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A B S T R A C T   

This study investigates changes in air quality conditions during the restricted COVID-19 lockdown period in 2020 
across 21 metropolitan areas in the Middle East and how these relate to surface urban heat island (SUHI) 
characteristics. Based on satellite observations of atmospheric gases from Sentinel-5, results indicate significant 
reductions in the levels of atmospheric pollutants, particularly nitrogen dioxide (NO2), sulfur dioxide (SO2), and 
carbon monoxide (CO). Air quality improved significantly during the middle phases of the lockdown (April and 
May), especially in small metropolitan cities like Amman, Beirut, and Jeddah, while it was less significant in 
“mega” cities like Cairo, Tehran, and Istanbul. For example, the concentrations of NO2 in Amman, Beirut, and 
Jeddah decreased by − 56.6%, − 43.4%, and − 32.3%, respectively, during April 2020, compared to April 2019. 
Rather, there was a small decrease in NO2 levels in megacities like Tehran (− 0.9%) and Cairo (− 3.1%). Notably, 
during the lockdown period, there was a decrease in the mean intensity of nighttime SUHI, while the mean 
intensity of daytime SUHI experienced either an increase or a slight decrease across these locations. Together 
with the Gulf metropolitans (e.g. Kuwait, Dubai, and Muscat), the megacities (e.g. Tehran, Ankara, and Istanbul) 
exhibited anomalous increases in the intensity of daytime SUHI, which may exceed 2 ◦C. Statistical relationships 
were established to explore the association between changes in the mean intensity and the hotspot area in each 
metropolitan location during the lockdown. The findings indicate that the mean intensity of SUHI and the spatial 
extension of hotspot areas within each metropolitan had a statistically significant negative relationship, with 
Pearson’s r values generally exceeding - 0.55, especially for daytime SUHI. This negative dependency was 
evident for both daytime and nighttime SUHI during all months of the lockdown. Our findings demonstrate that 
the decrease in primary pollutant levels during the lockdown contributed to the decrease in the intensity of 
nighttime SUHIs in the Middle East, especially in April and May. Changes in the characteristics of SUHIs during 
the lockdown period should be interpreted in the context of long-term climate change, rather than just the 
consequence of restrictive measures. This is simply because short-term air quality improvements were insuffi
cient to generate meaningful changes in the region’s urban climate.   

☆ This paper has been recommended for acceptance by Prof. Pavlos Kassomenos.☆☆ We declare that all authors have contributed equally to this work, as follows. 
* Corresponding author. Department of Geography, Sultan Qaboos University, Al Khoud, Muscat, Oman. 

E-mail address: kenawy@mans.edu.eg (A.M. El Kenawy).  

Contents lists available at ScienceDirect 

Environmental Pollution 

journal homepage: www.elsevier.com/locate/envpol 

https://doi.org/10.1016/j.envpol.2021.117802 
Received 11 June 2021; Received in revised form 18 June 2021; Accepted 15 July 2021   

mailto:kenawy@mans.edu.eg
www.sciencedirect.com/science/journal/02697491
https://www.elsevier.com/locate/envpol
https://doi.org/10.1016/j.envpol.2021.117802
https://doi.org/10.1016/j.envpol.2021.117802
https://doi.org/10.1016/j.envpol.2021.117802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2021.117802&domain=pdf


Environmental Pollution 288 (2021) 117802

2

1. Introduction 

Different social, demographic, political and economic processes have 
contributed to the rapid growth of cities in the Middle East during the 
past few decades (Costello, 1977). According to the World Bank, the 
Middle East’s urban population increased from 35% in the 1960 to 65% 
in 2015, far exceeding the global average of 55% (United Nations Pop
ulation Division, 2018). At the national level, the contribution of the 
urban population to the total population varied considerably from 35% 
(Sudan) to 100% (Kuwait) in 2018 (United Nations Population Division, 
2018). Currently, the region incorporates some of the most populated 
urban areas in the world like Greater Cairo, Istanbul, Tehran, Riyadh, 
and Baghdad. In addition, the region incorporates several city-states, 
such as Qatar, Bahrain, and Kuwait, which serve as the epicentre of 
political, economic, and cultural life across its contiguous territory. Due 
to these rapid urbanization rates, accompanied with inadequate urban 
resources and services, urbanization has posed several environmental 
and socioeconomic challenges in many metropolitan areas across the 
region, including the excessive amounts of greenhouse gas (GHG) 
emissions, with drastic impacts on the carbon cycle, anthropogenic 
climate change, air quality, and human health (Nathaniel et al., 2020; 
Ramahi, 2010; Sibai et al., 2010). 

Several studies have referred to the Middle East as a “hotspot” in 
terms of climate change, with more rapid increases in surface air tem
perature than the global mean (Diffenbaugh et al., 2007; El Kenawy 
et al., 2016; Lelieveld et al., 2012; Nasrallah and Balling, 1993). A 
representative example is Nasrallah and Balling (1993) who reported an 
increase in air temperature on the order of 0.07 ◦C/decade over the 
Middle East from 1945 to 1990, which is higher than the corresponding 
linear trends for global land areas (0.05 ◦C/decade). Based on in situ 
measurements and satellite imagery, a variety of studies have confirmed 
significant changes in urban climate across the Middle East on a 
micro-scale (e.g. Abulibdeh, 2021; Abutaleb et al., 2015; Alobaydi et al., 
2016; Çiçek and Doğan, 2006; Dihkan et al., 2018; El Kenawy et al., 
2020; Elagib, 2011; Karaca et al., 1995; Mohammed et al., 2020; 
Naserikia et al., 2019). In their assessment of the spatiotemporal char
acteristics of urban heat island (UHI) in Istanbul, Ünal et al. (2020) 
demonstrated that the intensity of UHI has increased by 
0.41–0.50 ◦C/decade from 1960 to 2012, compared to 
0.13–0.18 ◦C/decade for daytime UHI intensity. Also, El Kenawy et al. 
(2020) claimed that surface UHI had expanded significantly over 
Greater Cairo between 2003 and 2019. 

The first case of the Coronavirus disease 2019 (COVID-19) was 
discovered in China in late 2019 and since then has rapidly spread 
throughout the entire world (Li et al., 2020). The World Health Orga
nization (WHO) declared the novel coronavirus disease a pandemic on 
March 11, 2020 (World Health Organization, 2020). The dramatic drop 
in economic activities during the COVID-19 pandemic, especially during 
lockdown periods, has provided an once-in-a-lifetime opportunity to 
investigate the extent to which this pandemic affects urban climate. It is 
well-established that anthropogenic pollution has considerable in
fluences on air quality and thus heat and energy fluxes in cities (Archer 
et al., 2020; Jephcote et al., 2021). Nonetheless, these impacts may vary 
considerably among the different cities, due to their various levels of 
industrialization, urbanization, and social organization, besides other 
physical considerations (e.g. geography, climate). 

