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ABSTRACT

Most cancer alterations occur in the noncoding por-
tion of the human genome, where regulatory regions
control gene expression. The discovery of noncod-
ing mutations altering the cells’ regulatory programs
has been limited to few examples with high recur-
rence or high functional impact. Here, we show that
transcription factor binding sites (TFBSs) have simi-
lar mutation loads to those in protein-coding exons.
By combining cancer somatic mutations in TFBSs
and expression data for protein-coding and miRNA
genes, we evaluate the combined effects of tran-
scriptional and post-transcriptional alterations on
the regulatory programs in cancers. The analysis of
seven TCGA cohorts culminates with the identifica-
tion of protein-coding and miRNA genes linked to
mutations at TFBSs that are associated with a cas-
cading trans-effect deregulation on the cells’ regu-
latory programs. Our analyses of cis-regulatory mu-
tations associated with miRNAs recurrently predict
12 mature miRNAs (derived from 7 precursors) as-
sociated with the deregulation of their target gene
networks. The predictions are enriched for cancer-
associated protein-coding and miRNA genes and
highlight cis-regulatory mutations associated with
the dysregulation of key pathways associated with
carcinogenesis. By combining transcriptional and
post-transcriptional regulation of gene expression,

our method predicts cis-regulatory mutations related
to the dysregulation of key gene regulatory networks
in cancer patients.

INTRODUCTION

Dysregulation of the gene expression regulatory programs
in a cell is a hallmark of cancer. The often observed aber-
rant gene expression in cancer can be triggered by dereg-
ulation at any regulatory level (transcriptional and post-
transcriptional) (1,2). While the majority of studies have fo-
cused on the mutations lying within protein-coding regions,
most alterations occur in the noncoding portion of the hu-
man genome, where cis-regulatory elements reside and act
as genetic switches to ensure that gene expression occurs
at correct times and intensities in the correct cells and tis-
sues (3). Molecular alterations in these regions can mod-
ulate the entire regulatory network of the cells, conferring
oncogenic traits associated with clinical and histopathologi-
cal features in cancer (3). So far, identification of noncoding
cancer driver events at cis-regulatory regions has been lim-
ited to few examples with high recurrence or high functional
impact (3–7). Based on mutation recurrence along the hu-
man genome, the Pan-Cancer Analysis of Whole Genomes
(PCAWG) consortium reported that patients harbor an av-
erage of ∼4.6 driver events in their tumors. The PCAWG
consortium estimated that driver point mutations in non-
coding regions (∼1.2 per patient) were less frequent than
driver point mutations in protein-coding genes (∼2.6 per
patient) (8). Large-scale discovery of noncoding drivers has
been hindered by their low level of recurrence, the varying
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target size of functional elements, technical shortcomings,
and their composite effect with small individual effect size
on multiple regulatory regions, e.g. slightly altering, but not
obliterating, protein-DNA interactions (4,8). Furthermore,
while high-impact driver mutations are typically found and
reported, medium-impact putative passenger mutations can
have an aggregated effect on tumorigenesis, beyond the al-
ready annotated driver events (9).

Gene expression is mainly regulated at the transcrip-
tional level by the binding of transcription factors (TFs) to
promoters (cis-regulatory regions surrounding genes’ tran-
scription start sites, TSSs) and enhancers (cis-regulatory re-
gions distal to genes) at TF binding sites (TFBSs) (10,11).
Most of the studies that predict noncoding driver muta-
tions in cis-regulatory regions rely on the identification of
mutational hotspots, which are regions with higher muta-
tion frequencies than expected by chance (8,12–18). Other
studies explore somatic mutations with a potential effect on
TF-DNA interactions (19–22), based on DNA sequence in-
formation alone, and confirm the potential impact of the
predicted mutations on gene expression by in vitro experi-
ments. It has also been attempted to directly combine so-
matic mutation data with gene expression information to
evaluate the impact of the mutations in cancer samples. For
instance, causal cis-regulatory variations in breast cancers
have been identified by differential allele-specific expression
of genes between cancer and normal cells (23,24). Muta-
tions close to the TSSs of genes were shown to exert an in-
cis effect on the expression of the corresponding genes (25).
A tool that can be used to associate mutations with changes
in expression in gene networks is xseq (26). The tool was de-
veloped to predict mutations in protein-coding exons with
trans-effect (26) and it was adapted to consider noncod-
ing mutations associated with protein-coding genes in B cell
lymphomas (27). This methodology specifically assesses the
trans-associations between mutations and gene network ex-
pression alteration in cancer samples through either exonic
or cis-regulatory mutations linked to protein-coding genes
(26,27).

At the post-transcriptional level, one way to further con-
trol gene expression is through miRNAs acting as ‘buffers’
to induce translational repression and mRNA degradation
(28,29). miRNA biogenesis generally occurs in mammals
in three steps: transcription of a primary transcript (pri-
miRNA) that can be several kilobases long, cleavage of
the pri-miRNA into a precursor (pre-miRNA) of ∼70bp,
and cleavage of the precursor to produce mature miRNAs
of ∼22 bp (29,30). The mature miRNA sequence is then
loaded in the RNA-induced silencing complex to specifi-
cally target mRNAs for repression through base-pair com-
plementarity at the 3’UTR of mRNA targets. A miRNA se-
quence is predicted to target tens to thousands of mRNAs
(31). The miRNA-mediated regulation of mRNA transla-
tion is not an on/off system but rather an interplay be-
tween miRNA-binding site specificity, and miRNA and
mRNA abundance (28,32). Therefore, even small changes in
miRNA abundance may affect the expression of several di-
rect targets but also other mRNAs through a cascading ef-
fect, potentially leading to dysregulation patterns observed
in cancer. This observation, amongst others, suggests that
miRNAs can act as cancer drivers (33,34).

Despite active research on post-transcriptional regula-
tion and the identification of miRNAs and their targets (35),
the understanding of miRNA transcriptional regulation is
currently limited (30). One obstacle was the lack of precise
identification of pri-miRNA TSSs. The FANTOM5 consor-
tium recently took advantage of the cap analysis of gene ex-
pression (CAGE) technology to identify pri-miRNA TSSs
genome-wide from different cell types and tissues in human
and mouse (36). Given their short size and the fact that
they are not recurrently mutated (8), we hypothesize that
the driver potential of miRNAs in cancer could be triggered
by cis-regulatory mutations that alter their expression with
a downstream cascading effect on the gene regulatory pro-
grams of the cancer cells.

The increasing data accumulation of high-quality direct
TF-DNA interactions (37,38), pri-miRNA TSS locations
(36), somatic cancer mutations and cancer cell expression
data (39) provides an unprecedented opportunity to ana-
lyze alterations of gene regulatory programs in cancer by
combining transcriptional and post-transcriptional levels
of gene expression regulation. The PCAWG consortium
stated that the community is facing a ‘paucity’ in the dis-
covery of noncoding cancer drivers that could be improved
by analyzing larger sample datasets (8). We hypothesize that
focusing on regulatory variants within TFBSs associated
with protein-coding and miRNA genes combined with gene
expression data has the potential to pinpoint cis-regulatory
variants linked to the dysregulation of key gene regulatory
networks in cancer patients.

To this end, we adapted the framework of the xseq tool
to predict cis-regulatory somatic mutations associated with
the dysregulation of gene networks by considering both
protein-coding and miRNA genes. We predict genes asso-
ciated with cis-regulatory mutations with cascading trans-
effects on the gene regulatory program alteration across
seven cancer patient cohorts from The Cancer Genome
Atlas (TCGA) (39). This analysis reveals 12 mature miR-
NAs recurrently associated with cis-regulatory somatic mu-
tations in different cohorts. Functional enrichment analy-
ses of the dysregulated networks downstream of the pre-
dicted protein-coding and miRNA genes confirm that path-
ways known to be associated with carcinogenesis are re-
currently disrupted. We conclude that the interpretation of
noncoding mutations can be improved by focusing on TF-
DNA interactions with the combined analysis of both tran-
scriptional and post-transcriptional regulation of gene ex-
pression to revert the paucity in the discovery of cancer-
associated noncoding events.

