types. In neuroblastoma, the 
GD2 ganglioside has been shown to be an effective target. 

Therefore, Heczey et al. generated and expanded ex vivo 
CAR.GD2-NKT cells [83], based on the GD2 antibody 
clone 14.G2a. CAR.GD2-NKT cells are cytotoxic against 
GD2-positive neuroblasts and against CD1d-positive cells, 
indicating the dual-specific cytotoxicity of CAR.GD2-NKT 
cells. The inclusion of co-stimulatory endodomains, CD28 
(G28z) or 4-1BB (GBBz) or both (G28BBz), resulted in 
improved survival of the CAR-NKT cells. To examine the 
impact in vivo, CAR.GD2 NKT cells were adoptively trans-
ferred into a metastatic neuroblastoma xenograft model, 
and it was found that the inclusion of these co-stimulatory 
domains resulted in improved survival. In addition, the 
frequency of tumor-infiltrating CAR.GD2 NKT cells was 
greater than that of CAR.GD2 T cells demonstrating the 
ability of CAR.GD2 NKT cells to localize to tumor sites 
[83]. A concern of CAR-T cell immunotherapy has been the 
induction of graft versus host disease (GVHD). In a hu-NSG 
mice model, it was found that CAR.GD2 NKT cells did not 
induce GVHD, indicating the allogeneic potential of CAR-
NKT cells compared to CAR-T cells [83] (Fig. 1).

While CAR.GD2 NKT cells were shown to increase sur-
vival in mice, recurrence of tumor emphasized the need to 
enhance in vivo persistence of these transduced NKT cells. 
In another set of studies focused on neuroblastoma, GD2.
CAR NKT cells were engineered to co-express IL-15 with 
either CD28 or 4-1BB co-stimulatory endodomain, further 
denoted by GD2.28z.15 and GD2.BBz.15, respectively, to 
evaluate in vivo persistence of CAR-NKTs [84]. However, 
through functional testing it was shown that CAR-NKT 
cells expressing 4-1BB undergo activation-induced cell 
death leading to reduced CAR-NKT cell numbers during 
ex vivo expansion. The co-expression of IL-15 with the 
CD28 endodomain promoted survival and in vitro functional 
fitness of GD2.CAR NKT cells through increased cellular 
expansion and greater control over tumor cells. The GD2.
CAR NKT cells with and without IL-15 co-expression were 
adoptively transferred into NSG mice. The GD2.28z.15 con-
struct allowed for enhanced in vivo expansion and persis-
tence of NKT cells without significant cytotoxicity [84]. A 
close examination of the neuroblastoma nodules in the liver, 
spleen, bone marrow, and lungs of NSG mice, revealed that 
GD2.28z.15 NKT cells were present at high numbers indi-
cating that these CAR-NKT cells are capable of effectively 
infiltrating and persisting in tumor tissues [84] (Fig. 1).

Based on these promising in vitro and in vivo results [83, 
84], GD2.CAR-NKT cells are currently being evaluated in 
a clinical trial for children with relapsed or resistant neuro-
blastoma (NCT03294954) [85]. The interim results demon-
strated efficacy of autologous CAR-NKT cells, specifically 
GD2.CAR-NKT cells with co-expression of IL-15, to effec-
tively and safely expand and traffic to tumor sites in patients 
with refractory neuroblastoma. In the past, low numbers 
of circulating NKT cells have been a major of concern; 
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however, these studies demonstrate that CAR-NKTs can be 
successfully expanded ex vivo on a clinical scale to treat 
patients (Fig. 1).

More than half of patients with B-cell lymphomas that are 
treated with anti-CD19 CAR (CAR19)-T cell immunother-
apy relapse, indicating the need to develop more effective 

Fig. 1  Advantages of chimeric antigen receptor (CAR)-invariant 
NKTs (iNKTs). CAR-iNKT cells can recognize tumor cells through 
both their standard iNKT T-cell receptor (TCR) and the specific anti-
tumor antigen CAR, leading to targeted cytotoxicity. The intracellular 
portion of the CAR consists of the CD3ζ domain for TCR signaling. 
The CAR can also be modified to include a co-stimulatory endodo-
main and a cytokine transgene to increase production of pro-inflam-
matory cytokines and enhance overall antitumor efficacy. CAR-iNKT 
cells hold great promise for immunotherapy as they overcome various 

