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Abstract

In the domain of human neuroimaging, much attention has been paid to the question of whether 

and how the development of functional magnetic resonance imaging (fMRI) has advanced our 

scientific knowledge of the human brain. However, the opposite question is also important; how 

has our knowledge of the brain advanced our understanding of fMRI? Here, we discuss how and 

why scientific knowledge about the human and animal visual system has been used to answer 

fundamental questions about fMRI as a brain measurement tool and how these answers have 

contributed to scientific discoveries beyond vision science.

1. Introduction

The field of vision science, like other domains of cognitive neuroscience, has widely 

adopted functional MRI (fMRI) as one of its core tools. This has led some researchers to ask 

how much, if anything, fMRI has taught us about the human visual system. A symposium 

at the 2021 annual meeting of the Vision Sciences Society was dedicated to this question 

(Aguirre et al., 2021). Here, we draw attention to the fact that many vision scientists have 

used fMRI to answer the opposite question.

What has our existing knowledge of the visual system taught us about functional MRI?

fMRI’s potential as a tool for advancing our understanding of brain function depends on 

the properties of the tool and the signal that it measures. Here, we observe that vision 

science has been especially fruitful in characterising fMRI – both the instrument itself and 

the neurovascular signal underlying its measurements. This is because vision science allows 

one to control an input stimulus which predictably controls the neural signal in space and 

time. One can then link the expected neural signal to the observed fMRI signal, increasing 

our understanding of what fMRI is measuring. Such studies do not necessarily lead to a 

new understanding of how the visual system encodes information, nor should we expect 

them to. Rather, the goal is an improved understanding of fMRI and the blood oxygen-level 

dependent (BOLD) signal that is the basis of most fMRI measures. This, in turn, is useful 
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for making new discoveries in other aspects of brain function where less is known about 

the relationship between input (stimulus or task) and neural responses. In particular, vision 

science has been used to address questions such as:

• What does fMRI measure?

• What is the nature of the hemodynamic response function (HRF)?

• What is the resolution of information that fMRI can measure?

• Can information within the fMRI signal be used in decoding and encoding 

models?

• Do the effects of large draining veins on the fMRI signal obscure our view of 

local neural activity?

• Are fMRI-based parcellations of the cortex reliable and are computational fMRI 

methods reproducible?

In the long run, scientists and clinicians are more interested in understanding brain function 

than the tools used to measure it. However, the former depends on the latter. Here we present 

a summary of research in which the systematic nature of vision science has been used to 

answer the above questions, and how these answers have contributed to scientific disciplines 

beyond vision.

2. What does fMRI measure?

Early fMRI studies exposed rodents to global physiological stimulation and showed that 

blood oxygenation can be used as an endogenous contrast agent for MRI (Ogawa et al., 

1990a, 1990b). This suggested that fMRI might be used to indirectly measure neural activity. 

However, until experiments were conducted in humans with sensory stimulation, it was 

unknown exactly how neural activity would affect the BOLD signal. In fact, Ogawa and 

Colleagues (1990a) speculated that the BOLD signal might decrease during heightened 

neural activity: “When some region in a brain is much more active than other regions, 
the active region could show darker lines in the image because of the increased level of 
deoxyhemoglobin resulting from higher oxygen consumption”.

Within a couple of years, human fMRI measurements were made with visual (Kwong et al., 

1992; Ogawa et al., 1992) and motor (Bandettini et al., 1992) stimulation and the opposite 

was found: Stimulation caused the fMRI signal to increase, consistent with foundational 

work from the 1980s showing that neural activity can lead to an increase in the supply of 

oxygenated blood outstripping the consumption of oxygen (Fox and Raichle, 1986). Ogawa 

et al. (1992) found that visual stimulation increased the water proton signal in primary visual 

cortex (V1). Importantly, they found that the proton signal in the tissue nearby (outside 

of) small vessels increased, and that this signal could be followed in time with the fMRI 

measurement. Shortening the echo time reduced the fMRI signal contrast, indicating that 

signal changes are caused by a change in T2 * relaxation. This was the first human study 

to show that a stimulus drives an intrinsic contrast agent (changes in the concentration of 

deoxyhemoglobin in cerebral blood) and that this is what BOLD measures. This study used 

visual stimulation because the researchers knew precisely where in the cortex to look for 
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responses and because they knew that a visual stimulus would produce strong neural activity 

that could be easily controlled. It would have made little sense to attempt to make new 

discoveries about the neural basis of perception while simultaneously trying to learn how 

fMRI works.