MATERIALS AND METHODS

All analyses were performed using the hg19 human genome
assembly. When data were obtained from another human
genome assembly, coordinates were converted to the hg19
assembly using the liftOver tool provided by the UCSC
Genome Browser (40,41).

Cancer patient data

We considered TCGA (39) cohort samples for which trios
of (i) whole genome somatic mutations, (ii) RNA-seq, and
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(iii) small RNA-seq data were available with at least 30 pa-
tients per cohort. Data were downloaded from the Inter-
national Cancer Genome Consortium (ICGC) portal (42)
through the icgc-get client (Additional file 5). Altogether, we
collected data for 349 samples from seven TCGA patient co-
horts (35–89 donors per cohort; Additional file 1): BRCA-
US (breast invasive carcinoma), HNSC-US (head and neck
squamous cell carcinoma), LIHC-US (liver hepatocellular
carcinoma), LUAD-US (lung adenocarcinoma), LUSC-US
(lung squamous cell carcinoma), STAD-US (stomach ade-
nocarcinoma), and UCEC-US (uterine corpus endometrial
carcinoma).

We retrieved data from 256 samples collected by the
ICGC Breast Cancer Working group (43,44) for which
trios of whole genome somatic mutations, RNA-seq, and
miRNA microarray data were available (Additional file
4). miRNA expression was measured using the Human
miRNA Microarray Slide (Release 19.0) with Design ID
046064 (Agilent Technologies, Santa Clara, CA, USA; see
(43) for details).

Somatic single nucleotide variants (SNVs) and small in-
sertions and deletions (indels) called by MuSE (45) were
retrieved from the ICGC portal for TCGA samples. For
ICGC samples, we retrieved SNVs and indels called by the
tools CaVEMan (46) and Pindel (47), respectively, used in
the original study (43).

RNA-seq and small RNA-seq normalization

Both RNA-seq and small RNA-seq raw counts were filtered
to remove all genes with 0 reads in >50% of the samples
for a given cohort. For each cohort, both matrices (RNA-
seq and small RNA-seq) of raw counts were normalized
to counts per million (cpm) using the cpm function from
the R package edgeR (48) and the cpm values were scaled
by log2 conversion. To avoid zeros, we added a pseudo-
count of 1. Note that small RNA-seq reads were mapped to
pre-miRNA coordinates by TCGA, providing information
about pre-miRNA expression and not mature miRNAs.

The normalized microarray miRNA expression matrix
for ICGC samples was retrieved from the original study
where normalization was performed using the 90th per-
centile methodology (43). We used the normalized RNA-
seq matrix provided by the ICGC Breast Cancer Working
Group (43).

Copy number alteration computation

We downloaded copy number alteration (CNA) values pre-
dicted using the GISTIC2 tool (49) for TCGA samples
through the Firebrowse database at http://firebrowse.org
(Additional file 5). ICGC CNA estimates were computed
using ASCAT (v2.1.1) (50) and converted into GISTIC for-
mat with -2 for homozygous loss (nMinor + nMajor = 0), –1
for hemizygous loss (nMinor + nMajor = 1), 0 for normal
(nMinor + nMajor = 2), 1 for three copies (nMinor + nMa-
jor = 3), and 2 for more than three copies (nMinor + nMa-
jor > 3). The CNA values assigned to the protein-coding
genes were used in the xseq analysis to remove cis-effects
of CNAs on the gene expression dysregulation assessment
(26).

Mutation rate analysis

For each sample, we calculated the mutation rates by divid-
ing the number of mutated nucleotides within a set of re-
gions (TFBSs, exons, and flanking regions) by the number
of nucleotides covered by the given set of regions. TFBS ge-
nomic positions were obtained from UniBind (38) (see be-
low). Protein-coding exon coordinates were retrieved from
RefSeq Curated (51) (Additional file 5). Flanking regions
were computed by (i) extending TFBS or exonic regions by
100, 500 and 1000 nucleotides on both sides using the flank
bedtools subcommand and (ii) removing regions overlap-
ping TFBSs and exonic regions using the subtract bedtools
subcommand. Sets of regions were independently merged
using the merge subcommand of the bedtools (52).

Random expectations for mutation rates were computed
using 150 random sets of somatic mutations and applying
the mutation rate computation described above. The ran-
dom sets of mutations were generated by shuffling the orig-
inal coordinates within the same chromosomes using the
shuffle subcommand of the bedtools with the -chrom option.

miRNAs
Genomic coordinates of human pre-miRNAs were re-

trieved from miRBase v20 (53) and used to predict miRNA
TSSs from CAGE data by the FANTOM5 consortium
(36). When miRNA names in the miRNA-related files (ex-
pression, survival, cancer-associated miRNAs) used in this
study were mapped to older versions of miRBase (start-
ing from version v10), we updated the names according
to the miRBase version (v22) using the miRBaseConverter
R/Bioconductor package (54).

Transcription factor binding sites

TFBSs were retrieved from the UniBind database (2019 ver-
sion) at https://unibind.uio.no (38) (Additional file 5). The
TFBSs correspond to high confidence direct TF-DNA in-
teractions with both experimental (through ChIP-seq) and
computational (through position weight matrices (PWMs)
from JASPAR (55)) evidence (37,38). Indeed, these TFBSs
were predicted with high PWM scores and proximity to
ChIP-seq peak summits and were derived from 1983 ChIP-
seq experiments for 231 TFs across 315 cell types and tissues
(38).

TFBS-gene association

We used the cis-regulatory element-gene associations from
the GeneHancer database (v4.9), derived from eight sources
to associate TFBSs to genes (Additional file 5; Supplemen-
tary Figure S8) (56). TFBSs overlapping a cis-regulatory el-
ement annotated in GeneHancer were associated with the
corresponding gene in GeneHancer. TFBSs not overlap-
ping annotated elements were associated with the closest
TSS (for a protein-coding or a miRNA gene). We consid-
ered TSSs associated with protein-coding genes from Ref-
Seq Curated (51) and TSSs associated with miRNAs by
FANTOM5 (36). With this approach, about half of the TF-
BSs were associated with protein-coding or miRNA genes
using GeneHancer associations and the other half with the
closest TSS.

http://firebrowse.org
https://unibind.uio.no
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TFBS mutations

Somatic mutations were intersected with TFBS locations
using the intersect subcommand of bedtools v2.25.0 (52).
All mutations in TFBSs associated with miRNAs were con-
sidered for the xseq analysis (see below). For mutations in
TFBSs associated with protein-coding genes, we followed
the approach previously used by Mathelier et al. for the xseq
analysis (27). Specifically, we restricted the analysis to mu-
tations associated with genes potentially dysregulated in the
corresponding samples. Following (27), genes were consid-
ered as potentially dysregulated in a given sample in cohort
C if its expression value v satisfied v < �-1� or v > �+1�
(i.e. z-value< -1 or z-value > 1) where � and � correspond
to the mean and standard deviation of the expression values
of the gene in C.

