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Abstract

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic,
progressive, and often fatal disorder. Two U.S. Food and Drug
Administration–approved antifibrotic drugs, nintedanib and
pirfenidone, slow the rate of decline in lung function, but
responses are variable and side effects are common.

Objectives: Using an in silico data-driven approach, we
identified a robust connection between the transcriptomic
perturbations in IPF disease and those induced by saracatinib, a
selective Src kinase inhibitor originally developed for oncological
indications. Based on these observations, we hypothesized that
saracatinib would be effective at attenuating pulmonary fibrosis.

Methods: We investigated the antifibrotic efficacy of saracatinib
relative to nintedanib and pirfenidone in three preclinical
models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in
bleomycin and recombinant Ad-TGF-b (adenovirus transforming
growth factor-b) murine models of pulmonary fibrosis; and 3) ex
vivo in mice and human precision-cut lung slices from these two
murine models as well as patients with IPF and healthy donors.

Measurements and Main Results: In each model, the
effectiveness of saracatinib in blocking fibrogenic responses was
equal or superior to nintedanib and pirfenidone. Transcriptomic
analyses of TGF-b–stimulated normal human lung fibroblasts
identified specific gene sets associated with fibrosis, including
epithelial–mesenchymal transition, TGF-b, and WNT signaling
that was uniquely altered by saracatinib. Transcriptomic
analysis of whole-lung extracts from the two animal models of
pulmonary fibrosis revealed that saracatinib reverted many
fibrogenic pathways, including epithelial–mesenchymal
transition, immune responses, and extracellular matrix
organization. Amelioration of fibrosis and inflammatory
cascades in human precision-cut lung slices confirmed the
potential therapeutic efficacy of saracatinib in human lung
fibrosis.

Conclusions: These studies identify novel Src-dependent
fibrogenic pathways and support the study of the therapeutic
effectiveness of saracatinib in IPF treatment.
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Idiopathic pulmonary fibrosis (IPF) is a
chronic, relentless, and ultimately fatal
disorder characterized by progressive
scarring (fibrosis) of the lung parenchyma
(1–3). The median survival for patients with
IPF is 3 years from diagnosis, with most
patients dying from respiratory failure due to
disease progression (4).

The mechanisms driving pulmonary
fibrosis (PF) are incompletely understood,
and both genetic and environmental factors
appear to be important in disease
pathogenesis (5, 6). A widely accepted
hypothesis is that, in a genetically susceptible
individual, the lung is repeatedly injured
(via an unknown cause), and aberrant repair
provokes the release and activation of
fibrogenic mediators, myofibroblast
accumulation, and deposition of excess
extracellular matrix (ECM), resulting in
progressive fibrosis (7–9). Cellular responses
to profibrotic mediators are usually
transduced through transmembrane
receptors via intracellular signaling pathways
that are controlled in part by SFKs (Src
family tyrosine kinases) that include Src, Yes,
Fyn, Fgr, Lck, Hck, Blk, Lyn, and Frk (10,
11). SFKs are involved in a range of signaling
pathways essential for cellular homeostasis,
such as proliferation, differentiation, motility,
adhesion, and cytoskeletal organization.
Studies in preclinical models of IPF suggest
that several Src-dependent processes
contribute to IPF pathogenesis, including
myofibroblast differentiation and fibrogenic
gene expression (12, 13).

Treatment of IPF remains suboptimal.
Two antifibrotic drugs, pirfenidone (Esbriet)
and nintedanib (OFEV), were approved by
the U.S. Food and Drug Administration
(FDA) in 2014 for the treatment of IPF
(14–16). Clinical trials and real-world

experience demonstrate that, although on
average both drugs slow the rate of decline in
lung function, responses are variable, and
these drugs neither cure IPF nor improve the
symptoms (17). Thus, there remains an
urgent need for the development of more
effective therapies that safely modify the
course of IPF and restore quality of life.

An evolving understanding of the
molecular underpinnings of human diseases
has provided opportunities to precisely target
disease-specific pathways using bioinformatic
methods to mine genomic, molecular, and
clinical data (18–20). As part of a data-driven
approach to repurpose phase II–ready
compounds for new diseases, we identified
saracatinib as a potential therapeutic
compound for IPF. Saracatinib is a potent
and selective Src kinase inhibitor, originally
developed for oncological indications
(21–23). Building on the initial insights
gleaned from transcriptomic connections and
the evidence strongly supporting a pivotal
role for Src kinase in IPF pathophysiology, we
sought to determine the antifibrotic efficacy
of saracatinib relative to nintedanib and
pirfenidone in preclinical cell culture and
animal models of IPF and to elucidate the
molecular signatures of pathological
fibrogenesis and drug responsiveness.

Some of the results of these studies have
been previously reported (24, 25).

Methods

Detailed methods are provided in the online
supplement.

In Vitro
Experiments were performed using primary
normal human lung fibroblasts (NHLFs)
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Figure 1. Computational drug repurposing identifies saracatinib as a potential therapeutic for idiopathic pulmonary fibrosis (IPF). (A) Schematic
of the in silico approach used to identify novel disease indications for compounds. Drug signatures were obtained for 32 compounds in two
different cell lines at two dosages. Each drug signature was compared with a library of disease signatures generated from publicly available
data, and a connectivity score was generated for each disease–compound pair. Filtering and secondary analyses were performed to identify
novel disease indications for each of the compounds. (B) Disease enrichment analysis results show enrichment of Disease Ontology identifier:
50156/IPF signatures among disease signatures that are transcriptomically connected to saracatinib. (C) Connectivity scores between an IPF
disease signature and publicly available drug signatures (saracatinib, dasatinib, bosutinib, pirfenidone, nintedanib, and NM-PP1; obtained from
LINCS L1000). FDR= false discovery rate; GEO=Gene Expression Omnibus; MDS/PCA=multi-dimensional scaling/principal components
analysis; NM-PP1 = PP1 analog II; QC=quality control.

ORIGINAL ARTICLE

Ahangari, Becker, Foster, et al.: Saracatinib, a Novel Therapy for Pulmonary Fibrosis 1465



T
ab

le
1.

