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Abstract

Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by

the inhabitants of this region for hundreds of years. Furthermore, this plant has been demon-

strated to be a viable therapy for a variety of neurological and mental diseases. EEG experi-

ments have found specific brain regions that changed significantly due to ayahuasca. Here,

we used an EEG dataset to investigate the ability to automatically detect changes in brain

activity using machine learning and complex networks. Machine learning was applied at

three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of

the EEG time series, and (C) the complex network measures calculated from (B). Further, at

the abstraction level of (C), we developed new measures of complex networks relating to

community detection. As a result, the machine learning method was able to automatically

detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed

by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are

more important for the detection of ayahuasca. The most activated areas were the frontal

and temporal lobe, which is consistent with the literature. F3 and PO4 were the most impor-

tant brain connections, a significant new discovery for psychedelic literature. This connec-

tion may point to a cognitive process akin to face recognition in individuals during

ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assorta-

tivity were the most important complex network measures. These two measures are also

associated with diseases such as Alzheimer’s disease, indicating a possible therapeutic

mechanism. Moreover, the new measures were crucial to the predictive model and sug-

gested larger brain communities associated with the use of ayahuasca. This suggests that

the dissemination of information in functional brain networks is slower when this drug is

present. Overall, our methodology was able to automatically detect changes in brain activity

during ayahuasca consumption and interpret how these psychedelics alter brain networks,

as well as provide insights into their mechanisms of action.
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1 Introduction

Ayahuasca is made from a blend of Amazonian herbs [1]. This combination of plants is often

associated with rituals of different religions and social groups. Ayahuasca has been used in the

Amazon for a couple of hundred years, being part of the traditional medicine of the indigenous

population within this region [2].

Since the use of ayahuasca has spread throughout many countries, it is necessary to study in

depth its cerebral mechanisms and its potential clinical implications. In addition, because it

affects brain areas related to emotions, memories, and executive functions, ayahuasca might be

used in the treatment of psychiatric disorders, such as drug addiction [3–5], Parkinson’s dis-

ease [6–9], and depression [10–16]. For example, an open-label clinical study found significant

therapeutic benefits among patients with treatment-resistant major depressive disorder after

the administration of a single dose of ayahuasca [12]. Moreover, a randomized trial showed

that ayahuasca doses were associated with reductions in depressive symptoms in patients with

major depressive disorder, compared to placebo treatments [11].

Additionally, ayahuasca has been shown to elicit anti-neuroinflammatory properties [16]

and stimulate adult neurogenesis in vitro [17]. In this line, ayahuasca could be helpful for the

treatment of several neurological diseases well known to harbor inflammation in its physiopa-

thology [18], including chronic degenerative diseases and illnesses related to acute injury, such

as cerebral ischemia, multiple sclerosis, and Alzheimer’s disease (AD) [19, 20].

The EEG data studied here are from [21], from subjects who ingested ayahuasca. This study

observed slow-gamma power increases at the left Centro-parietal-occipital, left frontotem-

poral, and right frontal cortices. In contrast, fast-gamma increases were significant at the left

Centro-parieto-occipital, left frontotemporal, right frontal, and right parieto-occipital cortices

due to ayahuasca ingestion. As a result, this study concentrated solely on the changes in fre-

quency bands caused by the use of the psychedelic substance.

Despite the enormous therapeutic potential of ayahuasca, in most countries, it is an illegal

substance and only legalized for religious use, such as in Brazil. Therefore, few studies on

human beings are found in the literature, and more research is needed on how this substance

alters the brain and its mechanism of action.

The use of graph theory mathematical approaches gave intriguing insights into the intricate

network structure of the human brain, which is also related with pathological states [22–25].

Notably, complex networks have been employed as biomarkers for a variety of disorders [26,

27]. Furthermore, the community detection algorithm (also referred to as the clustering

graph) is a fundamental analysis technique that aims to identify densely connected structures

within complex networks [28–30]. Several studies have used complex network measurements

and community detection algorithms to detect brain activity in EEG data recently [31–33]

Because of the increased amount of data related to health, such as medical records, exams

of patients, and hospital resources, machine learning (ML) algorithms have become more

applicable, primarily for medical diagnosis [34–37], in order to provide more accurate and

automatic investigations of various diseases [38] and may be an important tool capable of

detecting acute and permanent abnormalities in the brain. In addition, many studies have uti-

lized machine learning algorithms to capture brain activity using raw EEG time series [39, 40],

the correlation between electrodes [41, 42], and complex network measures [23].