Loss-of-function mutations

Following Ding et al. (26) for protein-coding exonic regions,
we considered only LoF mutations that are either (i) non-
sense mutations (disruptive in-frame deletion, disruptive in-
frame insertion, stop gained, start lost, stop lost, and stop
retained variant), (ii) frameshift mutations (frameshift vari-
ant, initiator codon variant) or (iii) splice-site mutations
(splice region variant, splice donor variant, splice acceptor
variant). The analysis was performed using somatic muta-
tion data obtained from whole exon sequencing in the same
TCGA samples as for the other analyses.

Protein-coding gene networks

Protein-coding gene networks were retrieved from (26) and
were composed of 898,032 interactions. Briefly, the net-
works were constructed by combining gene associations
from STRING v9.1 functional protein association (57),
KEGG pathway datasets (58), WikiPathway (59) and Bio-
Cyc (60) as integrated into the IntPath database (61), and
TF-target links from ENCODE (62) (see (26) for more de-
tails). We updated the weights of the connections when-
ever possible using the methods provided in xseq, following
the methodology described in (26). Specifically, the original
weight between a given gene g and a biological partner gene
p was updated to 1 if p was found differentially expressed
(Benjamini–Hochberg adjusted P-value ≤ 0.05) in samples
where g is mutated in the same cohort (see Materials and
methods in (26) for details). If there existed such genes p,
then only these genes were kept connected to g. Original
weights were kept otherwise.

miRNA–target networks

miRNAs were associated with potential target protein-
coding genes using predictions from TargetScan v7.2 (31).
From the list of targets for each miRNA, we filtered out
the targets with less than two predicted binding sites for
the given miRNA to reduce false positives (63,64). miRNA-
target weights were computed as t score / 100 where t score
corresponds to the targetScan context++ score percentiles
from TargetScan. We updated the weights of the connec-
tions whenever possible following the same strategy as for
protein-coding genes (see above).

xseq analyses

The likely associations between mutations and dysregula-
tion of protein-coding gene or miRNA target networks were
calculated with xseq (26). This method requires the follow-
ing as input: a gene expression matrix of samples (RNA-
seq matrix), a binary sample-gene mutation matrix (a ma-
trix indicating that a particular gene in a given sample is as-
sociated with a mutation), and a weighted network of con-
nected genes. Taking advantage of the gene expression in-
formation, the method identifies genes in the sample-gene
matrix whose biological partners (from the biological net-
work) have expressions that deviate from neutral. This is
computed by decomposing the expression distribution of
each connected gene into three components (or regulatory
status, namely, downregulation, neutral, and upregulation).
Enrichment of both upregulated and downregulated genes
within a set of biological partners is evaluated in individual
samples and then across a cohort using a Bayesian hierar-
chical network. xseq outputs posterior probabilities associ-
ated with: (i) a sample-specific gene regulatory status (GRS,
the probability of a given gene being dysregulated in a sam-
ple) for each gene connected to the gene associated with a
mutation in a given sample, (ii) a sample-specific dysregu-
lation probability (SSD, the probability that a mutation in
a given gene in a given sample is associated with dysregula-
tion of the gene’s network) and (iii) a dysregulation across
the cohort probability (DAC, the probability that mutations
linked to a gene are associated with the dysregulation of its
network across patients) (Supplementary Figure S9). In a
first step, we removed lowly expressed genes in a cohort fol-
lowing the approach described by Ding et al. (26). Briefly,
xseq considers the 90th percentile of expression for each
gene and decomposes the distribution of these values into
two Gaussian distributions corresponding to low and high
expression values. We considered for further analysis the
genes for which their 90th percentile of expression values
lie within the high expression distribution with a posterior
probability ≥0.8 (see Ding et al. (26) for details). Next, xseq
was used to compute all the posterior probabilities to pre-
dict genes and cis-regulatory mutations in the cancer patient
cohorts.

Selection of predicted genes

We considered cohort-specific FDR computation to predict
miRNAs and protein-coding genes. Specifically, we gener-
ated a set of 100 random controls for each cohort where
the original network and the gene-sample association ta-
bles were shuffled; the RNA-seq matrix was not shuffled.
For the biological networks, we kept the original num-
ber of edges, but both the target genes and their connec-
tion weights were shuffled. xseq was applied to each ran-
dom control independently and the results of the 100 con-
trols were aggregated to compute the threshold t on DAC
that corresponds to an FDR of 0.05. If the corresponding
threshold on the DAC cohort-specific posterior probabil-
ity was <0.5, we chose 0.5 as the threshold. We consid-
ered genes with DAC above this threshold and SSD ≥0.5
in at least two samples as potential cancer-associated
genes.
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Dysregulation heatmaps

The dysregulated networks for predicted protein-coding
and miRNA genes are visualized as heatmaps where
columns correspond to mutated samples and rows to con-
nected genes. Heatmaps were constructed with connected
genes dysregulated (GRS ≥ 0.5) in at least one sample
with SSD ≥0.5. These genes are referred to as dysregulated
genes.

Aggregated and sample-specific networks

To evaluate whether the protein-coding genes predicted by
cis-regulatory mutations are connected in the filtered net-
works (see Protein coding gene networks section), we built
an aggregate network using all the predicted protein-coding
genes within a cohort. We counted the number of clusters
using the R packages igraph (65) and ggnetwork (66). Sim-
ilarly, we built sample-specific networks and counted the
number of clusters in each sample, only considering the pre-
dicted genes with DAC ≥t (with t being the threshold on the
DAC that corresponds to an FDR of 0.05, see above) and
SSD ≥0.5.

Functional enrichment analysis

Given a list of dysregulated genes, functional en-
richment analyses were performed using the R
package enrichR (67) for the following databases:
KEGG 2021 Human, WikiPathways 2019 Human,
GO Biological Process 2021 and Panther 2016.

Enrichment for cancer-associated genes and TFs

Given a set of genes, we assessed their enrichment for
cancer-associated genes or TFs using hypergeometric tests
using the stats::phyper function in R. The list of cancer
protein-coding genes considered was constructed by con-
sidering genes that appear in at least two of the following
databases: Network Cancer Gene (68), inToGen (69) and
Cancer Gene Census (70). Cancer miRNA genes were re-
trieved from miRCancer (71) with data from 1 May 2019.
TF genes were retrieved from the human transcription fac-
tor database (11).

Survival analysis

To test whether miRNA expression was associated with sur-
vival, we used the METABRIC breast cancer cohort (72)
with miRNA microarray expression (73) available for 1282
tumors. Expression values were downloaded from the Eu-
ropean Genome-Phenome Archive, www.ebi.ac.uk/ega, ac-
cession number EGAS00000000122. Follow-up data were
available from Curtis et al. (72). Kaplan–Meier survival
analyses and log-rank tests were performed using the R
package survival with tumors separated into ‘high’ or ‘low’
miRNA expression groups depending on expression val-
ues above or below the median. P-values were adjusted
for multiple testing according to the Benjamini–Hochberg
method.

Results accessibility

The analysis with all the scripts and parameters can
be found through the following link: https://bitbucket.
org/CBGR/workspace/projects/DYS. We provide (i) the
source code for the analysis at https://bitbucket.org/CBGR/
dysmir manuscript/src/master/ and (ii) a pipeline for users
to run similar analyses with their data at https://bitbucket.
org/CBGR/dysmir pipeline/src/master/.

RESULTS

Transcription factor binding sites harbor a similar mutational
load as protein-coding exons

We study the occurrence of somatic mutations from whole
genome sequencing of 349 samples from seven cancer pa-
tient cohorts (35–89 samples per cohort) covering seven dis-
tinct cancer types from TCGA (39) (Additional files 1–2).
Specifically, we select samples where trios of somatic muta-
tions, RNA-seq, and small RNA-seq data are available. In
aggregate, we examine 11 434 931 somatic single nucleotide
variants and small insertions and deletions (from 2832 to 1
014 969 per sample; Additional file 2; Supplementary Fig-
ure S1).