Le
ad

in
g
E
dg

e
E
nr
ic
hm

en
t
A
na

ly
si
s

E
n
ri
ch

m
en

ts
:
›
IP
F
,
fl
S
ar
ac

at
in
ib

E
n
ri
ch

m
en

ts
:
fl
IP
F
,
›
S
ar
ac

at
in
ib

L
ib
ra
ry

G
en

e
S
et

F
D
R

G
en

es
in

O
ve

rl
ap

F
o
ld

C
h
an

g
e

G
en

e
S
et

F
D
R

G
en

es
in

O
ve

rl
ap

F
o
ld

C
h
an

g
e

H
al
lm

ar
k

IF
N
g
re
sp

on
se

1.
79

3
10

2
1
2

A
D
A
R
,
C
D
74

,
H
LA

-A
,
H
LA

-B
,

H
LA

-D
M
A
,
H
LA

-G
,
IC

A
M
1,

IF
I3
0,

IF
IT
3,

IF
IT
M
3,

IR
F
1,

LG
A
LS

3B
P
,
LY

6E
,
M
T
2A

,
M
X
1,

M
Y
D
88

,
N
F
K
B
IA
,

P
T
P
N
6,

S
E
R
P
IN

G
1

9.
48

M
yc

ta
rg
et
s

3.
47

3
10

2
9

C
C
T
2,

D
E
K
,
D
H
X
15

,
E
R
H
,
G
LO

1,
H
N
R
N
P
A
1,

IA
R
S
,

LD
H
A
,
N
P
M
1,

P
S
M
A
6,

R
P
L6

,
R
P
LP

0,
S
LC

25
A
3,

Y
W
H
A
Q

9.
28

E
M
T

5.
94

3
10

2
1
1

C
A
P
G
,
C
O
L1

A
1,

C
O
L4

A
2,

C
O
L6

A
2,

C
Y
R
61

,
F
LN

A
,

F
N
1,

G
E
M
,
H
T
R
A
1,

ID
2,

IG
F
B
P
2,

IG
F
B
P
4,

S
E
R
P
IN

E
1,

S
E
R
P
IN

H
1,

T
A
G
LN

,
T
G
F
B
I,
V
IM

8.
54

A
llo

gr
af
t
re
je
ct
io
n

1.
35

3
10

2
4

B
2M

,
H
IF
1A

,
IF
N
G
R
1,

M
R
P
L3

,
N
P
M
1,

R
P
S
3A

,
T
IM

P
1

8.
59

T
N
F
-a

si
gn

al
in
g

vi
a
N
F
-k
B

4.
03

3
10

2
1
0

C
C
N
D
1,

C
D
83

,
C
Y
R
61

,
E
G
R
1,

F
O
S
B
,
G
E
M
,
IC

A
M
1,

ID
2,

IE
R
2,

IR
F
1,

JU
N
B
,
K
D
M
6B

,
LA

M
B
3,

LI
F
,
N
F
K
B
IA
,

S
E
R
P
IN

E
1,

S
LC

2A
3,

Z
F
P
36

7.
88

A
po

pt
os

is
4.
39

3
10

2
4

C
A
V
1,

G
P
X
3,

IF
N
G
R
1,

P
P
T
1,

T
G
F
B
R
3,

T
IM

P
1,

T
X
N
IP

6.
91

C
om

pl
em

en
t

2.
50

3
10

2
8

A
P
O
C
1,

C
3,

C
O
L4

A
2,

C
S
R
P
1,

C
T
S
D
,
C
T
S
H
,
D
U
S
P
6,

F
N
1,

G
N
A
I2
,
G
N
B
2,

IR
F
1,

P
F
N
1,

S
E
R
P
IN

E
1,

S
E
R
P
IN

G
1,

T
IM

P
2

7.
81

In
fla

m
m
at
or
y
re
sp

on
se

1.
49

3
10

2
2

A
D
M
,
H
IF
1A

,
LA

M
P
3,

N
A
M
P
T
,
T
IM

P
1

6.
08

C
oa

gu
la
tio

n
3.
70

3
10

2
8

A
P
O
C
1,

C
3,

C
R
IP
2,

C
S
R
P
1,

C
T
S
H
,
D
U
S
P
6,

F
N
1,

G
N
B
2,

H
T
R
A
1,

S
E
R
P
IN

E
1,

S
E
R
P
IN

G
1,

U
S
P
11

10
.0
7

R
ea

ct
iv
e
ox

yg
en

sp
ec

ie
s

1.
81

3
10

2
2

G
P
X
3,

P
R
D
X
1,

P
R
D
X
6

8.
95

IF
N
a
re
sp

on
se

1.
61

3
10

2
6

A
D
A
R
,
C
D
74

,
H
LA

-C
,
IF
I3
0,

IF
IT
3,

IF
IT
M
3,

IR
F
1,

LG
A
LS

3B
P
,
LY

6E
,
M
X
1

9.
03

O
xi
da

tiv
e

ph
os

ph
or
yl
at
io
n

1.
84

3
10

2
2

C
O
X
6C

,
C
O
X
7A

2,
LD

H
A
,
N
D
U
F
A
4,

S
LC

25
A
3,

S
LC

25
A
5

3.
98

A
llo

gr
af
t
re
je
ct
io
n

2.
79

3
10

2
5

C
A
P
G
,
C
D
74

,
F
LN

A
,
H
LA

-A
,

H
LA

-D
M
A
,
H
LA

-E
,
H
LA

-G
,

IC
A
M
1,

LI
F
,
P
T
P
N
6

6.
67

A
nd

ro
ge

n
re
sp

on
se

3.
27

3
10

2
2

B
2M

,
M
Y
L1

2A
,
S
G
K
1,

S
LC

38
A
2

5.
77

A
pi
ca

lj
un

ct
io
n

4.
75

3
10

2
5

A
C
T
B
,
A
C
T
G
1,

A
C
T
N
4,

C
A
P
1,

E
V
L,

G
N
A
I2
,
IC

A
M
1,

LA
M
B
3,

P
F
N
1,

T
G
F
B
I,

V
A
S
P
,
Z
Y
X

5.
63

E
M
T

4.
94

3
10

2
2

C
D
59

,
G
JA

1,
T
G
F
B
R
3,

T
IM

P
1

3.
70

(C
on

tin
ue

d
)

ORIGINAL ARTICLE

1466 American Journal of Respiratory and Critical Care Medicine Volume 206 Number 12 | December 15 2022



from three different donors (Lonza), and all
experiments were performed using cells of
passages three to five, with six technical
replicates.