Also, in contrast to traditional statistical methods, the ML approach has the advantage that

it does not rely on prior assumptions (such as adequate distribution, independence of observa-

tions, absence of multicollinearity, and interaction problems) and is also well suited to analyze

and capture complex nonlinear relationships in data automatically. Nevertheless, new tech-

niques have emerged to assist in interpreting machine learning results, e.g., SHapley Additive
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Explanations (SHAP) values. Any machine learning algorithm may use this metric for identify-

ing and prioritizing features [43–45].

The purpose of this study is to determine whether it is possible to automatically detect the

changes in brain activity after intake of ayahuasca with machine learning methods using the

following data abstraction levels for the input: (A) raw EEG time series, (B) the correlation

between the EEG electrodes as used in (A) represented by a connectivity matrix, and (C) com-

plex network measures extracted from (B). In contrast to articles in the literature that use only

one of these levels of abstraction, this study uses all three levels. In addition, we define which

of these abstraction levels is most appropriate for capturing ayahuasca-induced brain changes.

The SHAP value method has also been shown to be more effective than the studies cited above

in identifying the best brain regions, the best connections between the brain regions, and the

best measures of complex networks, which can be used to interpret the effects of the psyche-

delic substance on the brain. A final result of this research was the creation of new measures

that have never been used before within the literature, which can be used as input to machine

learning algorithms to assess the size of community structures.

2 Materials and methods

The python code used for the analysis is available at https://github.com/Carol180619/Paper-

ayahuasca.git.

2.1 Data

The data used for this study has been made openly available by the Federal University of São

Carlos, Brazil [21]. Sixteen healthy male and female patients with prior ayahuasca experience

(eight women, mean 29.0 years; 12 men, mean 38.5 years) agreed (with written permission) to

consume this psychedelic substance while EEG recordings were made (The following exclu-

sion criteria were used: minors than the age of 21 years, personal history of psychiatric illness,

current use of any psychiatric medication, cardiovascular disease, and any neurological disor-

ders or brain damage in the previous year). All methodologies for this investigation were

approved by the Universidade Federal de São Paulo’s Ethical Committee, and the study was

carried out in compliance with available criteria for human hallucinogen research safety [46].

Patients were instructed to close their eyes and remain in a resting condition. A nurse

accompanied the experiment for its duration of 225 minutes. The recordings began 25 minutes

before ayahuasca consumption and ended 200 minutes afterward. The main compounds in

the brew were [21]: Dimethyltryptamine (DMT), DMTN-oxide (DMT-NO), N-methyltrypta-

mine (NMT), indoleacetic acid (IAA), 5-hydroxy-DMT (5-OH-DMT, or bufotenin), 5-meth-

oxy-DMT (5-MeO-DMT), Harmine, Harmol, Harmaline, Harmalol, THH, 7-hydroxy-

tetrahydroharmine (THH-OH), and 2-methyl-tetrahydro-beta- carboline (2-MTHBC). All

recordings were downsampled to 500 Hz, bandpass filtered between 0.5 and 150 Hz, and arti-

facts due to movements were removed. Recordings were made with 62 electrodes, following

the EEG electrode positions in the 10–10 system. These channels are: Fp1, Fz, F3, F7, FT9,

FC5, FC1, C3, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, P8, TP10, CP6, CP2, C4, T8, FT10, FC6,

FC2, F4, F8, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, FCz, C1, C5, TP7, CP3, P1, P5, PO7, PO3,

POz, PO4, PO8, P6, P2, CPz, CP4, TP8, FC4, FT8, F6, F2, AF4, AF8, O2, P4, C6, and C2 (see

in Appendix A (Fig 13) of S1 Appendix). It is worth mentioning that after using ayahuasca, all

individuals experienced notable alterations in their typical state of consciousness.

Further details are given in [21].

PLOS ONE Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0277257 December 16, 2022 3 / 26

https://github.com/Carol180619/Paper-ayahuasca.git
https://github.com/Carol180619/Paper-ayahuasca.git
https://doi.org/10.1371/journal.pone.0277257


2.2 Machine learning algorithm

2.2.1 Classification. In order to classify the (A) EEG time series, (B) the connectivity

matrices, and (C) the complex network measures, the support vector machine (SVM) [47]

algorithm was used. SVM has been used with superior results for the classification of complex

network measures before by other groups [48–50] and performed superior in our comparative

evaluation. In this analysis, we compared the following machine learning methods to classify

the complex network measures: Random forest (RF) [51], SVM [47], naive bayes (NB) [52],

multilayer perceptron (MLP) [53], stochastic gradient descent with linear models classifier

(SGD) [54], logistic regression (LR) [55] and extreme Gradient Boosting classifier [56]

(XGBoost). The results can be found in Appendix C in S1 Appendix.

A more robust deep learning (DL) algorithm from [41] (in which the model was named

tuned convolutional neural network) was also tested. The results using DL are in the Appendix

D in S1 Appendix.