To identify cancer-associated cis-regulatory mutations,
we consider a set of TFBSs predicted as direct TF-DNA in-
teractions in the human genome and stored in the UniBind
database (38). These TFBS predictions are supported by
both experimental (based on ChIP-seq) and computational
evidence (based on position weight matrices) of direct TF–
DNA interactions (see Materials and Methods and refer-
ences (37,38) for details). We first assess whether this set of
TFBSs represents regions of functional interest similar to
the coding portion of the human genome commonly stud-
ied to predict cancer-associated mutations. These TFBSs
cover ∼2.2% (68 071 257 nt) of the human genome, close
to the exonic coverage of protein-coding genes (∼2.6%; 81
416 464 nt). Focusing on the somatic mutations, we observe
that 1–2% of the mutations in each sample lie within these
TFBSs (median of 277 mutations per sample; Additional
file 2; Supplementary Figure S2). Mutation rates in TFBSs
vary between cancer cohorts but are similar to the mutation
rates observed in exons (two-tailed Wilcoxon tests P-values
between 0.13 and 0.96; Figure 1 and Supplementary Fig-
ures S3 and S4). TFBSs are less mutated than their flanking
regions (Figure 1). Note that regions of 1 kb surrounding
TFBSs harbor mutation rates similar to what is expected
by chance (two-tailed Wilcoxon tests P-values between 0.56
and 0.95; Supplementary Figures S3 and S4). While exons
exhibit mutation rates similar to those observed within TF-
BSs (Supplementary Figure S5), their flanking regions show
a smaller increase in mutation rates than the increase de-
tected in the vicinity of TFBSs (Supplementary Figures S6
and S7).

Taken together, these results confirm that the noncoding
mutation frequencies in the studied set of TFBSs follow a
similar pattern to what is observed in protein-coding exons.
It provides a posteriori confirmation that the set of TFBSs
we consider is likely composed of functional regions in the
human genome and can be used to highlight cis-regulatory
mutations of functional interest in cancer genomes.

http://www.ebi.ac.uk/ega
https://bitbucket.org/CBGR/workspace/projects/DYS
https://bitbucket.org/CBGR/dysmir_manuscript/src/master/
https://bitbucket.org/CBGR/dysmir_pipeline/src/master/
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Figure 1. Comparison of mutation rates in TFBSs and exons versus their flanking regions and random mutation rates. Each panel corresponds to a specific
cancer cohort (see title boxes) and each point corresponds to a sample. On each panel, the two central boxplots (shadowed) represent mutation rates in
TFBS and exonic regions, the remaining box plots correspond to mutation rates in increasing-size flanking regions (100, 500 and 1000 nt) and mutation
rates expected by chance (150 randomly distributed sets of mutations in the genome; Material and Methods).

Cis-regulatory and loss-of-function mutations complemen-
tarily alter protein-coding gene networks

We then seek to predict the cis-regulatory mutations that
lie in these TFBSs and that lead to cascading effects on
gene network deregulation, a hallmark of carcinogenesis.
We first focus on the mutations in TFBSs linked to protein-
coding genes and compare their effect on gene regulation
to that of mutations altering the function of the protein-
coding genes. We consider a protein-coding gene to be mu-
tated through either a loss-of-function (LoF) somatic mu-
tation in one of its exons as in (26) or a somatic mutation
overlapping a TFBS associated with the gene. TFBSs are
linked to protein-coding or miRNA genes based on cis-
regulatory element-to-gene associations from GeneHancer
(56) or distances to TSSs (Materials and Methods; Supple-
mentary Figure S8). We estimate the potential trans-effect
of the mutations on expression disruption in protein-coding
gene networks using the xseq tool, following approaches
implemented in previous studies (26,27). Specifically, the
method uses a hierarchical bayesian approach to associate
mutations with expression dysregulation in biological net-
works associated with the mutated protein-coding genes.
In a nutshell, it assesses the posterior probability of the
likely association between observing mutations in a set of
patients and observed deviations from neutral expression
in these samples for protein-coding genes in the same net-
work. The likely trans-associations between mutations and
gene network deregulation are first assessed in a sample-
specific manner and then across samples from the same co-

hort (Supplementary Figure S9). Genes with low expres-
sion in a given cohort were filtered out; the distribution of
the 90th percentile of expression for genes was decomposed
into two Gaussian distributions corresponding to low and
high expression values and only genes lying in the high ex-
pression distribution were retained (Materials and Meth-
ods). Furthermore, gene expression is corrected for copy
number alterations (amplifications and deletions detected
by GISTIC2 (49)) to compensate for copy number-related
cis-effects on expression (Material and Methods). LoF mu-
tations and mutations that overlap TFBSs are analyzed
independently. Finally, we consider predictions that sat-
isfy a false discovery rate (FDR) <0.05, computed empiri-
cally for each cohort using random controls (Materials and
Methods).

Out of the 7275 unique protein-coding genes linked to so-
matic mutations in the seven TCGA cohorts, 237 are associ-
ated with the deregulation of transcriptional networks in at
least one cohort. Of these, 21 harbor LoF mutations (TP53
and RPL22 are predicted with LoF mutations in three and
two cohorts, respectively; Figure 2A) and 219 are linked
to cis-regulatory mutations associated to transcriptional
deregulation (24 genes are found in more than one cohort;
Figure 2A, Supplementary Figures S10 and S11, and Ad-
ditional File 3). Three genes are linked to dysregulated net-
works in association with both LoF and cis-regulatory mu-
tations but in different patients and/or cohorts: ACVR2A,
ARID1A and GATA3 (Figure 2A). These three genes are
already known cancer drivers that we predict to be im-
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Figure 2. Pan-cancer predicted protein-coding genes. (A) Predictions are obtained applying the xseq tool when considering the effect on gene deregulation of
protein-coding genes mutated through either LoF (red triangles) or cis-regulatory (TFBS; green triangles) mutations, independently. Genes, with mutations
predicted to affect gene regulation in at least two cohorts are depicted here. Enrichment for cancer-associated genes (red stars) and TFs (blue stars) are
evaluated using hypergeometric tests (p-values provided in the legend; Material and Methods). (B) Samples where genes are predicted with cis-regulatory
mutations are considered for each cohort and assessed for the presence of LoF mutations in the same genes for the same cohort (TFBS & Exon) or no LoF
mutation in the corresponding gene (TFBS only).

pacted by alternative mutational mechanisms (LoF or cis-
regulatory mutations). The remaining genes are either as-
sociated with LoF or cis-regulatory mutations across co-
horts (TP53, RPL22 with LoF mutations; e.g. PIK3C3 and
CHRM3 with cis-regulatory mutations; Figure 2).

From the combined list of 237 predicted protein-coding
genes (Additional File 3), 81 are already annotated as
cancer-associated genes (P-value = 9.3e–17; hypergeomet-
ric test) and 29 as TFs (P-value = 0.025; Supplementary
Figures S10 and S11). We observe 28 genes to be predicted
in at least two cohorts. These 28 genes are enriched for al-
ready known cancer-associated genes (P-value = 1.4e–6; hy-
pergeometric test) but not for TFs (P-value = 0.21; hyper-
geometric test) (Figure 2A).