As implied from the initial fMRI work, the BOLD signal depends on a complex interplay 

of changes in oxygen consumption, blood flow, and blood volume. Vision science has been 

used to understand the interplay of these processes and how they are reflected in the fMRI 

response. In particular, much foundational work on the biological contributions to the BOLD 

signal have depended on experiments with visual stimulation, including fundamental work 

on glucose (Fox et al., 1988) and oxidative metabolism (Hoge et al., 1999; Thompson et 

al., 2004, 2003) in the human brain; on calibrated fMRI (Blockley et al., 2013; Davis et al., 

1998); on the contribution of cerebral metabolic rate of oxygen consumption, blood flow and 

volume to the BOLD response (Buxton et al., 2004; Kwong et al., 1992; Lu et al., 2003; 

Ogawa et al., 1993) and on the spatial localization of these components (Duong et al., 2001; 

Malonek and Grinvald, 1996; Vanzetta and Grinvald, 1999; Zhao et al., 2006). These studies 

used visual stimulation because it provided a specific cortical target (calcarine sulcus), it 

enabled precise temporal control of neural activity, and it induced large, sustained neural 

activity as long as the stimulus is present (for review see Hillman 2014).

These key studies linked blood oxygenation to the fMRI response; however, they did not 

address what kinds of neural activity might cause changes in blood oxygenation. It is likely 

that many facets of neural activity influence the BOLD signal and there is not a single, 

simple answer to this question (and we do not attempt to answer it here). For reviews 

targeting this question, see Drew (2019), Logothetis (2003), and Logothetis and Wandell 

(2004). However, vision science found a useful way to reframe and address this question by 

using known properties of the visual system in specific brain areas and well-oiled stimulus 

regimes.

Visual neurophysiology experiments in animal models have described neural responses to 

systematic variations in fundamental visual properties, such as image contrast and motion 

coherence, well before the advent of fMRI. Researchers were able to take advantage of 

these neural responses to better understand the underlying neural signal that fMRI measures. 

Here, we focus on examples of research linking the fMRI signal to stimulus manipulations 

for which the neural response was known prior to the fMRI experiments. Work from Rees 

et al. (2000) used visual area hMT+ to explore the neural basis of the fMRI signal. The 

signal in hMT+ increased linearly with stimulus motion coherence (cf. Birman and Gardner 

2018), as did prior measurements of average single neuron firing rates in monkey MT, 

linking the two signals together. Support came from a follow-up from Heeger et al. (2000) 

who compared the fMRI signal in human V1 with electrophysiological recordings of neural 

firing from monkey V1. Both measurements were driven by stimuli that systematically 

varied in contrast. Moreover, there was a proportional relationship between fMRI signal 

and the firing rate of V1 neurons. This link between the contrast response measured with 

electrophysiological and fMRI signals has been strengthened by experiments showing that 

characteristics such as adaptation (Gardner et al., 2005) and saturation (Vinke et al., 2022) 

can be reliably measured with fMRI. Moreover, simultaneous measurements of contrast 
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response have shown a linear (Cardoso et al., 2012) or threshold-linear (Logothetis et al., 

2001) relationship between the fMRI and electrophysiological signal, thereby forming a 

foundation for the linkage of these measured fMRI signals to behavioral measurements 

(Boynton et al., 1999).

Winawer et al. (2013) investigated the relation between the fMRI BOLD signal and 

electrocorticographic (ECoG) responses in visual cortex in the spatial domain. BOLD and 

broadband ECoG responses had the same sub-additive spatial summation, whereas stimulus 

locked ECoG responses did not. They concluded that asynchronous broadband signals 

(closely correlated with spiking) are an important contributing factor to the BOLD signal. 

Other work has used carefully controlled stimuli and a neural model to confirm that the 

broadband response in ECoG is well matched to the BOLD signal, but that additional 

variance in the BOLD signal is related to the power of low frequency oscillations (Hermes 

et al., 2019). This supports the claim that the BOLD signal is influenced by neural signals 

other than spiking (Logothetis and Wandell, 2004).