There have been large-scale human activity restrictions during the 
COVID-19 era to prevent the spread of this disease. Like other parts of 
the world, several restrictive lockdown measures were implemented in 
most countries in the Middle East, launching in late March 2020 
(Broomandi et al., 2020). These strict preventive lockdown measures 
included, amongst others, the suspension or significant reductions in 
catering and entertainment activities, a significant reduction in trade, 
and small-businesses, cessation of full-time education, as well as directly 
impacting the work of numerous enterprises. These restrictive measures 
temporarily reduced the volume of industrial activities and automobile 

traffic, especially during the first non-working weeks of the pandemic. 
Alqasemi et al. (2021) demonstrated that, during lockdown periods in 
2020, nitrogen dioxide (NO2) and aerosol optical depth (AOD) concen
trations in the northern United Arab of Emirates (UAE) decreased by 
23.7% and 3.7%, respectively, compared to the same period in 2019. 
Also. Ginzburg et al. (2020) indicated that the workload on the Moscow 
motorway network was roughly four times lower in April 2020 than it 
was in April 2019. Such preventative measures are likely to impact 
trends in greenhouse and polluting gases (e.g. NO2, carbon monoxide 
[CO], methane [CH4], and AOD) in urban areas. The improvement in 
urban air quality due to the COVID-19 pandemic and its associated risk 
mitigation initiatives has been confirmed at different spatial scales (e.g. 
Archer et al., 2020; Dantas et al., 2020; Islam et al., 2021; Jephcote 
et al., 2021; Rodríguez-Urrego and Rodríguez-Urrego, 2020). According 
to Giani et al. (2020), there was a significant decrease in fine particulate 
matter (PM2⋅5) over China and Europe by 29.7% and 17.1%, respec
tively, during the COVID-19 lockdown interventions in 2020. Similarly, 
within a month of the lockdown, Tobías et al. (2020) noted a reduction 
of 45, 51, 31, and 19% in PM10, NO2, SO2, and CO levels over Barcelona 
(Spain) within a month of the lockdown. These drastic reductions in 
GHGs may impact the spatial and temporal characteristics (e.g. in
tensity, spatial extent) of urban heal heat islands (UHIs). Nonetheless, 
the response of urban systems to lower GHG emissions can vary signif
icantly from one city to another, depending on population size, urban
ization rates, industrialization phases, dominant land use/land cover 
types, landscape heterogeneity, and physical-human interactions, 
amongst other driving variables (Yao et al., 2021a). 

In the vast majority of the Middle East, the restrictive measures were 
only in effect for a few weeks, as many countries in the region imple
mented a gradual return to normal life and, accordingly, GHGs con
centrations began to recover a few months after the early restrict 
lockdown was implemented. This raises the question of whether the 
short-term improvement in air quality was enough to cause significant 
changes in climate trends in the Middle Eastern metropolitans, as rep
resented by surface urban heat island (SUHI) intensities and spatial 
extent, or whether it was merely a transient and temporarily improve
ment in air quality that failed to influence urban climate trends. What 
makes this question more interesting is the location of vast areas of the 
Middle East within the Horse Latitudes, which are characterized by the 
dominance of high-pressure systems, air subsidence, atmospheric sta
bility, and accordingly intensification of air pollutants (Keikhosravi, 
2019; Mohammadpour et al., 2021; Tyrlis et al., 2015). As such, a 
thorough examination of the unusual situation in 2020 can help answer 
the most pressing questions about the feasibility of drastic emissions 
reductions to improve air quality, reduce anthropogenic pressure on 
urban environments, and mitigate the negative impacts of anthropo
genic climate change. 

In the pursuit of this objective, the main aims of this study are to (i) 
assess changes in different pollutant concentrations (e.g. NO2, CO, CH4, 
SO2, aerosols, and AOD) in 21 metropolitan cities spanning 14 countries 
across the Middle East during the 2020 COVID-19 lockdown (March
–June), and (ii) evaluate their links to the spatial and temporal char
acteristics (mainly intensity and spatial extent) of SUHI across these 
metropolitans. 

2. Study area 

The study incorporates 21 metropolitan areas in the Middle East 
(Fig. 1). Three sub-groups can be identified among the selected metro
politans. Greater Cairo, Istanbul, Tehran, Greater Khartoum, Ankara, 
Riyadh, and Baghdad are part of the first group, which includes mega
cities in the region with total urban agglomeration areas exceeding 
1000 km2 and populations exceeding 5 million. The second group in
cludes states’ capitals, such as Amman, Beirut, Doha, Kuwait, Muscat, 
and Sanaa, which serve as the epicentre of political, economic, and 
cultural life across their contiguous territory. The last group includes 
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some metropolitan areas that have a significant urban center, either 
because of their economic value (e.g. Alexandria, Jeddah, Mashhad, 
Esfahan, and Dubai) or due to their religious heritage (e.g. Makkah and 
Maddinah). For example, with 4–8 million visitors per year, Makkah and 
Maddinah are extraordinary religious tourism destinations (i.e. Hajj, 
Umrah, and Ziyarah) for Muslims from all over the world (AL Talib, 
2020). Due to its geographical location, broad altitudinal range, and 
topographical features, the climate of the Middle East is characterized 
by high variability over space and time. Also, the climate is influenced 
significantly by both mid-latitude and sub-tropical configurations. As 
illustrated in Fig. A1., the selected metropolitans exhibit a variety of 
topographic conditions, ranging between low-altitude cities like Alex
andria, Dubai, Jeddah, Muscat, Doha, and Kuwait (altitude is generally 
less than 30 m above sea level) and highly-elevated cities, such as Sanaa, 
Esfahan, Tehran, Mashhad, Ankara) (altitude generally exceeds 1000 m 
a.s.l.). From the climatic perspectives, the selected cities experience 
varying continental and maritime influences, with inland cities with 
hybrid continental conditions (e.g. Riyadh and Baghdad), other metro
politans are impacted by maritime influences either from moderate (e.g. 
Alexandria, Beirut, Istanbul) or tropical (e.g. Jeddah, Doha, Dubai, and 
Muscat) water bodies. Population size varies considerably amongst the 
selected metropolitans, with Greater Cairo (>20 million inhabitants) 
and Istanbul (>15 million inhabitants) representing the most populated 
cities in the region. Other cities have population size less than one 
million (e.g. Doha, Kuwait). From a morphological perspective, the 
selected metropolitans exhibit a wide range of morphological charac
teristics, with some of them having a compacted circular (e.g. Maddinah 
and Ankara), longitudinal (e.g. Muscat), latitudinal (e.g. Istanbul, 
Alexandria) shapes. Also, the total area of the selected metropolitans 
varies considerably from mega metropolitans like Greater Cairo, Istan
bul, Greater Khartoum to small metropolitans (e.g. Maddinah and 
Makkah, total area less than 150 km2) (Costello, 1977; Ünal et al., 
2020). Amongst all metropolitans, Istanbul ranked first globally in terms 
of population growth rate in the past few decades, while Cairo ranked 

eighth (Kennedy et al., 2015). 