The genes predicted through cis-regulatory mutations
rarely contained LoF mutation in the same tumors (Fig-
ure 2B and Supplementary Figure S12). We interpret this
to mean that LoF and cis-regulatory mutations are possibly
complementary mechanisms that alter the gene regulatory
programs of cancer cells. We observe that multiple genes can
be predicted through cis-regulatory mutations in the same
sample. Furthermore, these genes tend to be interconnected
in the dysregulated genes’ networks (Figure 3A). All these
genes are predicted through mutations associated with cas-

cading trans-effect in gene network dysregulation but the
method cannot identify the specific main driver event or the
combination of cis-regulatory mutations. When considering
all the predicted genes per cohort, we detect a similar pat-
tern with subnetworks of interconnected genes with a max-
imum of 12 subgraphs containing at least two nodes per co-
hort (mean = 3; median = 4.13; Figure 3B and Supplemen-
tary Figure S13). Altogether, these interconnected subnet-
works suggest that the predicted genes are likely involved in
similar biological pathways with altered expression associ-
ated with cis-regulatory somatic mutations.

Deregulation of transcriptional activity and cancer pathways
are trans-effect signatures of the predicted cis-regulatory and
loss-of-function mutations

To shed light on the functional role of the somatic muta-
tions predicted to be associated with a cascading effect, we
perform enrichment analyses on the altered gene expres-
sion profiles. One advantage of xseq is its capacity to high-
light the specific genes in the biological networks that are
dysregulated in the samples harboring the somatic muta-
tions considered (Material and Methods) (26). These genes
are consistently found to be either up- or down-regulated
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Figure 3. Predicted protein-coding genes linked to cis-regulatory mutations are connected in biological networks. (A) Subgraph detected among the pre-
dicted protein-coding genes in the Uterine Corpus Endometrial Carcinoma (UCEC-US) cohort. The number of samples in which each gene is predicted
is shown within the nodes. TF names are highlighted with an orange background. (B) Heatmap showing the number of subgraphs (y-axis) found among
the predicted protein-coding genes linked to cis-mutations in the TCGA cohorts (x-axis). The number of nodes within a subgraph is indicated in each cell.
Genes not connected to any other predicted gene are not shown.

in the samples with predicted disrupted expression (see the
blue and red colors in the upper and lower clusters in Fig-
ure 4A). These results highlight sets of genes up- or down-
regulated across samples where cancer-associated genes are
predicted.

We assess the biological relevance of the networks pre-
dicted to be dysregulated in association with either LoF or
cis-regulatory mutations linked to the protein-coding genes.
Functional enrichment analysis is performed using path-
ways from KEGG (58), WikiPathways (59) and Panther
(74), and gene ontology biological processes (GO BP (75))
with the EnrichR tool (67). The dysregulated genes in the
networks are enriched for transcriptional activity (‘regula-
tion of transcription, DNA-templated’ from GO BP; Sup-
plementary Figure S14). Combined with the enrichment
of TFs in the complete list of predicted cancer-associated
genes, this result emphasizes that the alteration of tran-
scriptional regulation is likely a common feature of can-
cer cells throughout cancer types. Pathways already known
to be associated with carcinogenesis (e.g. ‘Pathways in can-
cer’, ‘JAK-STAT signaling’, ‘PI3K-Akt signaling’, ‘p53 sig-
naling pathway’, ‘Focal adhesion’ and ‘Apoptosis’; Figures
4B, C and Supplementary Figures S14–S17) are at the top
of the enriched terms. The enrichment for cancer pathways
confirms that our approach identifies somatic exonic and
cis-regulatory mutations associated with potential protein-
coding cancer-associated genes with cascading effect on reg-
ulatory alteration of key cancer-related pathways. Our re-
sults suggest that alteration of gene network expression
could be achieved through cis-regulatory mutations asso-
ciated with different genes in different patients but involved
in the same pathways.

Combining transcriptional and post-transcriptional regula-
tion highlights pan-cancer miRNAs associated with gene ex-
pression alteration in tumors

The analysis of mutations linked to protein-coding genes
presented above demonstrates that our methodology pin-
points cis-regulatory mutations likely associated with car-
cinogenesis. We hypothesize that our method could high-
light cis-regulatory mutations linked to miRNAs with
downstream cascading effects on the gene regulatory pro-
grams of the cells because miRNAs are involved in post-
transcriptional regulation of gene expression. This novel ap-
proach of functional analysis of mutations aims to combine
transcriptional (through mutations in TFBSs) and post-
transcriptional (through regulatory networks of miRNA–
targets) regulation to predict miRNAs associated with a
trans-effect on gene expression alteration through somatic
mutations in cis-regulatory elements.

Specifically, we adapt the xseq framework to infer cis-
regulatory somatic mutations linked to miRNAs and as-
sociated with a cascading effect on miRNA target net-
works dysregulation. Similar to the analysis of protein-
coding genes, we estimate the posterior probability of the
likely association between the presence of mutations in TF-
BSs linked to a miRNA with observed deviations from neu-
tral expression of the miRNA’s target genes. We consider
miRNAs from miRBase (53) and their corresponding TSSs,
which were identified using CAGE (Materials and Meth-
ods) (36). To assess the cascading effect of mutations linked
to miRNAs on their targets’ expression, we examined the
protein-coding genes predicted by TargetScan (31) to be tar-
gets of each miRNA. We limited the set of miRNA–target
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Figure 4. Dysregulated protein-coding gene networks and functional enrichment analysis. (A) Dysregulated gene network in samples where FUS
is predicted through cis-regulatory mutations in breast cancer (BRCA-US) (rows: dysregulated genes associated with FUS; columns: samples with
FUS-associated cis-regulatory mutations). The color scale represents the gene regulatory status posterior probability (red: up-regulation; blue: down-
regulation––posterior probability * (–1)). The top horizontal bar shows the sample-specific dysregulation posterior probability computed by xseq for the
samples harboring a cis-regulatory mutation in the FUS gene. The horizontal bar below shows the gene expression z-value of FUS (Materials and Meth-
ods). (B) KEGG 2021 most enriched terms computed from all the dysregulated genes associated with the predicted protein-coding genes (A is one example
for FUS) by xseq with LoF mutations and (C) cis-regulatory mutations in TCGA cohorts (columns). Terms (rows) are ordered by their mean rank across
all cohorts. Significance is provided as –log10(P-value).
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genes pairs to those where at least two target sites for the
miRNA are predicted to reduce false positive predictions
(63,64) (Materials and Methods). Note that we separately
analyze miRNAs from both arms (5p and 3p) for each pre-
miRNA sufficiently expressed in a TCGA cohort (Materials
and Methods).

Applying this analysis to the seven TCGA cohorts, we
predict 68 mature miRNAs, derived from 47 pre-miRNAs,
as associated with mutations in TFBSs and deregulation of
expression for their target genes (Figure 5A and Supple-
mentary Figure S18; Additional File 3). From these 68 miR-
NAs, 54 are already annotated as cancer-associated miR-
NAs in the miRCancer database (71) (P-value = 5e–23;
hypergeometric test), which is derived from text-mining of
the scientific literature in PubMed (76). Moreover, miR-
Cancer provides information about the cancer types that
are associated with miRNAs in the literature; ∼27% cancer-
associated miRNAs we predict are supported by the litera-
ture to be involved in the same cancer type as the cohort
from which they were identified (P-value = 3.97e–14; hy-
pergeometric test).

Among these, we identify a core set of 12 mature miR-
NAs (derived from 7 pre-miRNAs) that are identified in at
least four out of the seven cohorts (Figure 5A and Sup-
plementary Figure S18): hsa-miR-20a-3p, hsa-miR-92a-1-
5p (predicted in all seven cohorts), hsa-miR-18a-5p (six co-
horts), hsa-miR-20a-5p, hsa-miR-18a-3p, hsa-miR-17-5p,
hsa-miR-17-3p, hsa-miR-155-5p (five cohorts), hsa-miR-
155-3p, hsa-miR-708-3p, hsa-miR-708-5p and hsa-miR-
205-5p (four cohorts). All these miRNAs are derived from
precursors of already established oncomiRs or tumor sup-
pressor miRNAs, or are known to be involved in immune
response or inflammation (77–88). Note that hsa-miR-17-
3p, hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-18a-3p, hsa-
miR-20a-3p, hsa-miR-20a-5p and hsa-miR-92a-1-5p are
part of a single miRNA cluster on chromosome 13 and this
polycistronic cluster (known as miR-17-92) is well known
to be composed of oncomiRs involved in proliferation and
tumor angiogenesis as well as reducing apoptosis of cancer
cells (77).