It was not necessary to complete simultaneous measurements in these studies because a 

quantitative link was enabled by matching stimulus parameters and recording locations. 

These studies shed light on the neural basis of the fMRI signal not by directly comparing 

the fMRI response to neural activity (as the two are measured in different units, time scales, 

and spatial extents) but by comparing each of them with reference to parametric variations 

in the visual stimulus (Fig. 1). Three advantages of this model-based, or ‘stimulus-referred’ 

method over a correlation method are that: (1) it is robust to variation in signal-to-noise 

across measurement modalities; (2) it ensures a large dynamic range in the responses; 

and (3) it captures responses to stimulus properties that are presumed to be important 

for information encoding. Finally, these stimulus-referred approaches have recently been 

expanded to ‘image computable’ approaches (Kay et al., 2008) that can provide deeper 

understanding of how responses at the neural level translate to population responses 

measured by fMRI (Gardner and Merriam, 2021).

3. What is the nature of the hemodynamic response function (HRF)?

Vision science has been used to assess whether the fMRI signal obeys linearity. Many 

fMRI analyses and experimental designs (especially fast, event-related designs) rely on the 

assumptions that the fMRI signal can be averaged across trials and sums approximately 

linearly in time. Boynton et al. (1996) tested a ‘linear transform model’ of the fMRI signal 

(Bandettini et al., 1993; Friston et al., 1995) in which V1 neural activity is a nonlinear 

function of stimulus contrast and the corresponding fMRI signal is a linear transform of 

this neural activity (Fig. 2A). In particular, the authors were interested in testing whether 

the fMRI response could be approximated as a shift-invariant linear transform of the neural 

response (averaged over local spatial and temporal extents). This was an important test, 

because if the answer is yes, one can measure the fMRI signal in many kinds of experiments, 

deconvolve it, and infer the neural responses to stimuli or tasks.

Testing linearity was an ambitious goal since the authors did not have direct access to the 

neural response and because the relationship between a stimulus and its BOLD response 
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is presumed to contain non-linearities (as opposed to the neural response and the BOLD 

response, which may be approximately linear). The key to testing the linearity of the neural 

to BOLD transform was choosing and varying stimulus dimensions for which the neural 

response was expected to be linear. This was made possible from prior work in visual 

neuroscience. When they tested linearity by varying contrast (the ‘scaling’ property of a 

linear system), linearity failed (Fig. 2B). This was expected because the neural response to 

stimulus contrast is non-linear. When they tested temporal linearity at the scale of several 

seconds, linearity held: the response to a 12 s stimulus was well predicted by copying, 

shifting, and summing the response to a six-second stimulus (Fig. 2C). One caveat is that the 

brief stimuli gave a larger than expected response predicted by this linearity, likely due to 

neural adaptation (Boynton et al., 2012).

The linear transform model was more fully tested by convolving the predicted neural 

time-course with a shift-invariant linear temporal filter to predict the stimulus-evoked 

fMRI responses (Boynton et al., 2012, 1996). This was found to be a good fit. Thus, 

the hemodynamic response function (HRF) is approximately linear in time. The authors 

conducted this work in V1 because they required a region where they could localise the 

fMRI signal and because they understood how a visual stimulus would drive the neural –but 

not fMRI– response (Boynton et al., 2012).

Further, Dale and Buckner (1997) investigated whether selective averaging techniques could 

be applied to visually evoked fMRI responses. They found that the fMRI signal can be 

linearly summed across both short and intermixed trials. These two studies used simple 

contrast patterns of varying duration, and acted as the catalyst of the development of 

canonical HRF models that act as a transfer function between neural activity and the 

fMRI signal throughout the human brain (Huettel, 2012), laying the basis for thousands of 

subsequent event-related fMRI studies. This work also allowed researchers to use fMRI to 

investigate dimensions and brain regions for which there is no model of the neural response. 

However, for this work to take place, the nature of the fMRI signal itself had to be first 

established.