obstacles that hinder the efficacy of other commonly used immuno-
therapies. CAR-iNKT cells can persist in vitro and in vivo to mini-
mize tumor recurrence. Unlike traditional CAR-T cells composed of 
classic CD4 and CD8 T cells, CAR-iNKT cells do not induce an allo-
genic response against healthy cells and therefore prevent the induc-
tion of graft-versus-host disease (GVHD). CAR-iNKT cells can also 
infiltrate tumor sites and localize to tumor sites, maximizing their 
antitumor potential
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immunotherapeutic strategies [86, 87]. Due to the effector 
functions of iNKT cells and the expression of CD1d on these 
cells, the generation of a CAR19-iNKT cell holds prom-
ise for a greater anti-tumor effect in B-cell malignancies 
[88, 89]. CAR19-iNKT cells exposed to α-GalCer, a potent 
iNKT cell agonist, resulted in increased cytotoxicity against 
CD1d+ and CD1d+CD19+ targets, but not CD1d-CD19- 
and CD1d-CD19+ targets [88]. The interaction of CD1d on 
target cells with the CAR19-iNKTcells is important due to 
the dual targeting of CD1d and CD19. Compared to CAR19-
T cells, CAR19-iNKT cells had greater proliferation and 
expansion in B lineage malignancies. When CAR19-iNKT 
and CAR19-T cells were infused into tumor-engrafted NSG 
mice with CD1d+CD19+ B cell malignancy, the CAR19-
iNKT cells had improved overall and tumor-free survival, 
indicating the enhanced in  vivo anti-tumor activity of 
CAR19-iNKT cells compared to CAR19-T cells. Therefore, 
the use of iNKT cells in a CAR-based immunotherapy could 
be effective in cancers that express CD1d. In a study investi-
gating lymphoma in the brain, it was found that the majority 
of the mice treated with CAR19-iNKT cells were able to 
decrease brain tumor burden below a detectable threshold, 
indicating the ability of CAR19-iNKT cells to control and 
eliminate brain metastases. Even in mice that relapsed, the 
CAR19-iNKT cells were able to persist and lead to a second 
remission [87]. Due to the encouraging results from Rotolo 
et al. [87] and others, a clinical trial (NCT03774654) has 
been initiated for relapsed or refractory B-cell malignan-
cies investigating the efficacy of allogeneic CAR-NKT cells 
by utilizing CD19 specific CAR-NKT cells that co-express 
CD28 and IL-15.

Moreover, iNKT cells have been shown to induce CD8 
T-cell cross-priming, which leads to long-term CD8 T-cell 
responses. Recent studies by Simonetta and colleagues dem-
onstrate that allogenic CAR-iNKT cells can induce host CD8 
T-cell cross-priming in a B-cell lymphoma mouse model 
[90]. In BALB/c  BATF3-/- mice, which are defective in CD8 
T-cell cross-priming, the antitumor effect was decreased 
compared to wildtype controls. The authors found that the 
co-administration of allogenic CAR-iNKT cells and autolo-
gous CD8 T cells significantly enhanced tumor control and 
prolonged survival, compared to treatment with either cell 
type alone [90]. These data suggest that the effectiveness of 
CAR-iNKT cells is enhanced by the presence of CD8 T-cell 
cross priming. Allogenic CAR-iNKT primed CD8 T cells 
were transferred into lethally irradiated BALB/c mice and 
resulted in prolonged survival compared to mice receiving 
unprimed CD8 T cells. These results suggegst a key role for 
allogenic CAR-iNKT treatment in promoting long-term CD8 
T-cell anti-tumor responses. Overall, these studies show 
that CAR-iNKT cells can induce CD8 T-cell cross-priming 
and enhances their antitumor efficacy, as well as highlights 

the potential of CAR-iNKT cell therapy as an off-the-shelf 
immunotherapy.

Overexpression of chondroitin sulfate proteoglycan-4 
(CSPG4), also known as high molecular-weight-melanoma-
associated antigen (HMW-MAA), is associated with the pro-
gression of many types of cancer such as melanoma, breast 
cancer, squamous cell carcinoma, mesothelioma, neuro-
blastoma, and sarcoma [91]. Simon et al. [92] developed a 
method to generate CSPG4-CAR NKT cells. Specifically, 
DNA-based constructs or transient RNA-based constructs 
can be used to enable T cells to express CARs. In this study 
the authors assessed the effectiveness of transduction using 
RNA-based constructs to standard DNA-based transduc-
tion, because of the advantages provided by RNA, such as 
the lack of chromosomal integration and genetic alteration, 
and potential for decreased side effects. CSPG4-CAR NKTs 
were able to eliminate human melanoma cells in vitro by 
producing a large amount of pro-inflammatory cytokines. 
Cytotoxicity levels were similar between these mRNA-
based CAR NKT cells and traditionally transfected CAR-T 
cells when tested against a melanoma cell line A375M [92]. 
The results from this study show that CAR-NKT cells can 
be a safe and effective platform, similar to CAR-T cells for 
immunotherapy.