When visualizing the dysregulated networks of miRNA
targets in samples harboring cis-regulatory alterations as-
sociated with the predicted cancer-associated miRNAs, we
detect subsets of the networks as up- or down-regulated
across patients from the same cohort (Figure 5B). The func-
tional pathways are similar to those detected with protein-
coding gene networks (Figure 4B-C and 5C). Note that the
miRNA-target networks observed with altered expression
for a given miRNA may vary between cohorts for the same
miRNA because some targets are specifically expressed or
altered in a subset of tissues or cell types (Supplementary
Figure S19).

Similar to our previous observations with protein-coding
genes, miRNA targets with altered expression downstream
of cis-regulatory mutations are enriched for transcrip-
tional activity terms and in biological pathways associated
with carcinogenesis (Figure 5C). Furthermore, these net-
works are recurrently found when considering disrupted
target genes in each cohort independently (Supplemen-
tary Figures S14–S17). We discover several virus infection-
related terms enriched across the cohorts (Figures 4B-C and

5C), arguing for a potential link between viral infections
and cancer initiation/progression, as previously suggested
(89,90), via miRNAs.

Altogether, this study provides the first foray into the
analysis of a combined effect of coherent transcriptional
and post-transcriptional dysregulation downstream of so-
matic cis-regulatory mutations associated with miRNAs in
cancer cells. It highlights a core set of miRNAs associated
with cis-regulatory mutations that are linked to a cascading
alteration of gene regulatory networks involved in cancer
onset and progression.

Complementary analysis of an independent breast cancer co-
hort supports dysregulation of specific pathways

Further, we aim to validate the recurrence of the predic-
tions for breast cancer obtained from the 92 samples of the
BRCA-US cohort from TCGA in a complementary cohort.
We apply the same methodology with the same parameters
to the ICGC breast cancer cohort (43), which is composed
of 256 breast cancer samples with the same trio of data types
available (WGS, RNA-seq, and miRNA expression - from
microarrays; Additional file 4).

Similar to the BRCA-US analysis on protein-coding
genes, our analysis of the ICGC cohort predicts known can-
cer drivers identified by associating LoF or cis-regulatory
mutations with dysregulation of their respective gene net-
works. Breast cancers can be categorized into estrogen re-
ceptor positive (ER+) and negative (ER–), each subtype
harboring a distinctive signature of gene expression with
prognostic and predictive impact. We explore how the dis-
tribution of ER status in patients from the two cohorts
can impact the predictions of cancer-associated genes. The
BRCA-US cohort is composed of approximately the same
number of ER+ and ER– patients while the ICGC cohort
is composed of 72% of ER+ patients. Given the size of
the ICGC cohort (256 samples), it is possible to perform
two additional analyses on ER+ (184 samples) and ER–
samples (72 samples) independently. The analysis of cis-
regulatory mutations associated with protein-coding genes
reveals two predictions specifically common to BRCA-US,
ICGC, and ICGC ER+ cohorts (IL12RB1 and TOP1), one
specifically common to BRCA-US and ICGC (B4GALT3),
one specifically common to BRCA-US and ICGC ER+
(CTSS), and three common to ICGC and ICGC ER–
(MEF2A, RB1 and RGS1) (Supplementary Figure S20).
Out of these seven genes, four are known cancer-associated
genes (B4GALT3, CTSS, RB1 and TOP1). Despite this
small intersection, the functional enrichment analyses of
the dysregulated genes associated with all predicted genes
are similar in the cohorts (Supplementary Figure S21), sug-
gesting that although the predictions vary among cohorts
with different etiology, the dysregulated pathways are likely
the same. Furthermore, we detect enrichment of similar key
cancer pathways when considering the dysregulated genes
associated with the predicted cancer-associated genes (Sup-
plementary Figure S21).

To confirm whether common pathways are deregulated
despite the prediction of different genes, we construct the
network of all the predicted genes when considering pa-
tients from BRCA-US, ICGC, ICGC ER+ and ICGC ER–.
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Figure 5. Overview of miRNA driver predictions and their dysregulated target networks. (A) Pre-miRNAs with mature miRNAs predicted as potential
drivers by xseq. Cell colors indicate the posterior probability computed over the corresponding cohort. Red stars indicate that the miRNA is annotated
as a cancer-associated miRNA in miRCancer (71). Blue stars indicate that the miRNA was reported as a cancer-associated miRNA in the specific cancer
type where it is predicted by xseq, according to miRCancer annotation. (B) Dysregulated network of target genes for miRNA hsa-mir-20a-5p predicted in
liver hepatocellular carcinoma (LIHC-US) (rows: dysregulated targets; columns: samples with cis-regulatory mutations associated with hsa-mir-20a-5p).
The top color scale represents the gene regulatory status posterior probability (red: up-regulation; blue: down-regulation - posterior probability * (-1)). The
horizontal bar below shows the miRNA expression z-value (Materials and Methods). (C) KEGG 2021 most enriched terms (rows) for all the dysregulated
genes associated with the identified miRNA drivers across TCGA cohorts (columns). Terms are ordered by their mean rank across all cohorts. Significance
is provided as –log10(P-value).
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Genes are linked in the network if they are known biological
partners in the original network (Figure 6). The constructed
network comprises 87 genes, which are all connected in a
single dense network, where the top three (hub) genes with
the largest in-degree are JUN, RB1 and TP53. This obser-
vation highlights that the predicted genes across the cohorts
are likely involved in similar biological pathways, which is
supported by the functional enrichment results above. It
suggests that the same pathways tend to be dysregulated
through mutations associated with different genes.

We predict one miRNA (hsa-mir-378a-3p) associated
with cis-regulatory mutations in the ICGC cohort when
considering all samples (Supplementary Figure S22). We
do not predict any driver miRNAs associated with cis-
regulatory mutations when examining specifically the
ER+ samples. However, we identify hsa-mir-17-3p, hsa-
mir-17–5p, hsa-mir-18a-5p, hsa-mir-20a-5p, hsa-mir-21–
5p, hsa-mir-155–5p, hsa-mir-590-5p, and hsa-mir-629-3p
when considering ER- samples. Out of these eight miR-
NAs, two are predicted in the BRCA-US cohort (hsa-mir-
17-3p and hsa-mir-18a-5p; Supplementary Figure S22) and
five are recurrently found in at least 5 out of the 7 TCGA
cohorts (Figure 5 and Supplementary Figure S22). As ex-
pected, these results confirm that the cohort clinicopatho-
logical composition impacts the predictions as it can impact
the landscape gene expression distributions across samples.
Nevertheless, the complementary analyses of the BRCA-
US and ICGC breast cancer cohorts exhibit hsa-mir-17-3p
and hsa-mir-18-5p as recurrently predicted breast cancer-
associated miRNAs linked to cis-regulatory mutations and
dysregulation of their target gene networks. Functional en-
richment analysis confirms that the dysregulated miRNA
target gene networks are enriched for genes involved in tran-
scriptional regulation and cancer-relevant pathways such as
the p38 MAPK signaling, ErbB signaling, and DNA dam-
age response (Supplementary Figure S23).