Likewise, vision science has contributed to our understanding of contributing factors to 

‘negative BOLD’, that is, a decrease in the BOLD signal during experimental tasks. Shmuel 

et al. (2002) addressed a fundamental question in neuroimaging: does a negative BOLD 

response imply a reduction in neural activity or is it a purely vascular phenomenon (Wade, 

2002)? They answered this by characterising negative BOLD in human V1-V3. Stimulus-

contrast and stimulus-duration dependent changes in positive BOLD were mirrored in 

negative BOLD. To establish that the BOLD signal was negative, the authors defined a 

meaningful baseline as the BOLD response to a uniform field (mean luminance). They 

justified this choice based on classic vision science findings from Hubel and Wiesel (1962) 

demonstrating that the responses of neurons in early visual cortex are largely insensitive 

to mean luminance, driven instead by contrast. To probe the coupling between positive 

and negative BOLD, Schumel et al. (2002) interleaved fMRI BOLD scans and scans that 

measured cerebral blood flow. Clusters of negative BOLD were spatially correlated with 

reductions in cerebral blood flow, indicating that negative BOLD is due to a decrease in the 

rate of oxygen consumption, reflecting a decrease in neural activity in response to neural 
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suppression. The locations of positive and negative BOLD on the cortical surface, combined 

with stimulus selection, enabled the researchers to interpret the results in terms of neural 

receptive fields (surround suppression). This work found support in a follow-up study, where 

Shmuel et al. (2006) showed that negative BOLD is associated with local decreases in neural 

activity measured from electrophysiology. Although negative BOLD does not always imply 

a decrease in neural activity, the value in these studies was a demonstration that negative 

BOLD can be caused by a decrease in neural activity. The importance was in providing a 

new characterisation of one part of the fMRI signal, rather than a discovery of how visual 

circuits work. Negative BOLD has become an increasingly important topic of investigation 

outside of visual areas, including resting state networks (Parker and Razlighi, 2019; Sestieri 

et al., 2011; Sormaz et al., 2018) and task-related responses in motor cortex (Yuan et al., 

2011; Zeharia et al., 2012).

4. What is the resolution of information that fMRI can measure?

The organisation of visual regions into spatial maps enables estimation of the point-spread 

or line-spread function–the spatial extent of activation on cortex from a small stimulus. In 

V1, the line spread function (full width at half max) has been estimated to be about 3.5 mm 

(Engel et al., 1997). To determine whether fMRI can resolve neural activity at an even finer 

scale than the line function, the spatial pattern of neural activity must be precisely tailored; 

one cannot test the resolution limits of the BOLD signal if the neural activity is correlated 

across a large region of cortex. Vision science provided the theory on how to do this.

Ocular dominance columns in V1 were identified in animal models long before their initial 

measurement using fMRI (Horton and Hocking, 1996; Hubel and Wiesel, 1963a; Wiesel 

and Hubel, 1963). It was already known that human ocular dominance columns are ~1 mm 

wide (Adams et al., 2007; Adams and Horton, 2009) and each column’s ocular selectivity 

varies at a fine scale. Thus, ocular dominance columns were an ideal model for investigating 

the spatial resolvability of the fMRI signal, which may be limited by vascular blurring. 

Indeed, fMRI signals driven by visual input to the left or right eye could be reliably 

resolved by some fMRI sequences (Cheng et al., 2001; Yacoub et al., 2007), confirming the 

submillimeter resolvability of the fMRI signal.

This work showed that fMRI can be sensitive to fine-scale neural properties, enabling 

researchers to investigate functional subdivisions in the cortex at a high resolution. For 

example, classical electrophysiological work in non-human primates identified thin and 

thick stripes in V2 (Livingstone and Hubel, 1982; Roe and Ts’o, 1995; Tootell et al., 1983). 

These stripes are selective for colour (Hubel and Livingstone, 1985; Tootell et al., 2004) 

and binocular disparity (Hubel and Livingstone, 1987), respectively, and are ~1.3 mm wide 

in macaque (Tootell and Hamilton, 1989) –below the 3.5 mm line spread function of the 

BOLD signal. There has been uncertainty around the existence of these stripes in human V2. 