2.2.2 Resampling and evaluation. The dataset was resampled by separating it into train-

ing (train) and test sets, with 25% of data composing the test set. Then, for a reliable model, a

k-cross validation was used [57], with k = 10 (value widely used in the literature [58–62]). A

hyper-parameter optimization called grid search was used here, similar to [63–67]. The hyper-

parameter optimization values used for each classifier models can be found in Appendix C in

S1 Appendix.

For evaluation, accuracy (Acc.) was used as the standard performance metrics, as is the

state-of-art in the literature [37, 68–71]. Since the problem here is a two-class (negative and

positive) classification problem, other metrics considered here are the measures of precision

and recall, also commonly used in the literature [72–75]. Precision (also called positive predic-

tive value) is the proportion of relevant instances among those retrieved. Whereas recall (also

called sensitivity) measures how well a classifier can predict positive examples (hit rate in the

positive class), here related with an effect of the ayahuasca. Another measure used here and

also used in literature [64, 76, 77] is the F1 score which is the harmonic mean of the recall and

precision [78]. For visualization of these two latter measures, the receiver operating character-

istic (ROC) curve is a standard method as it displays the relation between the rate of true posi-

tives and false positives. The area below this curve, called the area under the ROC curve

(AUC), has been widely used in classification problems [66, 68, 79, 80]. The value of the AUC

varies from 0 to 1, where the value of one corresponds to a classification result free of errors.

AUC = 0.5 indicates that the classifier is not able to distinguish the two classes; this result is

equal to the random choice. Furthermore, we consider the micro average of the ROC curve,

which computes the AUC metric independently for each class (calculate AUC metric for

healthy individuals, class zero, and separately calculate for unhealthy subjects, class one), and

then the average is computed considering these classes equally. The macro average is also used

in our evaluation, which does not consider both classes equally, but aggregates the contribu-

tions of the classes separately and then calculates the average.

Furthermore, we interpret the machine learning results using SHapley Additive exPlana-

tions (SHAP) values [81] to quantify the importance of the complex measures, connections of

brain regions, and location of electrodes for the classification result. This metric enables the

identification and prioritization of features and can be used with any machine learning algo-

rithm [43–45].

2.3 Input data for machine learning

The following three data abstraction levels were applied to a classification algorithm as

described in subsection 2.2 Machine learning algorithm: (2.3.1 EEG time series) the EEG time
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series (Fig 1), (2.3.2 Connectivity matrices) the connectivity matrix calculated by means of the

Pearson correlation of the EEG time series (Fig 2), and (2.3.3 Complex network measures) the

complex network measures calculated from the connectivity matrix (Fig 3).

2.3.1 EEG time series. The data was divided into three “time windows” (see Table 1). The

first window (25 minutes before ingestion until 50 minutes after ingestion of ayahuasca) was

Fig 1. Methodology of the subsection using raw EEG time series. For each participant, the EEG time series was split into three parts. Those

corresponding to the first window were labeled as class 0 (no effect of ayahuasca) and those corresponding to the second and third windows as class 1

(under the influence of ayahuasca), and then SVM was used. The objective was to determine which brain parts are most influenced by ayahuasca

consumption. The crucial areas discovered using the SHAP values approach are emphasized in the illustration.

https://doi.org/10.1371/journal.pone.0277257.g001
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Fig 2. Methodology of the subsection using connectivity matrices. For each of the time windows, the Pearson

correlation connectivity matrix was generated, and then they were classified with the SVM method considering the

first window as zero label (without ayahuasca) and the other two as one label (with ayahuasca). This analysis aimed to

verify the best connections of the brain areas used during ayahuasca use. The principal connection discovered using

the SHAP value approach is depicted in the picture.

https://doi.org/10.1371/journal.pone.0277257.g002
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Fig 3. Methodology of the subsection using complex network measures. The EEG time series is divided into three parts. For each of them, the

Pearson correlation was calculated. For each window, a connectivity matrix was generated (in the Fig, the connectivity matrix of the first window of the

first subject containing the 62 electrodes, the color bar containing the connection strength between these electrodes). A graph was formed for each of

them (in the Fig, the graph of this connectivity matrix has 62 nodes and the connection strength according to the color bar and the node size according

to its number of connections), and complex network measures are extracted from them.

https://doi.org/10.1371/journal.pone.0277257.g003
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defined as the “control”. This is reasonable as it is known from [21], that the blood plasma con-

centration of the main psychedelic compound DMT is low until 50 minutes after ingestion.