In Vivo
PF was induced in C57Bl/6 mice by
intrapulmonary delivery of bleomycin or
recombinant Ad-TGF-b (adenovirus
transforming growth factor-b). Bleomycin
(1.5 U/kg) or saline administered by
oropharyngeal instillation and Ad-TGF-b1
(VQAd CMVmTGF-b1-Viraquest; 23 109

pfu per mouse) or empty vector were
administered via the intranasal route. In both
animal models, treatment with drugs was
started on Day 10, and drugs were
administered daily by oral gavage (saracatinib
20mg/kg; nintedanib 60mg/kg; pirfenidone
300mg/kg) until Day 28. Mouse lungs were
harvested on Day 28 for fibrosis analysis.

Ex Vivo
Mouse precision-cut lung slices. Mouse
precision-cut lung slices (PCLSs) were
generated by using mouse lungs from both
bleomycin (Day 14) and Ad-TGF-b (Day 21)
models (26–28). The PCLSs were cultured
and treated with saracatinib (0.6 μM),
nintedanib (1 μM), pirfenidone (1 mM), or
vehicle control in the first 24 hours after
slicing. Lung slices were isolated 5 days after
treatment for analysis.

Human PCLS. Cryopreserved sections
of human lungs, derived from the patients
with IPF or healthy donors, were cultured
and used in two independent experiments.
The human PCLSs (hPCLSs) harvested from
healthy donors were cultured and treated
with a medium containing a profibrotic
cocktail (FC) (containing TGF-b, PDGF-AB
[platelet-derived growth factor-AB],
lysophosphatidic acid, TNF-a [tumor
necrosis factor-a]) or control cocktail. The
hPCLSs were isolated from patients with IPF
as well as individual PCLSs treated with FC
or control cocktail supplemented with
saracatinib (0.6 μM) or vehicle for 5 days and
used for histological assessment or gene
expression analysis.

Results

The Computational Drug Repurposing
Approach Identifies a Connection
Between Saracatinib and IPF
We undertook a disease-agnostic, data-
driven approach to explore novelT
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Figure 2. Saracatinib inhibits TGF-b (transforming growth factor-b)-induced phenotypic changes in human lung fibroblasts (NHLFs). Cells were
serum-starved overnight and then incubated with inhibitors (saracatinib 0.3 mM, nintedanib 1 mM, pirfenidone 20 mg/ml, or vehicle [DMSO]) for
60 minutes followed by stimulation with human recombinant TGF-b (2 ng/ml) or vehicle control for the indicated times. (A–C) Quantitative
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connections between diseases and
compounds previously tested in clinical
studies. A set of 32 compounds was selected
based on a combination of factors that
included experience in clinical studies and
potential for further clinical development
beyond the disease for which the compound
was originally designed (drug repositioning).
The method applied was based on a modified
connectivity mapping approach (29, 30),
where the transcriptomic signature of each
compound was compared computationally
with transcriptomic signatures of human
diseases. Briefly, differential gene expression
signatures for each compound were
generated by performing RNA sequencing
on two different cell lines (A549 andMCF7)
after exposure to two concentrations of each
of the 32 compounds (e.g., compound-A
A549 high dose, compound-AMCF7 high
dose, compound-A A549 low dose,
compound-AMCF7 low dose). This analysis
was done blinded to the compound identity
or chemistry and was generated using the
genome-wide pattern of mRNA changes in
cell-matched compound versus vehicle-
treated samples (Figure 1A). A disease
transcriptomic library, consisting of more
than 700 unique disease signatures, was built
from publicly available gene expression data
(19, 31). To identify novel clinical indications
for each compound, a connectivity score was
calculated by comparing each disease
signature to each compound signature. The
connectivity score aims to summarize the
transcriptomic relationship between each
compound and disease, such that a strongly
negative score indicates that the compound
will induce transcriptomic changes that may
revert or “normalize” the disease signature
(29). Using this method, significant negative
connectivity scores were found between the
Src kinase inhibitor (saracatinib) and IPF
disease signatures derived from patient lung
biopsies (GSE24206) (32) and cultured
fibroblasts (GSE44723) (33) (see Table E1 in
the online supplement).

Accordingly, we performed a disease
enrichment analysis, intending to identify
high-level disease categories that are
transcriptomically connected to saracatinib.
This analysis identified that IPF disease
signatures were overrepresented in
connecting with saracatinib (Figure 1B),
indicating that saracatinib is globally relevant
to IPF disease.

To probe the biology driving the
connection between saracatinib and the IPF
signatures, we conducted a leading-edge
enrichment analysis to identify
overrepresented gene sets that point to
pathways by which saracatinib may affect
IPF disease. This analysis identified
numerous gene sets, including IFNg
response, epithelial–mesenchymal transition
(EMT), and TNF-a signaling pathways, all of
which have been implicated in the
pathogenesis of IPF. In addition, kinase
enrichment analysis of these data identified
enrichments for RIPK3 (receptor-interacting
serine/threonine-protein kinase 3) together
with multiple members of theMAP
(mitogen-activated protein) kinase family
(Table 1).

To clarify if this connectivity was a
feature among other Src inhibitors or unique
to saracatinib, we used data from the
Connectivity Map (30), a collection of
publicly available expression data from
cultured human cells treated with small
molecules. This data collection contains
transcriptomic data in a range of
experimental conditions for saracatinib as
well as other Src kinase inhibitors. This
resource also includes data from the two
IPF FDA-approved drugs pirfenidone and
nintedanib. We compared each of these
drug signatures to the IPF disease signatures
in our disease library. One IPF disease
signature connected significantly with all
six compounds (saracatinib, dasatinib,
bosutinib, pirfenidone, nintedanib, and NM-
PP1), and the strongest connection was with
saracatinib (Figure 1C). In summary, using

complementary bioinformatics approaches,
we identified a robust transcriptomic
connection between saracatinib and IPF,
thus providing a strong foundation for the
hypothesis that saracatinib might have a
potential therapeutic benefit in IPF.