Indeed, 7T fMRI work has shown that human V2 also has a striped architecture (Dumoulin 

et al., 2017; Nasr et al., 2016), supporting the submillimeter resolvability of fMRI. These 

studies activated stripes by controlling specific stimulus properties (high vs low temporal 

frequency, achromatic vs chromatic, and with or without binocular disparity).
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Together, these studies used known properties of the visual pathways (eye-of-origin 

selectivity, temporal and chromatic sensitivity within the magno- and parvocellular 

pathways) to target fine-scale structures. Thus, with careful analysis methods and tight 

stimulus control, the fMRI signal can be sensitive to fine scale neural properties. 

Understanding the spatial resolution of the fMRI signal is important for researchers seeking 

to make discoveries about the detailed organisation of cortical areas where functional 

subdivisions are uncertain–such as memory areas (Dalton et al., 2018; Doeller et al., 2010; 

Hodgetts et al., 2017) – or even unknown, such as language areas (Binder et al., 1997) for 

which animal model homologues do not exist.

5. Can information within the fMRI signal be used in decoding and 

encoding models?

Vision science has also been used to assess whether the fMRI signal can be linked to 

the representation of information in different brain areas. Popular fMRI classification 

and pattern-analysis techniques were first developed using vision experiments. Multivoxel 

pattern analysis (MVPA), which uses classification algorithms to search for patterns of 

fMRI activity across pools of voxels (see Norman et al. 2006), was developed using 

fMRI responses to faces, objects, and grating orientation in visual cortex (Haxby et al., 

2001; Kamitani and Tong, 2005). Similarly, representational similarity analysis (RSA), 

which characterises neural representations of experimental conditions via the dissimilarity 

of fMRI activity patterns, was developed using fMRI responses to categorical visual object 

representations in ventral temporal cortex (Edelman et al., 1998; Kriegeskorte et al., 2008). 

These classification techniques have since been used to answer questions about topics 

outside of vision in regions beyond visual cortex, including spatial representation (Berens 

et al., 2021; Hassabis et al., 2009) and episodic memory (Chadwick et al., 2010) in the 

hippocampus, mnemonic representations in working memory (Kwak and Curtis, 2022), the 

representation of perceived body size in extrastriate body area (Carey et al., 2019), and the 

neural representation of emotion in brain regions associated with theory of mind (Skerry and 

Saxe, 2015).

The MVPA method has led to an active debate regarding the spatial scale of information 

driving successful pattern classification. Vision science has been central in this debate. 

Electrophysiological work in animal models identified orientation pinwheels in V1 in the 

form of orientation selective hypercolumns with a periodicity of ~2 mm (Blasdel and 

Salama, 1986; Hubel and Wiesel, 1963b; Ohki et al., 2006). Some have used these pattern 

classification analyses to seemingly decode orientation information from these fine-scale 

pinwheels (Alink et al., 2013; Haynes and Rees, 2005; Kamitani and Tong, 2005; Kay et 

al., 2008). However, others have argued that the decoding measurements are dominated by 

coarse-scale orientation biases (Freeman et al., 2013), rather than fine-scale activity. More 

recently, coarse-scale orientation biases have been linked to changes in the fMRI signal 

due to stimulus vignetting (i.e., the change in contrast along a stimulus edge) rather than 

cortical structure (Roth et al., 2018). These findings suggest pattern-classification techniques 

applied to other domains are also likely to be most sensitive to large-scale biases, rather than 

sub-millimetre structures. A practical lesson from this debate: when classification methods 
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lead to accurate decoding in a novel paradigm, researchers ought to check for the existence 

of neural tuning at a coarse spatial scale (Gardner and Merriam, 2021).

These classification methods test the ability to decode inputs such as a visual stimulus. 

Vision science has also been at the forefront of developing encoding models tested with 

fMRI. These computational approaches successfully linked the fMRI signal to neural 

properties. For example, the population receptive field (pRF) model (Dumoulin and 