3. Data and methods 

To assess the impacts of city lockdown on air quality, we assessed 
changes in the composition of the atmosphere in the selected 21 met
ropolitans during March–June 2020, relative to conditions prior to the 
lockdown in 2019. Remotely-sensed air quality data for key pollutants, 
including concentrations of NO, CO, O3, NO2, SO2, and secondary 
aerosols were obtained for the period March–June for 2019 and 2020. 
The AOD data were obtained from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Version 6 global Multi-Angle Implementa
tion of Atmospheric Correction (MAIAC) (MCD19A2), while data for 
other atmospheric pollutants (i.e. NO2, O3, SO2, CO, and aerosols) were 
provided by the European Space Agency (ESA) Sentinel-5 precursor 
(also known as Sentinel-5p) TROPOMI (Tropospheric Monitoring In
strument) mission (Veefkind et al., 2012). Sentinel-5P is the first 
Copernicus mission to monitor the atmosphere, with the goal of nar
rowing the data gap between the launch of Envisat satellites (especially 
the SCIAMACHY instruments) and Sentinel-5 (Veefkind et al., 2012). 
Sentinel-5P is a near-polar orbiting sun-synchronous satellite positioned 
at an altitude of 817 km in an ascending node with an equator crossing 
time at 13:30 (local time) (Zheng et al., 2019). The satellite is equipped 
with the most advanced TROPOMI instrument for measuring ultra
violet–visible (270–500 nm), near-infrared (675–775 nm), and 
short-wave infrared (2305–2385 nm) spectral bands, allowing to image 
different atmospheric pollutants at improved accuracy, compared with 
other satellites (Veefkind et al., 2012). Sentinel-5 provides a quality 
band, with values ranging from 0 (poor) to 1 (excellent), which is 
important for pixel filtering and data quality verification (e.g. elimina
tion of cloud interference). Overall, air quality data were extracted for 
the metropolitan areas on a monthly scale for the period March–June 
between 2019 and 2020 and at a grid resolution of 7 × 3.5 km. 

In an attempt to provide a complete picture of the state of air quality 

Fig. 1. The selected 21 major metropolitan cities in the Middle East.  
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in the 21 metropolitans during the restricted lockdown period (March
–June 2020), we proposed a ranking score for each atmospheric 
pollutant. Specifically, the anomalies of a particular pollutant in the 21 
metropolitans in 2020, computed with respect to those of 2019, were 
ranked in ascending order for each month during the lockdown period, 
with the metropolitan with the most anomalous negative values (i.e. 
higher improvement) ranked first, and the metropolitan with the highest 
positive anomaly (i.e. least improvement) ranked 21st. Then, for this 
month, we defined the score (S) of this pollutant, as: 

S=
seqi − 1

c − 1
… (1)  

where seq is the sequence number of each metropolitan and c is the total 
count of the metropolitans (N=21). According to this methodology, a 
score was computed for each atmospheric pollutant on a monthly basis 
(i.e. for March, April, May, and June 2020). The four scores for each 
atmospheric pollutant were then averaged to get the overall score of 
every pollutant during the lockdown period. Finally, we calculated an 
air quality aggregated index to summarize the whole picture of air 
quality in each city, which takes into account the scores of the six pol
lutants employed in this study. This index was computed for each 
metropolitan using an average of the scores of the six pollutants for this 
metropolitan. Simply, the air quality aggregated index values range 
from 0 (least improved air quality) to 1 (most improved air quality). 

To characterize SUHI during the COVID-19 lockdown period across 
the selected metropolitan areas in the Middle East, land surface tem
perature (LST) was employed as an indicator of land surface physical 
processes. Satellite observations have provided many useful and 
powerful databases for evaluating the dynamics of SUHI. Specifically, 
Thermal Infrared Spectrometer (TIR) imagery can provide a large-scale 
and simultaneous view of LST data at a relatively detailed spatial scale 
and for regular and continuous time intervals, with a positive cost–be
nefit ratio. The full archive of the 8-day composites of the LST product 
(MYD11A2V.6) (https://lpdaac.usgs.gov/) spanning March–June 
period between 2003 and 2020 was employed in this study (de Andrade 
et al., 2021). Specifically, we retrieved daytime (1:30 p.m.) and night
time (1:30 a.m.) LST from the Aqua satellite (MYD11A2 V.6) at a 1 km 
grid resolution for the selected 21 metropolitans in the Middle East. This 
study characterized SUHI using both daytime and nighttime LST, 
allowing for a more detailed view of SUHI diurnal variations. Also, 
under different levels of restrictive measures between day and night 
hours, this approach allows characterizing the varying responses of 
daytime and nighttime SUHI to COVID-19 lockdown. MOD11A2 has 
been corrected for atmospheric effects (e.g. clouds, aerosols), resulting 
in high-quality data (Tonooka, 2005). As such, it has been increasingly 
employed to assess SUHI intensity and spatial extension, as well as its 
temporal changes and driving forces, across many cities in the world (e. 
g. Imhoff et al., 2010; Li et al., 2017; Meng et al., 2018; Yao et al., 2017, 
2018; Li et al., 2021), including the Middle East (e.g. El Kenawy et al., 
2020; Nassar et al., 2016). 

The intensity of SUHI is determined based on the concept of “local 
climate zones”. Specifically, from 2003 to 2020, we identified the hot 
and cold spot regions for each month separately. Then, the SUHI in
tensity was computed as the spatially-averaged LST temperature dif
ference between these two thermally-distinct areas in each metropolitan 
(i.e. the hotspot and cold spot). Different approaches have been used to 
delineate hot and cold urban spots in the literature, including numerical 
classification, Gaussian surface fitting, radial sampling, and hotspot 
methods (Zhou et al., 2018; Huang and Wang, 2019). Amongst them, 
hotspot methods (e.g. spatial autocorrelation, spatial clustering) are 
commonly used to delineate hotspot regions in urban agglomerations. 
However, these hotspot methods focus more on the spatial perspective of 
SUHI, with less attention paid to how it evolves over time, which is 
extremely important given that cities rapidly change over time and their 
local climate is also highly variable. Accordingly, to account for the 

dynamical evolution of SUHI over time and space, we applied the al
gorithm proposed by (El Kenawy et al., 2020). According to this meth
odology, a spatial anomaly of daytime (nighttime) LST at each time step 
(8-day composite) for each grid within a metropolitan was computed, as 
follows: 

LSTanomaly=LSTi − μ… (2)  

where LSTi refers to daytime (nighttime) LST at grid i at a given time 
step, while μ indicates the average of daytime (nighttime) LST across all 
grids within the metropolitan at the same time step. Then, these 8-day 
anomalies were aggregated on a monthly basis. To define the spatial 
extent of the most anomalous “hotspot” and “cold spot” across each 
metropolitan and for a particular month within the period 2003–2020, 
the grid (i) was assigned to the most anomalous hotspot when: 

LSTanomalyforgridi > 0.5(Q75forallgrids − Q25forallgrids) + Q75for all grids… (3) 

Alternatively, the grid is assigned to the most anomalous cold spot 
when: 

LSTanomalyforgridi <Q25forallgrids − 0.5(Q75forallgrids − Q25forallgrids)… (4) 

Following Equations (2) and (3), Q75 refers to the value of the 75th 
percentile calculated for all LST anomalies for all grids at a given time 
step, while Q25 denotes the value of the 25th percentile. Based on these 
equations, each grid within the metropolitan area will be assigned to the 
most anomalous hotspot if it meets the conditions of Equation (2), and to 
the most anomalous cold spot if it fulfills the requirement of Equation 
(3). Other grids in the metropolitan area will refer to transitional ther
mal zones between the most anomalous hot and cold spots. Based on LST 
spatial anomaly, the applied algorithm allowed to determine the por
tions of the metropolitan area with higher (hotspot) and colder (cold 
spot) surface temperature in a comparable manner over both space and 
time. Here, it should be noted that while our approach to delineate SUHI 
relies primarily on LST differences to distinguish hot and cold spots 
within each metropolitan area, this definition indirectly accounts for the 
difference between urban and rural areas. Basically, our definition is 
based on the assumption that the most anomalous hotspots in any 
metropolitan area are likely to be located in most urbanized areas, 
where built-up areas, population densities, green space ratio, and 
dominant economic activities are more evenly distributed (Wu et al., 
2020). The anomalous cold spot, on the other hand, is mostly found in 
less-urbanized and sub-urban areas. Further details about this method is 
outlined in El Kenawy et al. (2016). 