Finally, we evaluate the clinical potential of the pre-
dicted breast cancer miRNAs for breast cancer survival
estimation. For this purpose, we consider a third cohort,
METABRIC (72), which is composed of 1282 samples. We
compute Kaplan–Meier survival curves and log-rank tests
using miRNA expression from the METABRIC cohort for
the miRNAs predicted as drivers in the BRCA-US and
ICGC cohorts (for 26 of the predicted miRNAs in breast
cancer). Examining both overall survival and breast cancer-
specific survival values, we observe log-rank test P-values
<0.05 for hsa-mir-29a-3p, hsa-mir-20a-5p, and hsa-mir-
20a-3p (Figure 7 and Supplementary Figures S24 and S25).
Note that hsa-mir-20a-5p and hsa-mir-20a-3p are recur-
rently predicted in at least five out of the seven ICGC co-
horts. Taken together, these results reinforce a posteriori the
biomarker potential of some miRNAs we predicted as their
level of expression could be used for prognosis.

DISCUSSION

In this study, we explore how cis-regulatory somatic mu-
tations at TFBSs can be used to predict genes with a cas-
cading trans-effect on gene regulatory network dysregula-
tion. Contrary to most methods that predict cancer-driving
events based on the recurrence of mutations, we seek to cou-

ple cis-regulatory mutation information with gene expres-
sion data from the same samples to highlight direct evidence
of the regulatory impact of the mutations. By integrating
whole-genome somatic mutations, RNA-seq, small RNA-
seq, and copy number aberrations (CNA) data with gene
regulatory networks, we perform pan-cancer predictions of
protein-coding and miRNA genes associated with somatic
cis-regulatory mutations in patients from seven distinct can-
cer types. Our study provides a large-scale foray into pre-
dicting cancer-associated protein-coding and miRNA genes
by combining both transcriptional and post-transcriptional
information. Our results provide new insights into the po-
tential impacts and causes of the alterations of gene regula-
tory programs observed in cancer cells along with the cas-
cading effects on key biological pathways.

We specifically focus on somatic mutations that reside
within a high-quality dataset of TFBSs that represent di-
rect TF-DNA interactions, which cover ∼2% of the human
genome, with both experimental and computational evi-
dence (38). We acknowledge that this set of TFBSs might
represent a limited subset of all potential TFBSs in the
human genome as it was derived from experiments avail-
able for a reduced number of TFs and cell types/tissues
(231 TFs out of the ∼1600 human TFs reported (11) and
315 cell types and tissues). Moreover, some TFBSs might
not be relevant or functional in the cell type of origin as-
sociated with the cancer types studied here. Nevertheless,
we provide evidence that the regions considered are likely
enriched for functional genomic elements since they har-
bor mutation rates similar to what is observed in exonic
regions (Figure 1). This observation is complementary to
other studies that showed similar mutation rates in pro-
moters and enhancers compared to protein-coding exons
(12,91) and a negative selection for cancer mutations at TF-
BSs (92). The reduced mutation rates in exons and the lim-
ited increase in surrounding regions can be attributed to in-
creased mismatch repair and nucleotide excision repair in
exons as previously shown (93,94). The decreased mutation
rates when considering TFBSs are in line with our previ-
ous observation in B-cell lymphomas (27). Nevertheless, it
is somewhat in disagreement with previous studies showing
that nucleotide excision repair is impaired by the binding of
TFs to DNA (95,96). We hypothesize that the differences
observed could be partially explained by the fact that (i) our
mutation rate analysis considered TFBSs predicted from
several cell lines and tissues instead of focusing on TFs and
TFBSs specific to the considered cell types or conditions
(such as UV-exposure in melanoma) and (ii) we do not fil-
ter TFBSs based on open chromatin data from matched cell
types.

Contrary to previous studies assessing the impact of mu-
tations on TF-DNA binding affinity or the enrichment for
mutations in cis-regulatory regions (97–100), we particu-
larly evaluate the impact of cis-regulatory mutations on
expression alteration in gene networks. As such, our ap-
proach does not quantify the direct impact of individual
mutations on the obliteration of TF–DNA interactions but
uses RNA information as the ultimate readout. Although
other features can be used to highlight variants of interest,
it has previously been shown that machine learning meth-
ods used to assess the effect of mutations on TF binding
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Figure 6. Predicted genes in breast cancer cohorts are connected in the biological network. Network representing the predicted protein-coding genes in
ICGC (all samples), ICGC ER+, ER– and BRCA-US cohorts. The names of the genes predicted in two or more cohorts are displayed several times with
different colors.

affinity poorly predict the effects on expression as reported
by massively parallel assays (101). A previous method sys-
tematically assessed the potential impact of somatic muta-
tions in genomic tiles near genes’ TSSs on gene expression
(25). Here, we consider mutations lying within a specific set
of pre-defined TFBSs without restrictions on distances to
TSSs and evaluate the trans-association of the mutations
with genes’ network deregulation. Our approach is some-
what similar to a genome-wide association study frame-
work focused on TFBSs to reduce the search space. More-
over, our strategy is not directly assessing the effect on TF-
DNA interactions, i.e. the gain/loss of TFBSs, but rather fo-
cuses on the association with gene expression deregulation.
Although we focused on somatic mutations and small in-
dels at cis-regulatory elements, we acknowledge that CNAs
such as duplications or deletions are likely to contribute to
gene expression alteration as well. Nevertheless, our analy-
ses considered CNAs to ensure that the predicted deregula-
tions were not confounded with CNAs. Further work and
a complementary computational framework will be neces-
sary to bring together single nucleotide variants, small in-
dels, CNAs, and structural variations and assess their com-
bined impact on gene expression deregulation in cancer.

The analysis of protein-coding genes predicts 28 genes in
at least two (out of the seven) TCGA cohorts analyzed, with
many already known cancer drivers (Figure 2A). We ob-
serve that the protein-coding genes predicted through the
analysis of cis-regulatory mutations generally do not con-
tain mutations in exonic regions for the same patients (Fig-
ure 2B and Supplementary Figure S12). This observation
suggests complementary mechanisms acting upon gene ex-
pression dysregulation with cascading effects on regulatory
network disruption. We hypothesize that either the final
product of a gene may be altered due to LoF mutations or
the expression of the gene is altered through cis-regulatory
mutations, which, in both cases, alter the activity of biolog-
ical networks.

Given that miRNAs cover a small portion of the hu-
man genome, they harbor a small number of somatic muta-
tions (8), limiting the possibility to affect gene expression.
The potential mechanism that we propose here is the alter-
ation of their regulatory elements. Our study highlights cis-
regulatory mutations linked to miRNAs that are associated
with dysregulation of expression of the miRNA targets. In
our pan-cancer analysis, we discover a core set of 12 mature
miRNAs associated with the dysregulation of key pathways



12144 Nucleic Acids Research, 2022, Vol. 50, No. 21

Figure 7. Survival curve analysis for some predicted miRNA drivers. Kaplan–Meier survival curves were obtained using the METABRIC cohort for the
most significant driver miRNAs identified in the breast cancer cohorts. Samples were separated into two groups according to the level of miRNA expression
(above/below the median). Log-rank test p-values are indicated. OS: overall survival. BCSS: breast cancer-specific survival.

involved in carcinogenesis. This core set of miRNAs repre-
sents a common feature for gene expression dysregulation
associated with cancer onset or progression. We note that
several of these miRNAs are established oncomiRs, which
promote carcinogenesis. The Kaplan–Meier plots in Figure
7 for hsa-mir-29a-3p, hsa-mir20a-3p, hsa-mir-20a-5p, and
hsa-mir-145-3p show that higher expression correlates with
poorer survival rates, which would indicate that these miR-
NAs act as oncomiRs in breast cancer, possibly targeting
tumor suppressor genes or pathways.