CAR-iNKTs have also been tested in multiple mye-
loma (MM) by using MM-associated antigen CD38 and 
B-cell maturation antigen (BCMA) to direct the iNKTs to 
the tumor cells [93]. The BCMA-CAR iNKT cells were 
designed based on BCMA-CAR T cells and are currently 
being tested (clinical trial:NCT02658929) [94]. Previous 
work optimized a CD38B1-CAR that targets cells express-
ing high levels of CD38, thereby only targeting MM cells 
and not normal healthy cells [95]. BCMA-CAR iNKTs 
were able to mediate cytotoxicity against the MM cell line 
UM9 [93]. UM9 cells only express intermediate levels of 
CD38, thus treatment with CD38-CAR iNKTs resulted 
in ~60% cell lysis. When tested against MM1.s, a CD1d 
positive cell line that expresses high levels of BCMA and 
CD38, both BCMA-CAR iNKTs and CD38-CAR iNKTs 
completely eliminated the tumor cells. Importantly, both 
BCMA-CAR iNKTs and CD38-CAR iNKTs were able to 
lyse primary MM cells, even those with little or no CD1d 
expression. Upon stimulation with α-GalCer, both CD38-
CAR and BCMA-CAR iNKTs were able to expand ex vivo 
and maintain their antitumor efficacy [93]. Another recruit-
ing clinical trial is evaluating the use of CAR-iNKT cells 
co-expressing CD19 and IL-15 for targeting of B-cell 
tumors. This study aims to determine the safety, efficacy, 
and feasibility of this allogenic iNKT cell therapy (clinical 
trial number NCT04814004; clinicaltrials.gov). Please see 
Table I for a summary of strategies targeting NKT cells for 
cancer immunotherapy.
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4  Antibody‑Based Therapies for Invariant 
NKTs (iNKTs)

The implementation of immune checkpoint inhibitors 
(ICIs) has completely transformed the treatment of can-
cer [96]. The US Food and Drug Administration (FDA) 
approved the first ICI, ipilimumab, a mAb that targets 
cytotoxic T-lymphocyte-associated antigen (CTLA)-4 
in 2011, and mAbs targeting programmed death (PD)-1 
and PD-L1 subsequently received FDA approvals [97]. 
PD-1 (CD279), a co-inhibitory molecule, is a member of 
the CD28 family [98], along with its ligands PD-L1 and 
PD-L2. In a study investigating the role of the PD-1 path-
way on α-GalCer-induced iNKT cell anergy in mice, it was 
found that of the use of PD-1/PD-L mAbs simultaneously 
with α-GalCer treatment blocked the induction of iNKT 
cell anergy. In addition, inhibiting PD-1/PD-L interactions 
led to an increase in α-GalCer-treatment-induced anti-
tumor responses. PD1 appears to play a critical role in 
α-GalCer-induced iNKT cell anergy because it was signifi-
cantly abrogated in PD1-deficient animals [99]. Another 
study investigating the role of PD-1/PD-L in human iNKT 
cells found that activation with α-GalCer resulted in PD-1 
upregulation, whereas PD-L1 blockade enhanced iNKT 
cell effector functions, as indicated by Th1 cytokine pro-
duction and cytotoxicity [100].

5  NKT Cell Activation Using Soluble CD1d 
Proteins

In addition to PD-L1, tumors cells can express many dif-
ferent inhibitory factors that suppress iNKT cell activa-
tion. In order to overcome these suppressive factors and 
α-GalCer-activation-induced anergy, several studies have 
investigated the utility of recombinant soluble CD1d pro-
teins loaded with α-GalCer [101–103]. It was found that 
α-GalCer/sCD1d can be repeatedly injected in mice with-
out inducing iNKT exhaustion and lead to sustained iNKT 
and NK cell activation, as well as DC maturation. Fur-
thermore, the authors found that treatment of HER2+B16 
melanoma tumor-bearing mice with a fusion protein 
containing α-GalCer/sCD1d and an HER2-specific scFv 
antibody fragment resulted in a significant reduction in 
tumor burden [101]. Specifically, it was found that liver 
iNKT cells from α-GalCer/sCD1d-anti-HER2-treated mice 
remained responsive after repeated injections. Mechanisti-
cally, when the authors examined mice injected with either 
α-GalCer/sCD1d-anti-HER2 or with α-GalCer/sCD1d pro-
tein, it was found that treatment with the HER2-targeted 
α-GalCer/sCD1d protein was able to redirect iNKT, NK, 