After calculating the intensity and spatial coverage of SUHI for each 
month from 2003 to 2020, we first compared the values of SUHI in
tensity and total area for the lockdown months in 2020 (i.e. March
–June) with their long-term (2003–3019) averages. Second, we 
compared the difference between the value of SUHI intensity/spatial 
coverage in 2020 and the average of these metrics over the same months 
in 2019. Calculating SUHI metrics relative to both long-term 
(2003–2019) and short-term (i.e. 2019) base periods allows deter
mining whether changes in SUHI metrics reflect abrupt changes asso
ciated with the short-term improvement in air quality due to GHGs 
deductions after COVID-19 lockdown or merely a phase of long-term 
natural climate change. Finally, the Pearson correlation coefficient 
was used to assess the association between changes in the mean intensity 
of SUHI and the corresponding spatial coverage of hotspot area using the 
short-term (i.e. 2019) and long-term (2003–2019) anomaly. This asso
ciation statistic was also employed to explore the dependency between 
changes in air pollutants and SUHI characteristics (i.e. intensity, spatial 
coverage) for the period 2019–2020. Statistical significance of correla
tion was assessed at the 95% level (p < 0.5). 
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4. Results 

4.1. Changes in air quality during lockdown 

Fig. 2 illustrates changes (%) in the amounts of the different atmo
spheric pollutants during the lockdown period (March–June 2020), as 
compared to their averages for the same period in 2019, while their 
averages for the 21 metropolitans are listed in Table 1. Monthly changes 
were calculated separately. A rise in the amount of AOD was noted for 
almost all metropolitans in March, with values ranging between 3.6% 
(Muscat) and 75% (Maddinah). Exceptionally, only two metropolitan 
areas, Kuwait (− 12%) and Mashhad (− 10%), showed a decrease in 
AOD. In April, almost half of the metropolitans experienced an increase 
in AOD concentrations, while the other half witnessed a decline. 
Notably, almost all positive anomalies were found inland, with the 
largest increase found in Baghdad (79.7%), Mashhad (53.5%), Tehran 
(53.3%), and Cairo (33.3%). Rather, coastal metropolitans exhibited the 
most pronounced negative changes in AOD, including Beirut (− 29.5%), 
Jeddah (− 38.4%), and Alexandria (− 28.5%). In May, there was a 
noticeable improvement in AOD concentrations, with metropolitans 
either experiencing a strong negative anomaly like Isfahan (− 19.1%), 
Muscat (− 15%), Cairo (− 14.5%), Amman (− 14.1%), Jeddah (− 11%), 
and Baghdad (− 10.1%) or witnessing a slight increase like Maddinah 
(0.2%), Khartoum (2%), and Damascus (3.9%). In June, there was a 
significant reduction in AOD levels in several metropolitan areas. This 
was apparently the case for Beirut, Makkah, Jeddah, Cairo, and Mad
dinah. Comparing the monthly relative anomalies of AOD across met
ropolitans, it can be seen that aside from March, when the restrictive 
measures were applied too late in most countries in the region, AOD 
decreased in each month (i.e. April to June). Nonetheless, Doha, Bagh
dad, and Tehran all showed the least improvement in AOD concentra
tions during the lockdown period. 

Aerosols exhibited a general decrease in their levels, especially in 
May. The most drastic reductions were found in metropolitans of hyper- 
arid zones, characterized by vast neighbouring deserts, like Amman 

(− 282.2%), Cairo (− 208.2%), Muscat (− 180.2%), Khartoum (− 144%), 
Dubai (− 119.9%), and Baghdad (− 98.7%). In few exceptions, there was 
an increase in aerosol concentrations (e.g. Alexandria (529.9%), Dam
ascus (121%), and Tehran (73.5%)). In June, aerosol concentrations 
showed less differences with June 2019, with variations ranging be
tween − 24.3% (Kuwait) and 58.7% (Amman). The most anomalous 
changes in aerosol concentrations in June were found in Muscat 
(394.9%), Damascus (− 177%), Baghdad (− 171.1%), and Sanaa 
(116.1%). 

In contrast to AOD and aerosol concentrations, a major increase in 
CO levels occurred in most of the metropolitans during March and May. 
Majority of these metropolises are located in the Arabian Peninsula, such 
as Sanaa (11.8% and 9.1% in March and April, respectively), Doha 
(5.6% and 6.3% in March and May, respectively), Riyadh (4.9% and 
3.9% in March and May, respectively), Jeddah (6.1% and 6% in March 
and May, respectively), and Dubai (5.6% and 2% in March and May, 
respectively). More metropolitans (e.g. Doha, Kuwait, and Sanaa) and 
beyond (e.g. Amman, Esfahan, Baghdad, Beirut, Damascus, Tehran, 
Mashhad) showed a decline in CO concentrations in June. Nevertheless, 
this improvement was slightly weak (generally less than 3%). Only five 
metropolitans, including Alexandria, Dubai, Khartoum, Maddinah, and 

Fig. 2. Changes (%) in the concentrations of air pollutants, calculated as the differences between these concentrations in 2020 and those of 2019. Differences were 
computed for each month independently during the lockdown period (i.e. March–June). 

Table 1 
Changes (%) in the concentrations of air pollutants, averaged for the selected 21 
metropolitans in the Middle East. Changes were computed as the differences 
between air pollutants levels in 2020 and those of 2019. Differences were 
computed for each month independently during the lockdown period (i.e. 
March–June).   

March April May June 

AOD 25.71 4.78 − 0.20 − 2.58 
Aerosols − 0.15 29.92 − 39.63 4.82 
CO 3.27 0.79 4.05 − 0.30 
NO2 11.18 − 10.28 − 19.72 19.43 
O3 25.42 4.70 − 0.90 − 3.17 
SO2 18.54 8.52 7.82 16.44  
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Muscat, had CO levels rise during the entire lockdown period. 
The concentrations of NO2 decreased significantly during the lock

down period, with the largest changes occurred in April and May, given 
that 18 metropolitans had lower NO2 levels than in 2019. The most NO2 
reductions in April occurred in Amman (− 56.6%), Maddinah (− 48.3%), 
Beirut (− 43.4%), Makkah (− 41.1%), Riyadh (− 35.6%), Baghdad 
(− 32.9%), Jeddah (− 32.3%), and Damascus (− 30.3%). Notably, 
improvement in NO2 levels was less significant in the most populated 
metropolitans, especially Cairo (− 3.1%) and Tehran (− 0.9%), besides 
the Gulf cities (e.g. Dubai, Doha, and Kuwait). Five metropolitans 
exhibited reductions in NO2 concentrations in all months of the lock
down, including Amman, Baghdad, Beirut, Khartoum, and Muscat. 
Rather, Sanaa was the only metropolitan that witnessed NO2 levels in
crease during the lockdown. 