Saracatinib Inhibits TGF-b–induced
Phenotypic Changes in Human Lung
Fibroblasts
As the compound signature was derived
from A549 andMCF7 cells, we next
investigated the effects of saracatinib in a
more disease-relevant setting. We assessed
the effect of saracatinib on TGF-b–induced
fibrogenic processes in cultured NHLFs to
study signaling pathways relevant to human
IPF disease. We confirmed that TGF-b
stimulation induces a significant increase in
Src phosphorylation of Y416, a response that
correlates with activation of Src kinase
activity (34) (Figures E1A and E1B). It has
been well demonstrated that saracatinib
treatment efficiently inhibits TGF-b–induced
Src kinase activity in these cells (13). We
chose to compare the effect of saracatinib to
the two FDA-approved antifibrotic drugs,
nintedanib and pirfenidone, in this in vitro
system.We selected the optimum dose for all
three compounds based on the established
clinically relevant doses (35, 36) and our
initial screening experiments (Figures E2A
and E2B). We observed that saracatinib
significantly inhibited TGF-b–induced
expression of many profibrotic genes,
including smooth muscle alpha (a)-2 actin
(Acta2), Collagen type I alpha 1 chain
(Col1a1), and serpin1 or plasminogen
activator inhibitor 1 (PAI-1), to a similar or
greater extent than that observed for
nintedanib or pirfenidone (Figures 2A–2C).
To validate this finding, we repeated the
experiment in primary human lung
fibroblasts isolated from three different
donors and confirmed the consistency of
these findings across donors (Figures E3A
and E3B). We next compared the effects of

Figure 2. (Continued ). real-time PCR (qRT-PCR) analysis for (A) smooth muscle alpha (a)-2 actin (Acta2), (B) collagen type I alpha 1 chain
(Col1a1), and (C) serpin1 or plasminogen activator inhibitor 1(PAI-1) in the indicated treatment groups of NHLF (mean1SEM); *P, 0.05,
**P,0.01, and ***P, 0.001 (n=6). (D) Representative western blots showing saracatinib inhibition of TGF-b–induced phosphorylation of Smad3
in human lung fibroblasts; data presented as mean1SEM; n=6; *P, 0.05. (E) Representative images of a-SMA (a smooth muscle actin)
staining (red) together with F-Actin (filamentous actin; green) and DAPI (blue) show fluorescent staining in human fibroblasts after TGF-b
stimulation in the indicated treatment groups using confocal microscopy. (F and G) Quantification of a-SMA and F-Actin staining shown as
integrated density; ***P, 0.001. (H) Volcano plot showing genes that are differentially expressed in cells treated with TGF-b and saracatinib
compared with TGF-b alone (false discovery rate [FDR], 0.05), negative fold change (blue), and positive fold change (red). (I) Functional
enrichment of significantly differentially expressed genes (FDR, 0.05) in response to saracatinib (only the top 10 gene sets are shown).
All gene sets shown are significant at FDR,0.05 and are from Hallmark (H) or Kegg (K). AU or au = average intensity; NS=nonsignificant.
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Figure 3. Saracatinib inhibits pulmonary fibrosis in bleomycin and adenovirus TGF-b (transforming growth factor-b) mouse models. (A–H)
Evaluation of bleomycin-induced lung fibrosis. (A) Quantitative analysis of hydroxyproline in lung homogenates from indicated groups of mice.
Lung collagen content increased significantly in bleomycin-treated mice receiving vehicle control (fold change=2.9); **P,0.01 and
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the three drugs on TGF-b–induced Smad3
phosphorylation in NHLFs, as a readout of
canonical TGF-b fibrogenic signaling.
Saracatinib, but not nintedanib or
pirfenidone, significantly inhibited TGF-
b–induced Smad3 phosphorylation
(Figure 2D).We extended our investigation
by comparing the effects of saracatinib to the
other two drugs on TGF-b–induced
morphological changes in human fibroblasts.
Confocal immunofluorescence imaging of
these cells for a-SMA (a smooth muscle
actin) and F-actin (filamentous actin)
demonstrated a strong inhibitory effect
of saracatinib on TGF-b–induced
alterations in cell shape and stress fiber
formation characteristic of myofibroblast
transformation (fold change. 2; P value
< 0.001) (Figures 2E–2G). Nintedanib
exhibited a similar, but less potent, inhibitory
response compared with saracatinib on these
phenotypic changes. Concordant with our
earlier findings, pirfenidone did not show
any effects on TGF-b–induced structural
changes in human lung fibroblasts.

To extend these observations and
investigate the broader effects of saracatinib
in this disease-relevant in vitromodel, we
generated transcriptomic drug signatures by
performing bulk RNA sequencing on NHLF
cells treated with saracatinib, nintedanib,
pirfenidone, or vehicle control in the
presence or absence of TGF-b stimulation.
We identified the transcriptomic effects that
were unique to saracatinib and could be used
to differentiate the effects of saracatinib from
nintedanib and pirfenidone (Figure E4). We
discovered that saracatinib altered the
expression of more than 500 individual genes
(adjusted P value, 0.05) in TGF-b–treated
cells (Figure 2H). Gene set enrichment
analysis (GSEA) revealed that saracatinib

uniquely induced alterations in numerous
pathways identified from the Hallmark and
KEGG databases, with IFNa, IFNg, EMT,
and inflammatory responses among the top
pathways (Figure 2I and Table E2).

In summary, saracatinib inhibits TGF-
b–induced fibrogenic responses in this
in vitro systemmore effectively than
nintedanib and pirfenidone.

Saracatinib Inhibits PF in Preclinical
Animal Models
Next, we compared the effects of saracatinib,
nintedanib, and pirfenidone at clinically
relevant doses (37–41) in two preclinical
models of PF in mice (42, 43). In the first
model, fibrosis was induced using a single
dose of bleomycin (1.5 U/kg) administered
into the lung by oropharyngeal aspiration,
andmice received either saracatinib,
nintedanib, pirfenidone, or vehicle control
once daily via oral gavages on Days 10–27
after bleomycin administration. On Day 28,
the mouse lungs were harvested and the
antifibrotic effects of all three drugs were
assessed. Mice receiving vehicle control
exhibited prominent weight loss as expected
after the administration of bleomycin,
whereas all drug-treated mice, except the
mice treated with pirfenidone, recovered
their weight loss by the end of the
experiment (Figures E5A and E5B). The
bleomycin-induced increase in lung collagen
content was significantly attenuated in mice
receiving saracatinib, nintedanib, or
pirfenidone (P value< 0.001) (Figure 3A).
Consistent with the biochemical analysis,
saracatinib significantly attenuated the
bleomycin-induced lung expression of
fibrogenic genes, includingActa2, Col1a1,
and Col3a1 (Figures 3B, 3C, and E6A)
(P value< 0.001 forActa 2 and Col3a1;