and T cells to the tumor site [101]. Another group investi-
gated the function of a bispecific fusion protein composed 
of human CD1d joined to a scFv fragment specific for 
CD19, in order to target NKT cells to B-cell malignan-
cies. It was found that following the loading of αGC, the 
CD1d-CD19 fusion protein was able to activate iNKT cell 
effector function both in vitro and in vivo [102].

In contrast to scFv, which are antibody fragments pro-
duced by fusing one variable region of the heavy chain (VH) 
and one variable region of the light chain (VL), bi-specific 
T-cell engagers (BiTEs) are composed of two scFvs con-
nected by a short peptide linker [104]. BiTEs typically target 
one CD3 molecule and one tumor antigen, such as Blinatu-
momab, which targets CD3 and CD19 [104]. Importantly, 
it has been shown that BiTEs can induce potent iNKT cell 
responses that can enhance tumor cell death (Fig. 2). It was 
shown that when PBMC from healthy donors were cultured 
with a CD3xPD-L1 BiTE in the presence or absence of 
PD-L1+ human melanoma C8161 cells, the BiTE induced 
high levels of IFN-y, due in part to the activation of NKT 
cells [105]. Notably, in this study NKT cells were classi-
fied as CD3+CD56+, thus this population is NKT-like 
[105]. Lameris and colleagues developed CD1d-specific 
single-domain antibodies (VHH), that can elicit potent 
iNKT cell activation in the absence of an exogenous anti-
gen like α-GalCer by its intrinsic ability to interact with 
CD1d and the type I NKT TCR [106]. Treatment with this 
platform greatly enhanced type I NKT cell-mediated anti-
tumor activity in both in vitro and in vivo models [106]. 
Based on this technology, a bispecific fusion protein com-
posed of two VHH domain antibodies linked via a short, five 
amino acid glycine-serine linker, called LAVA-051, has been 
developed. LAVA-051 activates Vγ9Vδ2 T cells and type I 
NKT cells and induces killing of CD1d-expressing tumor 
cells, and is currently being tested in the clinic (clinical trial 
NCT04887259).

6  Additional Strategies Used to Manipulate 
iNKTs

Oncolytic viruses are being investigated as an approach to 
enhance antitumor immune responses, due to their ability 
to selectively infect and kill tumor cells. Gebremeskel and 
colleagues investigated the effectiveness of two different 
viruses, vesicular stomatitis virus (VSV) and reovirus, in 
combination with α-GalCer-loaded DCs, in immunocom-
petent mouse models of breast and ovarian cancer [107]. 
The combination of either oncolytic VSV or reovirus with 
NKT cell immunotherapy resulted in an increase in sur-
vival of ID8 ovarian cancer tumor-bearing mice. In con-
trast, only treatment with VSV in combination with NKT 
cell immunotherapy led to a decrease in metastasis and an 
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increase in survival in the 4T1 breast cancer model [107]. A 
recent study from this group investigated the utility of VSV 
expressing IL-15 in combination with anti-PD-1 mAb and 
NKT cell-based immunotherapy for the treatment of pancre-
atic cancer [108]. It was found that while tumors relapsed 
over time in both subcutaneous and orthotopic Panc02 tumor 
models, combination of VSV-IL-15 and NKT cell activation 
correlated with immune cell infiltration, decreased pancre-
atic tumor burden, and increased survival, which was further 
enhanced by PD-1 blockade [108].