Fig. 2 illustrates how much O3 was impacted during the lockdown 
period. Only two metropolitans (Kuwait and Mashhad) exhibited a 
decrease in O3 levels in March. Other metropolitans showed an increase, 
with values ranging from 3.6% (Muscat) to 75.4% (Mashhad). O3 levels 
appeared to show two distinct patterns during the lockdown. O3 levels 
declined in the metropolitans of the Arabian Peninsula (i.e. Makkah, 
Jeddah, and Sanaa) and the Mediterranean (i.e. Alexandria and Beirut). 
The greatest reductions were found in Makkah (− 40.6%), Jeddah 
(− 38.4%), and Beirut (− 29.5%). A second pattern characterized by an 
increase in O3 concentrations in April was noted in the region mega
cities, including Cairo (33.3%), Tehran (53.3%), Baghdad (79.7%), and 
Riyadh (15.5%), as well as Doha (45%). In most metropolitans, O3 levels 
showed less differences in May 2020 than they had in 2019. Esfahan 
(− 19.1%), Muscat (− 15%), and Cairo (− 14.5%) experienced the 
greatest improvements in O3, while a rapid increase was noted in Riyadh 
(28.4%), Tehran (19.6%), and Sanaa (11.5%). In June, many metro
politans experienced either a decrease in O3 levels (e.g. Beirut, Makkah, 
Jeddah, and Cairo) or a slight increase (usually less than 5%). Only 
Riyadh and Khartoum displayed an increase in O3 concentrations in the 
whole lockdown period, although this increase was much stronger in 
Riyadh (8.8 ± 28.4%) than in Khartoum (1 ± 22.9%). 

In March 2020, the majority of the metropolitans showed an increase 
in SO2 levels. Exceptionally, Ankara, Istanbul, Kuwait, and Mashhad 
showed significant reductions on the order of − 58%, − 41.2%, − 12.1%, 
and − 12%, respectively. In April, megacities such as Ankara, Baghdad, 
Tehran, Cairo, and Riyadh exhibited the greatest SO2 increases, with 
concentrations reaching 90.9%, 79.7%, 53.3%, 33.3%, and 15.5%, 
respectively. Apart from Istanbul (− 2.8%), the decrease in SO2 

concentrations was more noticeable in small metropolises, such as 
Makkah, Dubai, and Kuwait, or in the Mediterranean metropolises, such 
as Alexandria and Beirut. In some of the most densely populated met
ropolises, such as Ankara (− 61%), Esfahan (− 19.1%), Cairo (− 14.5%), 
and Baghdad (− 10.1%), the situation improved in May. In June, an 
increase in SO2 levels occurred in the region’s most populous cities, 
including Istanbul (300%), Ankara (94.3%), Baghdad (9%), and Riyadh 
(8.8%). In addition to Cairo (− 16.5%), the reductions in SO2 were 
noticeable in smaller cities, such as Beirut and Makkah (− 24.7%), 
Maddinah (− 11.5%), and Doha (− 8.6%). Khartoum and Riyadh were 
the only metropolitan areas whose SO2 levels increased throughout the 
entire lockdown period. 

Fig. 3 depicts the atmospheric pollutant scores, which show how 
each pollutant performed in the lockdown period (March–June 2020). 
The overall state of air quality for each metropolitan area is also shown 
using an aggregated index. Air quality in Amman, Beirut, Jeddah, and 
Kuwait improved during the lockdown, with index values generally 
above 0.7. Conversely, in this situation, the cities that showed less 
improvement in air quality were Sanaa (0.38), Doha (0.41), Riyadh 
(0.41), Mashhad (0.44), and Tehran (0.47). CO, NO2, and O3 reductions, 
with 0.93, 0.90, and 0.78 value scores, respectively, led to Amman’s 
significant improvement in air quality. For Beirut, decreasing levels of 
NO2, SO2, O3, and CO were mainly responsible for the improvement in 
air quality. A decrease in aerosol concentrations (score values of 0.90 
and 0.88) helped in improving air quality in Kuwait and Jeddah. The 
primary driver of better air quality in Makkah and Muscat was the 
reduction in NO2, O3, and SO2 levels. On the other hand, the decline in 
air quality in Sanaa was caused by an increase in the majority of pol
lutants, especially NO2 (score = 0.18) and aerosols (score = 0.34). Due 
to an increase in AOD, O3, and SO2, the quality of the air in Doha was 
reduced during the lockdown months. 

For the big metropolitan areas in the region, NO2 was the most 
degraded atmospheric pollutant during the COVID-19 lockdown, with 
value scores of 0.4 or lower. Rather, the most significant improvement 
occurred in CO, especially for Tehran (score = 0.83) and Cairo (score =
0.63). We noticed significant differences between the Gulf metropoli
tans. Kuwait and Muscat showed improvements in their air quality 
during the lockdown, mainly due to a decrease in NO2, O3, and SO2. 
Conversely, Doha and Dubai showed less improvement in their air 
quality, with index values of 0.41 and 0.51, respectively. The levels of 
atmospheric pollutants in these cities, especially CO, O3, NO2, and SO2, 
were higher during the lockdown than they were in 2019. 

Fig. 3. Ranking the 21 metropolitans according to the score computed for each atmospheric pollutant. The right panel indicates the air quality aggregated index 
accounting for the full range of atmospheric pollutants. 
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4.2. Changes in the mean intensity of SUHIs during lockdown 

Fig. 4 illustrates changes in the mean intensity of SUHI over the 21 
metropolises, as compared to that for the long-term (2003–2019) 
average. Results are presented for both daytime and nighttime SUHIs. As 
depicted, nighttime SUHI intensity declined drastically in March, with 
values ranging between − 1.16 ◦C in Cairo and 0.02 ◦C in Jeddah. Only 
two metropolitans, Khartoum (0.03 ◦C) and Mashhad (0.04 ◦C) wit
nessed an increase in their nighttime SUHI intensity. Fig. 4 informs that 
March’s largest decrease in mean intensity of nighttime SUHI occurred 
in the megacities, including Cairo (− 1.16 ◦C), Tehran (− 0.94 ◦C), 
Baghdad (− 0.67 ◦C), Istanbul (− 0.65 ◦C), and Riyadh (− 0.52 ◦C). This 
decrease was also noted in Dubai (− 0.91 ◦C) and Alexandria (− 0.78 ◦C). 
Also, daytime SUHI was dominated by a decreasing mean intensity. 
Nonetheless, the mean intensity of daytime SUHI in Jeddah, Doha, 
Istanbul, Tehran, Esfahan, and Khartoum was higher than nighttime 
SUHI. Khartoum, Esfahan, Tehran, and Istanbul all recorded the highest 
(>1 ◦C) mean intensity of daytime SUHI, compared to the period 
2003–2019. Nighttime SUHI intensity had a smaller decrease than 
daytime SUHI in April, with a mean intensity change of 0.03 ◦C (Jeddah 
and Riyadh) to 2.97 ◦C. (Tehran). Again, megacities like Tehran 
(2.97 ◦C), Ankara (2.89 ◦C), and Istanbul (1.97 ◦C) had the largest in
creases in daytime SUHI mean intensity. In contrast, the largest decrease 
in the mean intensity of daytime SUHI was found in smaller metropol
itans like Makkah and Maddinah, as well as the Mediterranean metro
politans like Alexandria, Damascus, and Beirut. In May, the mean 
intensity of daytime SUHI increased across the Arabian Peninsula and 
the Gulf region, including Sanaa (2.7 ◦C), Doha (0.42 ◦C), Kuwait 
(0.37 ◦C), Dubai (0.36 ◦C), and Riyadh (0.24 ◦C), as well as some 

megacities like Istanbul (1.5 ◦C) and Tehran (0.78 ◦C). Conversely, the 
largest decrease in daytime SUHI was observed in Cairo, Damascus, 
Amman, and Baghdad, which were all 0.75–1.18 ◦C cooler. Dubai, 
Beirut, Maddinah, and Cairo metropolitans experienced the most 
notable reductions in the intensity of their nighttime SUHIs, with dif
ferences less than 0.6 ◦C (e.g. Baghdad, Ankara, and Jeddah). Daytime 
and nighttime SUHI patterns had similar differences in June, however, 
with less differences than in May. 