Wandell, 2008) provides a quantitative framework to link the fMRI signal with neural 

response properties of cortical cells. This framework is the genesis of many computational 

approaches to fMRI. The pRF model is defined in terms of input parameters that are 

informed by theory of visual receptive fields in visual cortex. Since its inception and initial 

application, the pRF model has been used to understand topographic organisation for other 

stimulus types and cortical regions: somatosensory cortex (Puckett et al., 2020; Schellekens 

et al., 2021; Wang et al., 2021), auditory cortex (Thomas et al., 2015), numerosity maps in 

parietal cortex (Harvey et al., 2013; Harvey and Dumoulin, 2017; van Dijk et al., 2021), 

sensory substitution (Hofstetter et al., 2021), semantic space (Huth et al., 2012), and event 

timing (Harvey et al., 2020). Further, the computational approach to studying visual cortex 

has demonstrated that the magnitude of the fMRI response, which is measured at the scale 

of seconds, is impacted by neural dynamics at the millisecond scale (Horiguchi et al., 2009; 

Stigliani et al., 2017; Zhou et al., 2017).

Having a domain like vision science, in which some of the results are expected from prior 

knowledge, has provided a solid foundation for the extension of the computational approach 

to other domains; for example, the pRF model has been expanded to assess the canonical 

computation of normalisation that is thought to occur throughout the brain (Aqil et al., 

2021). Overall, the forward modeling approach provides an alternative to the subtraction 

approach (i.e., measuring contrast maps between stimuli, task, or groups) (Van Orden and 

Paap, 1997), affording greater generalisation and explanatory depth.

6. Do the effects of large draining veins on the fMRI signal obscure our 

view of local neural activity?

Artefacts in the fMRI signal can have vascular origins. Vascular draining can contaminate 

fMRI signal from any region of the cortex in which large veins exist, posing a fundamental 

problem of interpretation of the fMRI signal: “The realization in 1993 of the large vein 
contribution was highly disturbing to us. Large veins drain blood from large patches 
of cortex and their distribution is spatially sparse. Therefore, they cannot provide high 
spatial fidelity to neuronal activity in functional imaging” (Menon et al., 1993; Uğurbil, 

2018). Understanding this complication for the entire field of fMRI was best addressed 

by harnessing known properties of neural circuits in visual cortex. Vision science enables 

specific predictions about expected fMRI responses, including their location, strength, and 

the timing of their activation. Thus, visual stimulation is well-suited to detect anomalous 

responses and then link these responses to vascular artefacts (e.g., Lee et al. 1995 and 

Winawer et al. 2010).
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Visual experiments have been used to clarify the ability of fMRI to distinguish neural 

effects from vascular confounds. Kay et al. (2019) used simple visual stimuli to examine 

the relationship between veins and the fMRI signal in early visual cortex. The presence 

of veins amplified and caused spatial displacement of the fMRI signal. Likewise, vision 

science has contributed to the development of techniques that correct for venous artefacts. 

Kay et al. (2020) developed a method that produced data-driven estimates of venous 

effects on the fMRI signal. These effects were modeled and used to separate the fMRI 

signal into one component related to the microvasculature (capillaries and small venules) 

and one related to the macrovasculature (large veins). Olman et al. (2007) showed that 

a differential experimental design (rather than single stimulus condition interleaved with 

a blank baseline) minimises the contribution of large veins to the fMRI signal. Both 

techniques were developed using vision science experiments because the authors could 

spatially localise a robust fMRI signal. Finally, vision science has been used to validate the 

ability of spine-cho sequences to compensate for venous artefacts from large veins. Olman 

et al. (2012) used spin-echo sequences to identify fine-scale structures in visual cortex 

that would otherwise be masked by venous artefacts appearing in a gradient-echo sequence 

(Ugurbil, 2016). The general findings are that while vessel-related limits are certainly real, 

under appropriate conditions they can be corrected, and fMRI can reliably probe neural 

function at the millimetre scale.

The advent of 7T fMRI has given rise to the study of laminar circuitry in the human 

brain. Vision science has inspired models of how veins contribute to changes in the fMRI 

signal across cortical depth. The BOLD signal blurs towards the superficial surface due to 

ascending veins and surface vasculature (Duvernoy, 1999; Polimeni et al., 2010), causing 

a greater BOLD towards the superficial surface (Kay et al., 2019). However, this does not 

accurately reflect the distribution of neural activity. Havlicek and Uludağ (2020) modeled 

the effects of veins on the BOLD signal across lamina; depth-dependent variability in the 

BOLD signal originated from depth-dependent changes in vasculature. Importantly, their 

model was motivated by experimental observations about how the neural signal changes 

across lamina in animal visual cortex.