P value< 0.01 for Col1a1), whereas neither
nintedanib nor pirfenidone treatments
resulted in any significant changes in
the expression of these fibrogenic genes.
Histopathological evaluation of these
lungs usingMasson’s Trichrome staining
demonstrated a greater reduction in
bleomycin-induced PF by saracatinib
and nintedanib (P value< 0.001) than
pirfenidone (P value< 0.01) (Figures 3D
and 3F). Micro–computed tomography
analysis supported the biochemical and
histopathological observations; aerated lung
volumemeasurements showed saracatinib
and nintedanib significantly attenuated the
bleomycin-induced radiographic alterations
in the lung parenchyma (P value< 0.001) and
to a greater extent than pirfenidone
(P value< 0.01) (Figures 3E, 3G, and E7).
Finally, lung functionmeasurements and
physiological evaluation of these mouse lungs
identified that saracatinib also significantly
attenuated bleomycin-induced alterations in
lung physiology (static compliance and
elastance) as measured using the flexiVent
system (fold change=2; P value< 0.001)
compared with nintedanib or pirfenidone
(P value< 0.01) (Figure 3H).

A secondmodel of PF was established
using the expression of recombinant murine
TGF-b using adenoviral-mediated gene
delivery (Ad-TGF-b) administered to the
lung intranasally. As in the bleomycinmodel,
all three drugs were given to mice once daily
via oral gavages fromDays 10 to 27 after
TGF-b administration. Mice receiving vehicle
control exhibited prominent weight loss after
the administration of Ad-TGF-b, and,
notably, only themice treated with saracatinib
recovered their weight loss by the end of the
experiment (Figures E5C and E5D). In this
model, only saracatinib demonstrated

Figure 3. (Continued ). ***P, 0.001. (B and C) Quantitative real-time PCR analysis on mouse lungs for (B) smooth muscle alpha (a)-2 actin
(Acta2) and (C) collagen type I alpha 1 chain (Col1a1) in the indicated treatment groups. (D and F) Representative images and quantitative
measurements of Masson’s Trichrome staining of lung sections in the indicated groups of mice. (E and G) Representative images (dorsal view
of three-dimensional reconstructions and axial view) and quantifications of micro–computed tomography on mouse lung tissues in the indicated
groups. Gross abnormality resulting from bleomycin-induced lung fibrosis is alleviated after treatment. Aerated lung volume measurements
showed a significant decrease in bleomycin-treated mouse lungs (P value<0.001; fold change.2), whereas saracatinib and nintedanib
significantly attenuated the bleomycin-induced radiographic alterations in the lung parenchyma (P value<0.001). (H) Lung compliance
measurements of the lungs in the indicated groups are shown as static compliance (Cst). (I–O) Evaluation of Ad-TGF-b (adenovirus transforming
growth factor-b)-induced lung fibrosis. (I) Quantitative analysis of hydroxyproline in lung homogenates from indicated groups of mice. The
hydroxyproline assay revealed a significant increase in lung collagen content for mice receiving Ad-TGF-b (fold change=1.8; P value<0.001),
which is decreased significantly by saracatinib. (J and K) Quantitative real-time PCR analysis on mouse lungs for (J) Acta2 and (K) Col1a1 in
the indicated treatment groups. (L and N) Representative images and quantification of Masson’s Trichrome staining of lung sections in the
indicated groups of mice. (M and O) Representative images and quantification of a-SMA (a smooth muscle actin) staining of lung sections in
the indicated groups of mice. All data are presented as mean1SEM; *P,0.05, **P, 0.01, and ***P, 0.001 (n=6 in saline and n> 12 in
bleomycin and Ad-TGF-b–treated groups). NS=nonsignificant.
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Figure 4. Saracatinib inhibits pulmonary fibrosis in ex vivo murine precision-cut lung slices (PCLSs) in bleomycin and Ad-TGF-b (adenovirus
transforming growth factor-b) models. Mouse PCLSs were generated from both bleomycin (Day 14) and Ad-TGF-b (Day 21) models. Treatment
with saracatinib (0.6 mM), nintedanib (1 mM), pirfenidone (1 mM), or vehicle control was administered in the first 24 hours after slicing (time 0 h).
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antifibrotic effects as assessed by a reduction
in lung collagen content (P value< 0.001)
(Figure 3I) and expression ofActa2, Col1a1,
and Col3a1mRNA (P value< 0.001)
(Figures 3J, 3K, and E6B). By contrast, neither
nintedanib nor pirfenidone attenuated fibrosis
in this model. Histopathological assessment of
the lungs usingMasson’s Trichrome and
a-SMA staining confirmed these observations
(Figures 3L–3O and E8A and E8B).

Given the fact that TGF-b signaling
cascades are consistently activated in fibrotic
tissues, regardless of the etiology of the initial
injury, and that the Smad3 pathway is a key
intermediary in this cascade (44, 45), we
evaluated the effect of saracatinib on Smad3
phosphorylation in the lung tissues after
bleomycin and Ad-TGF-b treatments. We
identified significant inhibition of this
pathway by saracatinib in both preclinical
animal models of PF (Figures E9A–E9D).

In summary, in two complementary
mouse models of PF, saracatinib attenuated
lung fibrosis more effectively than
pirfenidone or nintedanib at clinically
relevant doses.

Saracatinib Inhibits PF in
Mouse PCLSs
We next sought to confirm these
observations in an ex vivomodel using
PCLSs to compare the antifibrotic effects of
saracatinib with nintedanib and pirfenidone
(26). PCLS is a useful method to test the
therapeutic effects of different compounds in
a system with relatively preserved lung
architecture containing various lung-resident
cell types and ECM (46). In this study, mice
were treated with either bleomycin or Ad-
TGF-b and killed at the peak of the fibrotic
response. Lung slices were prepared and
treated ex vivowith each of the three drugs
or vehicle for 5 days (Figures 4A–4L). These
lung slices remain viable for at least 5 days
(120 h), (Figure E10). Analysis of these lung
slices revealed a reduction in Col1a1 and

Acta2mRNA expression by saracatinib in
PCLSs harvested frommice treated
with either bleomycin or Ad-TGF-b
(P values< 0.001), whereas the fibrosis
remained sustained in the vehicle-treated
groups (Figures 4A, 4B, 4G, and 4H). Live
serial imaging of the lung slices using second
harmonic generation microscopy
demonstrated that saracatinib significantly
attenuated collagen accumulation in both
models (P values< 0.001) (Figures 4C, 4D,
4J, and 4I). It was not possible to assess the
effects of nintedanib on collagen content by
second harmonic generation microscopy in
this model because of a strong
autofluorescence signal generated by
nintedanib. Treatment with pirfenidone
attenuated lung collagen content
(P values< 0.001) only in the TGF-bmodel.
Histological evaluation of the lung slices
using Masson’s Trichrome staining revealed
that saracatinib strongly attenuated lung
fibrosis in both models (P values< 0.001)
(Figures 4E, 4F, 4K, and 4L).