A closer look at Fig. 4 reveals some interesting results. First, during 
the lockdown of 2020, the intensity of SUHI decreased generally in most 
metropolitans, which was accompanied by a higher change in the mean 
intensity of SUHI during nighttime than during daytime. Second, the 
reduction was more pronounced in smaller metropolises (e.g. Amman, 
Makkah, Maddinah, and Beirut). Third, SUHI intensity decreased more 
over the middle phase of the lockdown, rather than when it began 
(March) or ended (June). Fourth, during the entire period of lockdown, 
only Cairo (the largest city in the region) had a decrease in mean in
tensity for both daytime and nighttime SUHI. Lastly, all Gulf’s metro
politans, with the exception of Muscat, had an increase in the mean 
SUHI intensity during the day, but a decrease during nighttime. 

Fig. 5 shows the evolution of the mean intensity of SUHI in the 
lockdown period, but as compared with the same period in 2019. Similar 
to results from the long-term (2003–2019) period. The findings show 
that the mean intensity declined more noticeably in the majority of the 
metropolitans during the nighttime, especially between March and May. 
Even so, it appears that changes in SUHI intensities, which were 
generally positive, were much stronger during daytime than in night
time. The rapid increase in the mean intensity of daytime SUHI occurred 
in the megacities of Tehran and Ankara in April, being stronger for some 

Fig. 4. Anomalies of the mean intensity of daytime (red) and nighttime (blue) SUHI during the 2020 lockdown months, relative to those computed for the longer 
base period of 2003–2019. Anomalies were computed for each month independently. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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cities in the Arabian Peninsula like Sanaa and Maddinah and the Gulf 
countries (e.g. Kuwait, Dubai, and Doha) in May and June. A compari
son of Figs. 4 and 5 reveals that short-term anomalies (i.e. relative to 
2019) in the mean intensity were lower than those based on long-term 
anomalies (i.e. 2003-2019). Notably, daytime and nighttime mean 
SUHI changed little (almost less than 0.5 ◦C) during the lockdown year 
2020, relative to the same period in 2019, especially for daytime. 
Rather, the long-term anomalies suggested larger differences (0.5–1 ◦C 
for nighttime and 1–1.5 ◦C for daytime, on average). 

4.3. Changes in the spatial extent of SUHIs during lockdown 

Fig. 6 illustrates how the total hotspot area in each metropolitan area 
changed during the 2020 lockdown, compared to their averages from 
2003 to 2019. In March, daytime hotspots areas decreased in 13 out of 
21 metropolises, with values between − 0.12% (Dubai) and − 5.68% 
(Tehran). Rather, during the day, the hotspot area increased in several 
metropolitan areas, including Cairo (4.71%), Maddinah (2.85%), Beirut 
(1.45%), Makkah (1.15%), and Amman (0.94%), among others. During 
the night, a similar pattern was observed, but with notable increases in 
megacity hotspots, such as Cairo (0.98%), Istanbul (1.49%), Tehran 
(2.7%), and Baghdad” (2.36%). Major cities across the Arabian Penin
sula (e.g. Sanaa, Makkah, Maddinah, and Jeddah) and the Gulf region (e. 
g. Kuwait, Muscat, and Dubai) experienced an increase in both daytime 
and nighttime hotspots in April. Kuwait and Riyadh had the largest in
crease in daytime hotspot areas, with values of 4.11% and 2.94%, 
respectively. In Tehran, on the other hand, the total area of hotspots fell 
dramatically during day (− 7.83%) and night (− 6.80%). The hotspots in 
Beirut, Doha, Sanaa, and Tehran increased during day and at night in 

May, albeit with a greater increase during daytime. In contrast, hotspots 
decreased at both day and nighttime in Baghdad and Riyadh. In contrast, 
the metropolitans of the Arabian Peninsula (e.g. Riyadh, Jeddah, and 
Makkah) and the Gulf region (e.g. Muscat and Dubai) had the greatest 
reduction in their nighttime hotspots. With the exception of Cairo 
(− 2.35%), other megacities like Ankara (3.97%), Tehran (3.64%), and 
Istanbul (1.77%) demonstrated the most significant growth in the total 
nighttime hotspot area. Overall, albeit with the differences in the sign of 
change (i.e. increase/decrease) in the total hotspot area during the 
lockdown months, we observed two distinct patterns: more rapidly 
changes in the daytime hotspots in megacities like Cairo, Tehran, and 
Istanbul and, instead, stronger changes in nighttime hotspots in less- 
populated and small metropolitans like Doha, Makkah, Muscat, and 
Kuwait. 

Fig. A2 depicts changes in the area of hotspots during the months of 
the 2020 lockdown, as compared to the same period in 2019. The ma
jority of the metropolitans showed an increase in both the daytime and 
nighttime SUHI hotspots, being much stronger in May. Nonetheless, this 
increase was more pronounced during daytime, particularly for small 
metropolises like Makkah (2.81%), Sanaa (1.84%), Jeddah (1.30%), 
Muscat (1%), Doha (0.84%), and Beirut (0.79%). Regardless of the sign 
of change (i.e. positive or negative), the Arabian Peninsula and the Gulf 
metropolitans had higher hotspot change rates, especially for Maddinah, 
Sanaa, Dubai, and Makkah during daytime. On the other hand, for 
megacities, like Tehran, Cairo, Istanbul, Tehran, Ankara, and Riyadh, 
these changes were almost negligible. An inspection of Fig. 6 and A2 
reveals that changes in the hotspot areas during the lockdown were 
much smaller when considered short-term (i.e. 2019) anomaly than 
those based on the long-term (2003–2019) anomaly. Fig. A2 indicates 

Fig. 5. Anomalies of the spatial extent of hotspot areas during daytime (red) and nighttime (blue) in the 2020 lockdown months, relative to those computed for the 
longer base period 2003–2019. Anomalies were computed for each month independently. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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that hotspot changes rarely exceed 2% either for daytime or nighttime, 
with the exception of the metropolises of the Arabian Peninsula and the 
Gulf region. 