Correcting vascular artefacts is vital for achieving high resolution fMRI measurements. 

Results from past vision experiments have informed and validated methods that correct 

for venous artefacts across depth. Work from Markuerkiaga et al. (2021) found that 

deconvolving lamina activation profiles with a physiological point spread function removes 

venous artefacts (i.e., deconvolution ’flattens’ the trend of BOLD increasing towards the 

superficial surface). The point spread function was derived from a model of vasculature 

based upon histological studies of V1 (Markuerkiaga et al., 2016). Further, the deconvolved 

lamina profiles were validated via comparison to ’gold-standard’ profiles measured from 

human visual cortex (Fracasso et al., 2018). Understanding how the fMRI signal changes 

with cortical depth has opened new doors for research to investigate neural tuning properties 

(De Martino et al., 2015; Fracasso et al., 2016; Olman et al., 2012) and feed-back signalling 

(Klein et al., 2018; Kok et al., 2016; Lawrence et al., 2019; Muckli et al., 2015; Sharoh et 

al., 2019) across laminae.
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7. Are fMRI-based parcellations of the cortex reliable and are 

computational fMRI methods reproducible?

One benefit of fMRI over other methods that probe brain function is its large field of view: 

one can sample the fMRI signal across the whole brain every second or so. Thus, fMRI 

can be used to understand how the brain is parcellated into discrete areas. Parcellation 

schemes are useful for understanding brain function and linking results across studies 

and laboratories. However, the utility of parcellations depends on their accuracy. Vision 

science has provided tools for validating parcellation schemes by comparing them against 

boundaries from retinotopic maps. If a parcellation scheme differs from known retinotopic 

maps, researchers can question the validity of the scheme.

For example, Laumann et al. (2015) used resting state functional connectivity to 

parcellate a highly scanned individual’s cortex. The parcellations were validated via 

their correspondence with measured retinotopic maps, especially V1-V3, as their borders 

are well-defined by polar angle reversals. The V1 parcellation aligned to its retinotopic 

boundary. However, cross-subject averaging of the parcellations resulted in false positives 

(parcellation boundaries that did not correspond to any retinotopic boundaries) and false 

negatives (retinotopic boundaries that did not correspond to any parcellation boundaries) 

in V2 and V3. Thus, cross-subject transformations of fMRI data obscured patterns in 

interindividual brain organisation, highlighting the importance of individual analysis of 

fMRI data. In a similar vein, Glasser et al. (2016) used a semi-automated neuroanatomical 

approach to parcellate group-level multimodal data from the Human Connectome Project 

(HCP). In this case, the parcellations of early visual field maps aligned to the retinotopically 

defined V1-V3 boundaries from Abdollahi et al. (2014), validating the accuracy of the 

parcellations and their multimodal method.

The reliability and reproducibility of fMRI methods have been usefully assessed with 

vision science methods. Recently, much attention has been placed on the reproducibility of 

psychology (Open Science Collaboration, 2015) and neuroimaging studies (Botvinik-Nezer 

et al., 2020; Marek et al., 2022; Poldrack et al., 2017). Human retinotopic maps are highly 

reproducible (Benson et al., 2018; Himmelberg et al., 2021; Lage-Castellanos et al., 2020; 

Lerma-Usabiaga et al., 2020; van Dijk et al., 2016) and large, publicly available datasets of 

fMRI responses in visual cortex, such as the HCP Retinotopy (Benson et al., 2018) and NSD 

datasets (Allen et al., 2022), are at the forefront of understanding brain function. Even the 

large sample sizes of retinotopic mapping datasets (Benson et al., 2018; Himmelberg et al., 

2021) are relatively small when compared to the sample sizes needed for reproducibility 

of some fMRI methods (Marek et al., 2022), consistent with the idea that the fMRI 

response can be highly reliable when coupled to appropriate stimuli and analysis methods 

(Rosenberg and Finn, 2022). This high level of reproducibility in retinotopic data is due to 

the implementation of an explicit computational approach in characterising the fMRI signal.