In summary, using murine PCLS, we
demonstrated that saracatinib is more
effective than either nintedanib or
pirfenidone in attenuation of PF in an ex vivo
model and confirmed our findings in the
in vivomurine models.

A Comparison of Transcriptional
Changes in Mouse Models Identifies
Core Genes Relevant for IPF and
Points to a Mechanism of Action of
Saracatinib
We undertook bioinformatic analysis to
elucidate the molecular mechanisms
underlying the antifibrotic effects of
saracatinib shown in both murine models of
PF. RNA sequencing was performed on
lungs isolated frommice treated with either
bleomycin or Ad-TGF-b in the presence or
absence of saracatinib treatment. Consistent
with the favorable clinical safety profile of
saracatinib, there were relatively few gene

expression changes in mice receiving
saracatinib alone compared with the control
group. Importantly, saracatinib reversed the
expression of many of the genes that were
altered by bleomycin (Figures 5A and 5B).
GSEA demonstrated that saracatinib
reversed alterations in numerous gene sets
induced by bleomycin (includingMyc
targets, E2F targets, EMT, and G2M
checkpoint gene sets) (Figure 5C). Analysis
of the pulmonary transcriptional changes
observed in the Ad-TGF-bmodel revealed
that TGF-b induced changes in
approximately 4,500 genes; however, in
contrast to the observed changes in the
bleomycin model, saracatinib treatment had
a much smaller effect with fewer significant
changes in expression. Further evaluation
using GSEA, taking expression levels of all
genes into account, demonstrated that
saracatinib attenuated many pathways
altered by TGF-b expression, including
IFNg, IL6, JAK-STAT (janus kinase-signal
transducer and activator of transcription)
signaling, and IFNa responses (Figure 5D).

Next, we compared the transcriptional
changes observed in these two animal
models and identified a set of genes common
to both models (consisting of 1,233
upregulated genes and 1,256 downregulated
genes). A subset of these genes is reversed by
saracatinib (225 upregulated, 560
downregulated). To interrogate this subset
further, a protein– protein interaction
network analysis identified modules
including ECM organization, immune
system processes, endoplasmic reticulum
(ER)–Golgi transport, and neutrophil
degranulation. Within this ECM cluster are
numerous knownmarkers of fibrosis,
including members of the collagen family
(Col3a1, Col4a1, Col4a2, Col5a2, Col12a1,
Col16a1), Fn1 (fibronectin), Lama1 (laminin,
Tnc (tenascin), Fbn1 (fibrillin), TGF-br1
(TGF-b receptor1), and the ECM receptor
Cd44 (Figures 5E and E11).

Figure 4. (Continued ). All lung slices were isolated 5 days after treatment for analysis (time 120 h). (A–F) Effect of saracatinib, nintedanib, and
pirfenidone in PCLSs isolated from the bleomycin mouse model of pulmonary fibrosis. (A and B) Quantitative real-time PCR analysis on mice
PCLSs in bleomycin model for smooth muscle alpha (a)-2 actin (Acta2) and collagen type I alpha 1 chain (Col1a1) in the indicated treatment
groups. (C and D) Representative live images using second harmonic generation microscopy (SHG) and quantification assessments of PCLS
samples at times 0 and 5 days (120 h) after indicated treatments. (E and F) Representative images and quantification assessments of Masson’s
Trichrome staining of PCLS slides at times 0 and 5 days (120 h) after indicated treatments. (G–L) Effect of saracatinib, nintedanib, and
pirfenidone in PCLSs isolated from Ad-TGF-b–treated mouse models of pulmonary fibrosis. (G and H) Quantitative real-time PCR analysis of
mouse PCLSs in the Ad-TGF-b model for Acta2 and Col1a1 in the indicated treatment groups (I and J). Representative live images using SHG
and quantification assessments of PCLS samples at times 0 and 5 days (120 h) after indicated treatment. (K and L) Representative images and
quantification assessments of Masson’s Trichrome staining of PCLS samples at times 0 and 5 days (120 h) after indicated treatment. All data
are presented as (mean1SEM); *P, 0.05, **P,0.01, and ***P,0.001 (n>6 in all groups). au = average intensity; NS=nonsignificant.
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Figure 5. Saracatinib treatment results in the reversal of transcriptional changes observed in idiopathic pulmonary fibrosis (IPF) mouse models.
(A) Comparison of number and direction of significantly differentially expressed (DE) genes (false discovery rate [FDR], 0.05) in bleomycin and
bleomycin/saracatinib treatment groups. Bleomycin administration induced significant differential expression of almost 7,000 genes
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Saracatinib Ameliorates PF in hPCLSs
We sought to assess how saracatinib affects
collagen production and profibrotic gene
expression in human lungs. To this end, we
used ex vivo culture of hPCLSs prepared
from human IPF lungs as well as lungs from
healthy donors. Briefly, hPCLSs isolated
from patients with IPF were cultured and
treated with saracatinib or vehicle for 5 days.
In an independent experiment, the hPCLS
harvested from healthy donors were also
treated with saracatinib or vehicle in the
medium containing an FC (TGF-b, PDGF-
a, TNF-a, and lysophosphatidic acid) or the
control cocktail as previously described (27)
(Figure 6A). Histological evaluation of these
slices revealed a significant reduction in
collagen accumulations by saracatinib in
both experiments as indicated byMasson’s
Trichrome (Figures 6B–6D) and a-SMA
(Figures 6E–6G) staining.