Fig. 7 shows the relationship (agreement) between changes in the 
mean intensity of daytime and nighttime SUHI during the lockdown and 
the corresponding changes in the spatial extent of hotspot areas. Herein, 
changes were computed with respect to the near-term (2019) and long- 
term (2003–2019) periods. Regardless of the base period to calculate the 
anomalies, the majority of the metropolitans showed a negative rela
tionship between SUHI mean intensity and the total area of hotspots. 
When SUHI mean intensity increased, the total area of hotspot decreased 
and vice versa. This dependency was evident for all months of the 
lockdown, as well as both daytime and nighttime. Nevertheless, this 
association was much stronger in April, though being statistically non- 
significant during nighttime (r = 0.37, p > 0.05). Additionally, when 
considering the short-term anomaly, results also show a negative cor
relation between the mean intensity of SUHI and the corresponding 
hotspot area. However, this association was notably stronger and sta
tistically significant (p < 0.05) for daytime SUHI, especially in March, 
April, and June. 

5. Discussion 

Our study assessed changes in the concentrations of a number of air 
pollutants (e.g. AOD, aerosols, CO, O3, NO2, and SO2) and SUHI char
acteristics over 21 metropolitan cities in the Middle East during the 2020 
restricted lockdown (March–June). Air quality was characterized based 
on satellite-derived air pollution retrievals from Sentinel-5 for the period 
2019–2020. Although actual measured data are highly desired as they 
provide a “real” estimation of the state of air quality using ground 

measurements, the uneven distribution of these stations makes it diffi
cult to assess air quality conditions using these data sources. However, 
air quality data from Sentinel-5 have proven to be effective tools for 
characterizing air quality in different regions in the Middle East (e.g. 
Alqasemi et al., 2021; El-Nadry et al., 2019; Safarianzengir et al., 2020) 
and worldwide (e.g. Gautam, 2020a,b; Hashim et al., 2021; Jephcote 
et al., 2021; Li et al., 2020; Naqvi et al., 2021; Shehzad et al., 2020; 
Stratoulias and Nuthammachot, 2020). Overall, based on Sentinel-5 
data, our findings demonstrate the expectation that there would be 
significant reductions in the levels of air pollutants during the lockdown 
period, particularly in April and May. The reductions were mostly in 
NO2, SO2 and O3, and to a lesser extent in AOD and aerosols. This finding 
concurs with a wide range of recent regional (e.g. Alqasemi et al., 2021; 
Broomandi et al., 2020) and global (e.g. Aman et al., 2020; Broomandi 
et al., 2020; Chen et al., 2020; Rodríguez-Urrego and Rodríguez-Urrego, 
2020) studies that evidence the dependency between air quality and 
COVID-19 lockdown. For example, Alqasemi et al. (2021) reported a 
decrease in NO2 (23.7%) in the northern UAE during the period of 
April–June 2020, as compared to the same period in 2019. Also, Broo
mandi et al. (2020) noted a decline in SO2 and NO2 levels and conversely 
an in increase in AOD in Tehran between 21st March to April 21, 2020. 
Based on in situ measurements, Aman et al. (2020) indicated a signifi
cant improvement in the levels of NO2, PM2.5, and PM10 in Ahmedabad 
(India) during COVID-19 lockdown. 

Notably, our study indicates that the positive influence of the 
pandemic lockdown on air quality was more significant in small met
ropolitans rather than in megacities of the region. Based on an aggre
gated air quality index, it was evident that air quality improved in small 
metropolitans like Amman, Beirut, Jeddah, Kuwait, Makkah, and 
Muscat, while it was less impacted in the largest and most populated 

Fig. 6. Anomalies of the mean intensity of daytime (red) and nighttime (blue) SUHI during the 2020 lockdown months, relative to those of 2019. Anomalies were 
computed for each month independently. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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metropolitans like Istanbul, Tehran, and Riyadh. In these megacities, the 
most significant improvement in air quality corresponded mainly to 
deductions in CO, while SO2 was the least improved air pollutant in 
these metropolitans. In this context, it is well-established that COVID-19 
has altered emissions significantly, given that people spend more time at 
home and less time on the road (e.g. passenger vehicles, public transit, 
and aircraft) (Gautam, 2020a,b; Kroll et al., 2020). However, this 
behaviour has more influence on air pollutants like nitrogen oxide 
(NOx). In our study, the impact of COVID-19 lockdown on NO2 was more 
evidenced in small metropolitans and the Gulf region. This pattern may 
be explained by the low density of industry in these small metropolitans. 
It can also be linked to the notion that while measures of lockdown are 
country-wide rather than city-based, their application can be less 
restricted in megacities, mainly due to the extended agglomeration and 
overpopulation in these large cities. In many Gulf countries, gasoline 
vehicles, which emit less NOx than their diesel counterparts, are more 
popular, due to their better tourqe and lower consumption of fuel. In less 
developed countries of the Middle East, diesel vehicles are the domain of 
commercial vehicles, due to low income and high oil pricing. Also, the 
volume of gas emissions in megacities is typically larger than in small 
metropolitans, mainly due to intensive industrial activities, over
population, excessive energy consumption, and high traffic load. Glob
ally, megacities consume 6.7% of the global energy, including 9.3% and 
9.9% of the global electricity and gasoline, respectively (Kennedy et al., 
2015). In Tehran, the annual use of energy exceeds 1000 PJ, compared 
to less than 500 PJ in Istanbul and Cairo (Kennedy et al., 2015). This 

high flow of energy in these megacities makes it difficult to recover 
quickly, in terms of air quality and heating intensity, during a temporary 
lockdown period, while small metropolitans have a “short memory” and 
can respond accordingly in a more efficient manner. This can be seen in 
the slight decrease in the mean intensity of SUHI during nighttime, when 
almost all human and economic activities were shut down. 

Recalling the different climatic, demographic, and socioeconomic 
characteristics of the metropolitans employed in this study, it is expected 
that the SUHI characteristics would respond differently to COVID-19. 
This hypothesis was confirmed in this study, particularly during the 
daytime, where restrictive lockdown measures in most countries in the 
region were more relaxed than in the nighttime. Notably, a partial 
lockdown was imposed in the majority of the Middle East countries from 
March to June 2020, which began mostly in the middle or late hours of 
the day (mostly after 4:00 p.m. local time), implying that the effects of 
restrictive measures were more pronounced at night and to a lesser 
extent during the day. This could explain why almost all metropolitans 
in the region exhibited a decline in the mean intensity of their nighttime 
SUHI, while they exhibited either an increase or less significant decrease 
in the mean intensity of daytime SUHI. Overall, the decline in the mean 
intensity of nighttime was more pronounced in small metropolitans (e.g. 
Amman, Makkah, Maddinah, and Beirut) and less significant in mega
cities. Temporarily, we noted that the decline in the intensity of night
time SUHI was apparent in April and May, while it was less significant in 
March and June. This can simply be explained by the notion that life was 
normal in the great course of March, with the exception of the last few 

Fig. 7. Association between changes in the mean intensity of SUHI and spatial extent of hotspot area during the COVID-19 lockdown period in March–June 2020. 
Pearson’s r correlation is computed for each month independently. Only numbers in bold are statistically significant at the 95% level (p < 0.05). 
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days of the month, when governments, public officials, and health au
thorities introduced restrictive measures to increase social distancing 
and control the spread of this pandemic. While more restrictions were 
applied in April and March, some relaxing measures were applied in 
June. Another explanation may relate to the fact that the response of 
pollutants to changes in gas emissions is delayed, in part because of 
previous conditions. This “memory” may explain why changes in the 
mean intensity of nighttime SUHI was most apparent in the majority of 
metropolitan cities during the middle phases of the lockdown, rather 
than when it began or ended. 