As highlighted above, there are many strategies utilized 
by tumors to evade or suppress NKT cell-mediated antitu-
mor immune responses and several groups are developing 
strategies to restore NKT cell effector functions (Fig. 3). One 
subset of immunosuppressive cells are myeloid-derived sup-
pressor cells (MDSCs), which have been implicated in fos-
tering an immunosuppressive tumor environment through 
secretion of cytokines such as TGF-β and IL-10, which 
supports the development of regulatory T cells (Tregs). Ko 

and colleagues sought to investigate whether MDSCs loaded 
with α -GalCer and tumor-specific peptide could serve as 
antigen-presenting cells and induce antigen-specific immune 
responses [109]. It was found that the inclusion of an NKT 
cell agonist significantly enhanced anti-tumor immunity. 
Moreover, in a study employing a B16F10 melanoma 
model, it was found that injection of α-GalCer resulted in 
an increased number of tumor-infiltrating, IFN-γ-producing 
NKT cells in the tumor, and favored  iNOS+F4/80+CD11b+ 
macrophages (M1) over the  CD206+F4/80+CD11b+ mac-
rophages (M2) in the spleen and tumor, and a concomi-
tant reduction in tumor burden [110]. Importantly, it was 
found that depletion of F4/80+ macrophages completely 
abrogated the α-GalCer-induced reduction in tumor growth 
[110], which further suggests a role for targeting monocytes 
and macrophages in iNKT cell-based immunotherapeutic 
strategies. In fact, there have been several clinical studies 
investigating the efficacy of NKT-cell based immunother-
apy (see Table 1). In an open-label, single-arm, phase II 

Fig. 2  Bi-specific T-cell engagers (BiTEs) involve the fusion of the 
single chain fragment variables of two monoclonal antibodies to bind 
both a T cell and a tumor cell with the goal of redirecting T cells to 
the tumor cells. Due to the invariant T-cell receptor (TCR) of natural 
killer T (NKT) cells, BiTEs are capable of also binding to the CD3 

chain of NKT cells crosslinking them to antigen-specific tumor cells 
and allowing for direct NKT cell-mediated killing. Similarly, fusion 
of the scFV region of a HER2 antibody to a soluble CD1d loaded 
with αGalCer activates NKT cells to target and directly kill HER2 
positive tumor cells
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clinical trial (UMIN000007321) in patients with advanced 
or recurrent non-small-cell lung cancer (NSCLC) refractory 
to first-line chemotherapy, blood-derived α-GalCer-pulsed 
antigen presenting cells (APCs) were intravenously admin-
istered to 35 patients [111]. The mean estimated survival 
time (MST) estimated for all 35 patients was 21.9 months 
(95% 14.8–26.0), with one patient showing partial response. 
The administration of α-GalCer-pulsed APCs significantly 
increased the number of NK cells, IFN-γ-producing cells, 
and effector  CD8+T cells, but did not cause any severe 
adverse events [111]. The results from the trial warrant fur-
ther randomized trials.

7  Discussion

It is time to finally harness the potential of iNKT cells 
and develop strategies to facilitate their use in the clinic. 
Recent clinical studies have demonstrated that they can be 

used in CAR-based strategies, can enhance graft versus 
leukemia (GvL) responses, and serve as a prognostic or 
predictive biomarker in many disease contexts. In fact, 
elegant preclinical studies from Dr. Yang’s group have 
investigated the in vivo efficacy of hematopoietic stem 
cell-engineered iNKT (HSC-iNKT) cell-based therapy for 
the treatment of melanoma and multiple myeloma [112, 
113]. However, due to challenges inherent to the field such 
as the nomenclature (iNKT vs. NKT-like), low circulating 
frequency in human blood, and relatively limited number 
of investigators focused on therapeutic strategies targeting 
unconventional lymphocytes, their implementation into 
clinical practice has been slow. Given the recent prom-
ising results using CAR-iNKTs, bispecific platforms and 
monocyte-based approaches, these nonconventional lym-
phocyte subpopulations are important therapeutic targets 
for the treatment of cancer and infectious diseases.

Fig. 3  In addition to promoting direct natural killer T (NKT)-cell 
mediating killing of tumor cells, target treatments and immunothera-
pies have been developed to enhance the ability of NKT cells to indi-
rectly eliminate tumor cells. Activated NKT cells produce cytokines, 
such as IFN-γ, TNF-α, and GM-CSF, that can help promote the acti-
vation of NK cells, CD8+ T cells, and in combination with CD40/

CD40L interactions lead to the maturation of dendritic cells (DCs), 
further enhancing anti-tumor immune responses. Oncolytic viruses 
can increase antigen presentation. α-GalCer-loaded DCs increase the 
activation of invariant NKT (iNKT), NK, and T cells. CD1d-antibody 
fusion proteins increase the cytotoxicity of iNKT, NK, and T cells 
against tumor cells
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