We also aimed to assess the effects of
saracatinib on gene expression alterations in
human lung fibrosis by screening the
expression of 761 fibrosis-related genes in
these lung slices. Analysis of transcriptional
genes using the nCounter Analysis System by
NanoString revealed that the FC induced the
expression of the numerous fibrotic genes in
the control lungs (Figure E12). The
comparison between control lungs treated
with FC plus saracatinib versus control lungs
treated with FC plus vehicle revealed that
saracatinib treatment altered the expression
of 149 of these genes (Figure 6H).
Considering that explanted lungs from
patients with IPF are generally in a very
advanced and heterogenic fibrotic state, it
was of interest that treatment with
saracatinib altered the expression of 60
genes in the IPF slices; 58 of these were in
common with the FC plus saracatinib
group, and two of these genes (VEGF-A

[vascular endothelial growth factor-A] and
IL-6) were uniquely altered in the IPF lung.
Further analysis of this transcriptomic data
revealed that saracatinib altered many of
the profibrotic genes, including ACTA2,
COL4A1, COL3A1, FN, TIMP
metallopeptidase inhibitors (TIMPs), TGFb-
R1, and TGFb1 in both datasets (Figures 6I
and 6J). In accordance with the
transcriptomic data from the mouse
experiments, the expression of numerous
genes related to the immune system and
inflammatory cascades were also altered in
these human lung slices (Tables E3 and E4).
Combining these two independent gene
expression datasets revealed that the
patterns of gene alterations by saracatinib in
both human fibrotic lung models were very
similar, with CXCL8 and TGF-b1L1 as the
most dominant downregulated gene in both
experiments (Figure 6K).

CXCL8 has been introduced as one of
the most critical genes in neutrophil
activation (47, 48). Given that the murine
transcriptomic data highlighted a possible
regulatory role for saracatinib in neutrophil
degranulation and activation in PF
(Figure 5E) and the importance of neutrophil
extracellular traps (NETs) in innate immune
response in the pathogenesis of IPF (49, 50),
we sought to test the role of saracatinib on
the activation of neutrophils isolated from
human blood of healthy control subjects. As
is shown in Figure 6L, saracatinib
dramatically suppressed phorbol myristate
acetate–induced NET formation compared
with control, as indicated by the
measurements of NET-associated neutrophil
elastase.

In summary, the analysis of two human
ex vivo lung models of fibrosis demonstrated
that saracatinib has potent antifibrotic
effects in human lung tissue as assessed at

the level of gene expression as well as at the
level of lung collagen protein content.

Discussion

In this study, we used an innovative disease-
agnostic computational biology-based
approach and identified the Src kinase
inhibitor saracatinib (AZD0530) (23) as a
potential therapeutic agent for IPF and
delineated multiple fibrogenic pathways
targeted by this agent at the molecular level.
Furthermore, we validated the efficacy of
saracatinib in blocking fibrogenic responses
in several complementary preclinical models
of PF. Our data provide strong evidence that
saracatinib is equal or superior to the two
FDA-approved drugs, nintedanib and
pirfenidone, at inhibiting PF in experimental
models. Analysis of the transcriptional
changes induced by saracatinib in the in vitro
and in vivomodels of PF demonstrated that
saracatinib was able to reverse the expression
of diverse fibrogenic genes and pathways,
such as myofibroblast differentiation, EMT,
ECM organization, immune system
processes, endoplasmic reticulum–Golgi
transport, and neutrophil degranulation.
Importantly, many of these differentially
expressed gene sets and pathways were
selectively modified by saracatinib compared
with nintedanib and pirfenidone.We also
demonstrated a profound change in the
fibrotic gene expression and collagen
accumulation in several independent ex vivo
models, including bleomycin and Ad-TGF-b
mouse PCLSs, hPCLSs treated with FC, and
PCLSs obtained from patients with IPF.
Taken together, our in vitro, in vivo, and ex
vivo data support the validity of our in
silico–derived hypothesis that saracatinib is

Figure 5. (Continued ). (adjusted P value, 0.05) in the bleomycin treatment group when compared with the control group. Bleomycin-treated
mice that also received saracatinib had significant changes in 2,940 genes compared with mice treated with bleomycin alone. A total of 2,628
differentially expressed genes are common between treatment groups. Of these, 1,689 are upregulated by bleomycin and downregulated by
saracatinib, and 938 are downregulated by bleomycin and upregulated by saracatinib. (B) Heatmap of top 100 differentially expressed genes
(BS vs. BV). (C) Top Hallmark gene set enrichment analysis (GSEA) in bleomycin murine experiments (adjusted P value, 0.05) ranked by
saracatinib effect. Blue bars show BS versus BV and red bars show BV versus SV. The positive or negative signs indicate log fibrotic cocktail
(FC) directions. (D) Top Hallmark GSEA in Ad-TGF-b (adenovirus transforming growth factor-b) experiments ranked by saracatinib effect
(adjusted P value,0.05). Blue bars show TS versus TV and red bars show TV versus EV. The positive or negative signs indicate logFC
directions. (E) Cytoscape network analysis of common differentially expressed genes shared by both the bleomycin and TGF-b mouse models
that are reversed by saracatinib. Node size: expression level; node color: logFC (red is up, blue is down); node border width: negative log
adjusted P value. Bleomycin experimental conditions: SV= saline1 vehicle; BV=bleomycin1 vehicle; BS= bleomycin1 saracatinib; BV versus
SV=bleomycin effect; BS versus BV=saracatinib on bleomycin. Ad-TGF-b experimental conditions: EV=control1 vehicle; TV=TGF-b1 vehicle;
TS=TGF-b1 saracatinib; TV versus EV=TGF-b effect; TS versus TV=saracatinib on TGF-b. ER=endoplasmic reticulum; GPCR=G protein
coupled receptors.
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Figure 6. Saracatinib attenuates pulmonary fibrosis at the level of gene expression and collagen protein accumulation in ex vivo human
precision-cut lung slice (hPCLS) models. (A) Schematic view of the experimental design. hPCLSs isolated from patients with idiopathic
pulmonary fibrosis (IPF) were cultured and treated with saracatinib (0.6 mM) or vehicle for 5 days; IS (IPF1 saracatinib) and IV (IPF1 vehicle).
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to be considered a candidate for drug
repurposing in IPF.