In contrast to nighttime SUHI, a higher number of metropolitans in 
the Middle East showed an increase in the mean intensity of their day
time SUHI during the lockdown period, particularly in April and May. 
This increase was more rapid in the mega metropolitans like Tehran, 
Ankara, and Istanbul, as well as the Gulf metropolitans like Doha, Dubai, 
and Kuwait. Again, these metropolitans exhibit a high flow of energy 
during daytime, either due to demographic considerations (i.e. over
population, high traffic load, and intensive industrial activities) like 
megacities or excessive energy demand like the Gulf metropolitans. The 
only exception corresponded to Cairo, which exhibited a decline in the 
mean intensity of daytime SUHI. This pattern may be explained by the 
notion that Cairo is an urban agglomeration that represents a group of 
cities. Although these cities have close economic connections, they do 
not have a compact spatial organization, as these cities are isolated with 
agricultural belts in the neighbourhoods (El Kenawy et al., 2020). 

It is worth noting that the lowered emissions during COVID-19 
lockdown cannot only be attributed to restrictive measures. Other cli
matic and socioeconomic variables in the region may matter. For 
example, the Middle East region is characterized by high interannual 
variability of sand and dust storms, which bring excessive amounts of 
aerosols to the region (Engelstaedter et al., 2006; Middleton, 2019). The 
frequency of these storms is seasonally dependent, with higher fre
quency in winter and early spring, and less occurrence in summer and 
fall. These storms are associated mainly with strong synoptic-scale dis
turbances produced by spring cyclonic storms (Shao et al., 2010). This 
seasonal pattern may explain the decline in AOD and aerosols in the 
majority of the metropolitans during the late spring and early summer (i. 
e. May–June) (Mohammadpour et al., 2021). Spatially, changes in AOD 
and aerosols in the early spring (March and April) were generally pos
itive (i.e. increasing) in mainland metropolitan areas of the most arid 
areas in the region (i.e. Arabian Peninsula, Iraq, Egypt, and Iran), which 
presents a major atmospheric dust sink, with high aerosol deposition 
rates. However, coastal metropolitans (e.g. Alexandria, Beirut, and 
Jeddah), located far from the tracks of these storms, exhibited less sig
nificant changes in aerosols, especially in the early spring. Similarly, the 
decline of other pollutants (e.g. NO2) during the lockdown may be 
enhanced by some climatic configurations. This can simply be seen in 
the case of NO2, which has a short chemical life span, with higher 
concentration levels in winter and early spring in the Northern Hemi
sphere (Kroll et al., 2020). The joint influence of COVID-19 and other 
independent variables (e.g. climate) on both air quality and SUHI 
characteristics is confirmed in this study in two ways. First, a compari
son of SUHI characteristics during the lockdown period, based on 
short-term (2019) and long-term (2003–2019) anomalies, reveals that 
changes in SUHI characteristics were less pronounced during the lock
down when considering the short term anomaly than the long-term 
anomaly. This finding was evident for both the mean intensity of SUHI 
and the spatial coverage of hotspot area in the majority of the metro
politans in the region, especially during daytime. This implies that the 
impact of lockdown on SUHI characteristics cannot be seen indepen
dently from the long-term variability of climate. This is confirmed in 
Supplementary Figs. A3 and A.4. As illustrated, there has been a sig
nificant decrease (increase) in nighttime (daytime) LST over most of the 
metropolitans during the lockdown months, as compared to the 
long-time (2003–2019) climatology of LST. This implies that changes in 
SUHI characteristics during the lockdown period should also be seen in 

the context of a longer climate variability rather than only a short 
fluctuation in climate conditions due to lockdown. Globally, Yao et al. 
(2019) assessed trends in the intensity of SUHI for 397 big cities, sug
gesting a significant increase in the intensity of annual daytime SUHI 
across 42.1% of these cities. More recently, a similar finding was 
confirmed by Yao et al. (2021b) who noted that almost half of the cities 
in the mainland China exhibited a significant increase in the intensity of 
their SUHIs between 2001 and 2018. 

6. Conclusions 

In the Middle East, most countries imposed city-wide lockdowns and 
quarantine measures during 2020 in their attempts to control the spread 
of the COVID-19 pandemic. These measures had significant impacts on 
the urban systems, as they corresponded to a decrease in human activ
ities (e.g. traffic pollution, industrial activities, catering and leisure ac
tivities, etc) and accordingly a decline in GHGs emissions. Here we 
provide the first assessment of the impacts of the pandemic lockdown 
from March to June 2020 on both air quality and SUHI characteristics in 
the region. The study employed satellite-based data of atmospheric 
pollution levels in 21 metropolitan cities to assess changes in air quality 
conditions during the lockdown. Results demonstrate a significant 
decrease in pollutants like SO2, NO2, and CO, mostly in the small met
ropolitans and to a lesser extent in megacities. Using satellite-based land 
surface temperature data, the study provided an assessment of changes 
in the mean intensity of SUHIs and spatial coverage of their hotspot 
areas in the region’s metropolitan cities during the lockdown. Results 
indicate a significant reduction in the mean intensity of most of the 
metropolitans, especially during nighttime. This decline was more 
evident in small metropolitans, like Jeddah, Beirut, Muscat, and Mak
kah, compared to megacities in the region. It is also evident that the 
lockdown had less impact on daytime SUHI, especially in megacities, 
which experienced an increase in their mean intensity. The decline in 
the intensity of nighttime SUHI can be attributed to the improvement in 
air quality during the lockdown. However, this decrease cannot be 
attributed to the lockdown alone, as changes in SUHI in the region 
cannot be explained independently from long-term climate change in 
the region. It should be stressed that although this study considered a 
wide variety of metropolitans that span 14 countries in the Middle East, 
it is expected that –at the city level-there would be spatial and temporal 
differences in the response of city portions to COVID-19 lockdown. 
Indeed, these differences can be induced by the dominant land use/land 
cover types, population density, variations in urban form, industrial 
activity, and economic development level, besides relative location 
within the city (i.e. urban vs. sub-urban). However, consideration of 
these variables is a challenge in the metropolitans of the Middle East, 
due to the lack of a dense network of air quality measurements. Like
wise, despite their high accuracy, the spatial and temporal resolution of 
MODIS products is still coarse to reliably monitor and diagnose all 
characteristics of SUHI, particularly in metropolitan areas with a wide 
range of environmental conditions. As SUHI is a mutual phenomenon, 
with complex interactions between a wide variety of physical (e.g. wind 
speed, relative humidity, soil properties, pollution) and anthropogenic 
processes, the dynamics and impacts of SUHI can vary significantly 
depending on the time of day and even within short distances over space 
(e.g. green areas, building material, sky view factor, streets width and 
direction, building height, etc). As such, remote sensing data at appro
priate spatial scales would be needed to further explore differences in 
the response of urban sub-systems to this pandemic. This kind of 
detailed assessments can be an avenue for future research. Overall, this 
study can contribute to the increasing global literature on the links be
tween COVID-19 and the air quality-urban climate nexus, focusing on a 
region that has received less attention in this global discussion, albeit 
one that is experiencing rapid urbanization and industrialization rates. 
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