The analysis of the dysregulated networks of the pre-
dicted cancer-associated genes (protein-coding and miR-
NAs) shows that many genes are dysregulated in a few sam-
ples but rarely across all the mutated samples (Figure 5B).
However, the functional enrichment analysis of the dys-
regulated genes shows consistency across cohorts and the
analyzed types of mutations (LoF and cis-regulatory) for
both protein-coding and miRNA genes, even when there is
a small intersection among the predicted genes in cohorts
of the same cancer type (Supplementary Figures S20 and
S21). Altogether, these observations suggest a phenotypic
heterogeneity (i.e. alterations of different parts of the same

network lead to the same phenotype), which may have orig-
inated because the dysregulated genes are connected in the
biological network (Figure 6). Moreover, as originally de-
scribed in Ding et al. (26), the xseq probabilistic framework
highlights the specific samples where mutations are associ-
ated with an impact on gene expression (Figure 4A). This
dichotomy can, in principle, be used to stratify samples and
mutations but, in this study, is limited by the number of sam-
ples considered.

We apply our methodology to two cohorts of breast can-
cer samples (BRCA-US and ICGC). Given the large num-
ber of samples in ICGC (n = 256), we perform three analy-
ses separately by considering (i) all samples, (ii) ER+ sam-
ples and (iii) ER– samples. Predictions vary depending on
the samples’ histopathology. This is particularly important
for methods relying on gene expression, which is influenced
by the clinical composition of the cohorts. We acknowl-
edge that methodological differences between the BRCA-
US and ICGC cohorts (e.g. different somatic mutation call-
ing algorithms, RNA-seq versus microarrays, and normal-
ization of RNA-seq raw counts) can provide additional ex-
planations for the variation in predictions, which is the case
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with the BRCA-US and ICGC cohorts that were indepen-
dently normalized. Although only a few of the predicted
protein-coding genes are predicted in both the ICGC and
the BRCA-US cohorts (Supplementary Figure S20), the
functional enrichment analysis of the dysregulated gene net-
works is consistent (Supplementary Figure S21). This ob-
servation suggests common dysregulated pathways that act
as attractors and that could originate from (non-recurrent)
distinct cancer-associated events. It underlines the impor-
tance of addressing cancer as a disease with perturbations
manifested at the gene network level. Our miRNA analyses
target gene expression alteration recurrently altered across
the BRCA-US and ICGC ER– breast cancer cohorts and
highlight two miRNAs (hsa-mir-17-3p and hsa-mir-18-5p)
associated with cis-regulatory mutations.

Despite the multiple lines of evidence for the prediction of
cancer-associated genes in this study, we acknowledge that
the predictions can provide false positives and false nega-
tives due to multiple reasons such as: (i) a limited number
of TFs with high-quality TFBSs; (ii) TFBS-target gene as-
sociations obtained by a naive approach combining infor-
mation from an integrative database (56) and association
to the closest TSS (Supplementary Figure S8)––we hypoth-
esize that many of these associations may be irrelevant or
incorrect and many others are missing; (iii) a diversity of tu-
mor purity within the considered samples, despite the orig-
inal threshold of 80% used by TCGA; (iv) a limited number
of WGS datasets (tens of samples) within each cohort, com-
pared to the number of samples with WXS (hundreds) used
in other studies; (v) prior networks that might be incom-
plete or with incorrect associations. Importantly, one of the
main limitations of this project is the low number of tumor
samples with both WGS and RNA-seq data; this limitation
not only biases the community research toward the study
of exonic regions but also limits the statistical power of the
methods assessing the impact of cis-regulatory mutations
on gene network expression alteration.

Altogether, we argue that our capacity to predict cancer-
associated cis-regulation mutations will increase as more
high-quality TFBSs for more TFs and improved methods
to associate TFBSs with their target genes become avail-
able. In addition, focusing on cis-regulatory regions specif-
ically open or active in cancer samples would inform where
somatic mutations are likely effective. We expect that with
more WGS, RNA-seq and other genomics datasets derived
from cancer samples available, the community will revert
the paucity in the detection of noncoding cancer-associated
events (8).

CONCLUSION

By integrating whole-genome somatic mutations, RNA-
seq, and small RNA-seq data with gene regulatory networks
across seven cancer types, we identify cis-regulatory mu-
tations associated with the dysregulation of gene regula-
tory networks through specific protein-coding and miRNA
genes. The enrichment for known cancer-associated genes
and the functional enrichment analysis reinforce a posteri-
ori the predicted protein-coding and miRNA genes as being
involved in biological pathway alteration affecting cancer
development through exonic and cis-regulatory alterations.

Our study represents, to our knowledge, the first large-scale
analysis of cis-regulatory mutations that are linked to gene
expression alteration in key cancer-associated pathways.
Our results suggest that this process can be achieved flexibly
because although we observe different genes in different pa-
tients, all are associated with deregulation of the same path-
ways. Combining transcriptional and post-transcriptional
information, we identify a core set of 12 miRNAs linked
to altered cancer pathways across cancer types. These pan-
cancer results provide new insights into the impact and po-
tential causes of miRNA-mediated gene expression dysreg-
ulation. This work extends our capacity to address the dis-
covery gap of cancer-associated event identification through
the analysis of noncoding mutations and miRNA genes.
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Åström,G., Babina,M., Bertin,N., Burroughs,A.M. et al. (2017) An
integrated expression atlas of miRNAs and their promoters in
human and mouse. Nat. Biotech., 35, 872–878.

37. Puig,R.R., Boddie,P., Khan,A., Castro-Mondragon,J.A. and
Mathelier,A. (2021) UniBind: maps of high-confidence direct
TF-DNA interactions across nine species. BMC Genomics, 22, 482.

38. Gheorghe,M., Sandve,G.S., Khan,A., Cheneby,J., Ballester,B. and
Mathelier,A. (2019) A map of direct TF–DNA interactions in the
human genome. Nucleic Acids Res., 47, e21.

39. The Cancer Genome Atlas Research Network, Weinstein,J.N.,
Collisson,E.A., Mills,G.B., Mills Shaw,K.R., Ozenberger,B.A.,
Ellrott,K., Shmulevich,I., Sander,C. and Stuart,J.M. (2013) The
cancer genome atlas pan-cancer analysis project. Nat. Genet., 45,
1113–1120.

40. Hinrichs,A.S., Karolchik,D., Baertsch,R., Barber,G.P., Bejerano,G.,
Clawson,H., Diekhans,M., Furey,T.S., Harte,R.A., Hsu,F. et al.



Nucleic Acids Research, 2022, Vol. 50, No. 21 12147

(2006) The UCSC genome browser database: update 2006. Nucleic
Acids Res., 34, D590–D598.

41. Karolchik,D. and James Kent,W. (2003) The UCSC genome
browser. Curr. Protoc. Bioinformatics,
https://doi.org/10.1002/0471250953.bi0104s00.

42. Zhang,J., Baran,J., Cros,A., Guberman,J.M., Haider,S., Hsu,J.,
Liang,Y., Rivkin,E., Wang,J., Whitty,B. et al. (2011) International
cancer genome consortium data Portal––a one-stop shop for cancer
genomics data. Database, 2011, bar026.

43. Nik-Zainal,S., Davies,H., Staaf,J., Ramakrishna,M., Glodzik,D.,
Zou,X., Martincorena,I., Alexandrov,L.B., Martin,S., Wedge,D.C.
et al. (2016) Landscape of somatic mutations in 560 breast cancer
whole-genome sequences. Nature, 534, 47–54.
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