At the inception of this study, we used
genome-wide transcriptional profiling of
human IPF lungs cross-referenced with
distinct drug transcriptomic signatures to
identify Src kinase–dependent signaling
pathways as critical checkpoints that
control profibrotic responses in the lung.
Importantly, we established that saracatinib
was a potent and effective therapeutic agent
that significantly attenuated experimental
PF in several preclinical models with
equal or greater efficacy than the two
FDA-approved drugs nintedanib and
pirfenidone. This approach, anchored in
transcriptomic profiles in human lung cells
and tissues, led to the identification of
novel pathways that are relevant to human
IPF.

Our study provides additional
information and is complementary to
proteomics-based analyses of human tissues
that have yielded therapeutic targets for PF
(51–53). Repurposing drugs to treat
conditions other than the one for which they
were developed and/or approved, can
shorten timelines, decrease costs, and
increase success rates. Using a computational
biology approach in combination with
Connectivity Map can help in identifying
new drugs, predicting drug candidates, and
discovering connections among small
molecules sharing a mechanism of action.
Based on the connectivity scores of
saracatinib to IPF relative to nintedanib and
pirfenidone using L1000 data, we identified
that saracatinib had greater connectivity to
IPF than the other two FDA-approved drugs.
This approach has been widely used as a
resource in cancer drug discovery (29, 54),
and our study extends this methodology to
IPF treatment.

Several studies have shown that SFKs
control key signaling pathways relevant
to PF pathogenesis (55), including TGF-
b–mediated myofibroblast differentiation
and fibrogenic responses in lung
fibroblasts (13). SFKs are also required
for TGF-b–driven EMT and are
necessary for the recruitment and
activation of immune cells in pulmonary
inflammation (55, 56). We have reported
that mice genetically deficient in PTPa
(protein tyrosine phosphatase a), a
known activator of SFKs, are protected
from experimental PF (57, 58). We also
reported that SHP2 (SH2 domain–
containing tyrosine phosphatase 2) is an
antifibrotic regulator in PF (59, 60).
These studies underscore the importance
of reversible tyrosine phosphorylation
reactions, controlled by specific tyrosine
kinases and phosphatases, in the
pathogenesis of PF and provide a
mechanistic foundation for the use of
saracatinib in the treatment of this
disease. Our studies using normal human
lung fibroblasts and animal models of PF
and PCLS provide strong evidence that
saracatinib inhibits fibrogenic responses
more potently than either nintedanib or
pirfenidone. Our study revealed that
saracatinib perturbed ‘EMT’, ‘MYC
targets’, and ‘IL6_JAK_STAT signaling’
gene sets and that saracatinib uniquely
induced perturbations in ‘E2F target’,
‘G2M checkpoints’, and ‘oxidative
phosphorylation’ and IFN gene sets in the
in vivomodels. This analysis provides
important insights into the mechanisms
by which SFKs modulate fibrogenic
signaling pathways.

Although our study presents
comprehensive evidence for the potential
antifibrotic effects of saracatinib, questions

of interest concerning the effects of
saracatinib on fibrogenic pathways remain
to be addressed. In the current study, we
focused on TGF-b–dependent pathways
because of the well-accepted importance of
this growth factor in organ fibrosis (61, 62).
In addition to TGF-b, other growth factors,
including PDGF (63, 64), IGF-1
(insulin-like growth factor-1) (65), and
FGFs (fibroblast growth factors) (66), are
known to trigger profibrotic cellular
responses through signaling pathways that
are controlled by SFKs. Similarly, kinase
enrichment analysis of differentially
expressed gene sets altered by saracatinib
identified enrichment for RIPK3 and the
MAP kinases. Importantly, RIPK3 has been
implicated in the pathogenesis of renal
fibrosis (67). SFKs are known to regulate
MAP kinase–dependent signaling
pathways relevant to fibrogenesis (68, 69).
Whether RIPK3 is regulated by SFK is
unknown and the subject of current
investigations. In future studies, we aim to
investigate the effects of saracatinib on
PDGF, IGF-1, FGF, and RIPK3, as well
other MAP kinase–dependent signaling
pathways to better dissect their relative
contributions.

In conclusion, based on a
computational drug repurposing strategy,
we have identified saracatinib as a potential
therapeutic for IPF (40). To our knowledge,
this is the first study that has used a
computational approach to link a
compound to IPF in silico and then
validated the efficacy of the drug in in vitro,
in vivo, and ex vivomodels culminating in
a human clinical trial in the treatment of
IPF (70).�

Author disclosures are available with the
text of this article at www.atsjournals.org.

Figure 6. (Continued ). In an independent experiment, the hPCLSs harvested from healthy donors were also cultured and treated with fibrotic
cocktail (FC), (containing 5 mg TGF-b [transforming growth factor-b], 50 mg PDGF-AB [platelet-derived growth factor-AB], 10 ng TNF-a
[tumor necrosis factor-a], and 10 mg lysophosphatidic acid), or control cocktail (CC), with saracatinib or vehicle for 5 days; CCV (control
lung1CC1 vehicle), CCS (control lung1CC1 saracatinib), CFV (control lung1 FC1 vehicle), and CFS (control lung1 FC1 saracatinib). (B–D)
Representative images and quantitation measurements of Masson’s Trichrome staining on the harvested slides from all groups at the end of the
time points. (E–G) Representative images and quantitation measurements of a-SMA (a-smooth muscle actin) staining on the harvested slides
from all groups at the end of the time points. (H) Venn diagram of the number of genes differentially expressed after saracatinib treatment in
PCLSs from control hPCLSs with FC (CFV vs. CFS) (number of genes=149) or IPF (IV vs. IS) (number of genes=60) among all measured
genes (number of genes=761). (I) Heatmap of 149 differentially expressed genes (DEGs) in control hPCLSs with FC (CFV vs. CFS). Genes are
ordered from highest to lowest fold change; z-scores are calculated across samples. (J) Heatmap of 60 DEGs in IPF PCLSs (IV vs. IS). Genes
are ordered from highest to lowest fold change; z-scores are calculated across samples. (K) Volcano plot of the combined DEG results of both
data sets; x-axis= log2 fold change of DEGs between CFS versus CFV; y-axis = log2 fold change of DEGs between IS versus IV. (L) Neutrophil
extracellular trap (NET)-associated neutrophil elastase (mU/ml) measured from the phorbol myristate acetate (PMA)-induced neutrophil
extracellular traps after 6 hours of incubation with saracatinib or vehicle. All data are presented as mean1SEM; *P, 0.05, **P,0.01, and
***P,0.001 (n>6 in all groups). CTR = control; NS=nonsignificant.
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