8. Why has vision science been so useful for fMRI?

The methods underlying vision science guide us on how to drive the system with large 

signals that are spatially and temporally precise. For example, established knowledge of 
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visual processing tells us that spatial and temporal contrast are more important stimulus 

parameters than luminance, and these parameters will drive the largest fMRI signal. One 

probably would not want to use, for example, language or emotion, as a tool to test the linear 

transform model of the BOLD response, as there may be unknown non-linearities in the 

stimulus-to-neural responses, and experimenters cannot precisely control the onset, offset, 

and intensity of the neural responses via their stimulus. On the other hand, one might apply 

the linearity findings from visual neuroimaging to help model the responses in a study of 

language or emotion. Likewise, the organisation of the visual system is well-documented, 

allowing for highly accurate spatial localisation of the fMRI signal in space and time. 

Finally, vision science equips us with tools to parametrically manipulate the strength of the 

neural and fMRI signal. For example, we know that contrast is the currency of the visual 

system and we understand how varying the contrast of a stimulus will drive both neural and 

fMRI signals. This allows researchers to define the fMRI response in units of visual stimulus 

and compare the fMRI response with measurements from other instruments.

We do not wish to argue that other fields should necessarily adopt the same methods 

described here, nor do we suggest that vision science has been the sole contributor 

to understanding fMRI. Indeed, disciplines beyond vision science have made major 

contributions to understanding fMRI. For example, one of the first human BOLD 

experiments targeted the motor system (Bandettini et al., 1992) and an important study 

on the neural basis of the BOLD signal used auditory stimuli (Mukamel et al., 2005), though 

the ease with which one can present calibrated stimuli and the precision with which we 

can predict the neural response are the appeal of using vision. Most of the studies we have 

described took advantage of known features of the nervous system to make discoveries about 

fMRI. When the goal is to make new discoveries about the nervous system rather than 

about fMRI, sometimes different methods are needed. Our point is instead that studies which 

characterise the measurement itself (fMRI and the BOLD signal) can be of great value, and 

that the tools of vision science are well suited to this goal.

The systematic (and perhaps tedious) nature of vision science has paid off; it has advanced 

our understanding of fMRI, starting with the BOLD signal and more recently with the 

development of computational models to characterise the fMRI response. Although we have 

focused on fMRI, a similar approach can be used to better understand other forms of brain 

measurement technology, such as functional ultrasound (Macé et al., 2011) or portable 

modular quantum magnetometer systems (Tierney et al., 2019). Overall, the advancement 

in our understanding of fMRI afforded through vision science has benefited psychology, by 

allowing psychologists to non-invasively measure the neural basis of a whole array of human 

behaviours and thereby shaping the way we think about human psychology, and medicine, 

by allowing medical researchers to detect changes in cortical neural circuit functioning in 

response to disease or therapy.
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Fig. 1. 
The neural basis of the fMRI signal can be tested by comparing responses with reference 

to parametric variations of an input stimulus. (A) A set of stimuli are chosen that 

parametrically vary in some dimension - in this case, spatial contrast. (B) Measurements are 

made in multiple modalities. These measurements do not need to be made simultaneously 

or even in the same individuals or species. (C) Responses are modeled as a function of the 

stimulus using the same model form (but different fitted parameters) for each modality. For 

example, one can estimate R0, Rmax, c50, and n for different measurement types in response 

to variations in stimulus contrast. (D) The model parameters are compared between multiple 

measurement types with reference to parametric variations in stimulus contrast. Note that the 

measurements in (B) are not directly compared to each other.
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Fig. 2. 
Testing the linear transform model of the fMRI response. (A) Neural activity tends to 

be a nonlinear function of the stimulus. The linear transform model tests whether the 

fMRI response is a linear function of neural activity. (B) Although the fMRI response 

monotonically increases with stimulus contrast, additivity fails. The summed fMRI response 

to 2 × 50% contrast stimuli is smaller than the response to 1 × 100% contrast stimulus. This 

is presumed to be due to non-linearities in the stimulus-to-neural transform. (C) The fMRI 

response obeys temporal additivity; the summed fMRI response to 2 × 6s stimuli shifted in 

time is similar to the response of 1 × 12s stimulus. Here, the neural response to the second 

6 s period is assumed to be similar to the neural response to the first 6 s period. Note that 

BOLD signal in (B) and (C) is simulated.
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