Windows two and three were both defined as thoroughly influenced by ayahuasca. The aya-

huasca-influenced time series were divided into two windows to enhance the quantity of data

points for the machine learning method. Even though the number of independent samples

(subjects) did not change, increasing the data points by splitting the time series is a common

machine learning approach [82, 83]. Even though the number of independent samples (sub-

jects) did not change, increasing the data points by splitting the time series is a standard

machine learning approach. Furthermore, in the following classification task, only two classes

will be labeled class zero (without ayahuasca) and labeled class one (with ayahuasca). The

scheme of this methodology is shown in Fig 1. All participants’ EEG time series were succes-

sively combined and stored in a 2D matrix to feed the data into the machine learning algo-

rithm. Each column represents an electrode, and each row represents the amplitude of each

time point of the EEG signal. For each of the three time windows, a 2D matrix was

constructed.

2.3.2 Connectivity matrices. The matrices of connectivity were calculated by the well

known Pearson correlation. It is a widely used and successfully approved measure to capture

the correlation of EEG electrodes [84–88].

The Pearson correlation was calculated for all electrode pairs resulting in three connectivity

matrices per participant (for each time window). Fig 2 illustrates the workflow of this

approach. The connectivity matrices were flattened into one vector to input the data into the

machine learning algorithm. Then, all vectors were sequentially merged into a 2D matrix.

Each column represents a connection between two brain regions, and each row represents a

subject. Such a 2D matrix was generated for each of the three time windows.

2.3.3 Complex network measures. For each connectivity matrix (see subsection 2.3.2

Connectivity matrices), a graph was generated to extract different complex network measures.

The complex network measures were stored in a matrix to input the data into the machine

learning algorithm. Each column represents a complex network measure, and each row a sub-

ject. Such a 2D matrix was generated for each of the three time windows. The following com-

plex network measures were calculated: Assortativity [89, 90], average path length (APL) [91],

betweenness centrality (BC) [92], closeness centrality (CC) [93], eigenvector centrality (EC)

[94], diameter [95], hub score [96], average degree of nearest neighbors [97] (Knn), mean

degree [98], second moment degree (SMD) [99], entropy degree [100], transitivity [101, 102],

complexity, k-core [103, 104], eccentricity [105], density [106], and efficiency [107]. Further-

more, newly developed metrics reflecting the number of communities in a complex network

are used in this paper.

Furthermore, newly developed metrics reflecting the number of communities in a complex

network are used in this paper. We perform the community detection algorithms to find the

largest community, then calculate the average path length within this community and receive a

single value as a result (that will be used to feed ML algorithm). The community detection

algorithms used were:

Table 1. Definition of time windows of the EEG signal. Window 1 is considered the control (without effect of aya-

huasca), window 2 and 3 are considered as recordings under the influence of ayahuasca.

Time window Ingestion of ayahuasca at t = 0 minutes

1 -25 to 50 minutes

2 50 to 125 minutes

3 125 to 200 minutes

https://doi.org/10.1371/journal.pone.0277257.t001
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• Fastgreedy community (FC) is defined in [108] as a hierarchical agglomerative clustering

algorithm aimed at maximizing the modularity measure defined in [109].

• Infomap community (IC) Infomap community (IC) described in [110], the purpose behind

this technique is to exploit the dynamics of random walks. This is accomplished by employ-

ing Huffman’s method [111] and then calculating the minimization of the map equation to

determine the number of communities [110].

• Leading eigenvector community (LC) is defined in [112]. It aims to calculate the eigenvector

of the modularity matrix for the largest positive eigenvalue and then separate the vertices

into two communities based on the sign of the corresponding element in the eigenvector.

• Label propagation community (LPC) is defined in [113]. It is an optimization algorithm

[114] in which, at first, each node in the network has a label indicating its assignment, and

then each node updates its label according to the label with the maximum number in its

neighbors. This process is repeated until the network reaches a stable state and nodes with

the same class are considered to belong to the same community. [115].

• Edge betweenness community (EBC) is defined in [109] is a divisive model based on the BC.

At each iteration, this measure is calculated for all edges, and the one with the highest value

of this measure is eliminated until the network contains N elements resulting in a hierarchi-

cal distribution of communities. The one with the highest modularity is adopted.

• Spinglass (SPC) is defined in [116] this algorithm considers the spin state of nodes as com-

munities and tries to minimize the spin energy until it finds a ground state of the spin-glass

model [117].

• Multilevel community (ML) Multilevel community (ML) is a greedy optimization method

using modularity and is defined in [118].

Since the community detection algorithms were combined with the average path length, we

extended the abbreviations by the letter “A” as follows: AFC, AIC, ALC, ALPC, AEBC, ASPC,

and AMC.

Fig 3 depicts the entire workflow.

3 Results

The highest classification performance was obtained using the connectivity matrices with an

accuracy of 92%, followed by the EEG time series (88%) and the complex network measures

(83%) (see Table 2). The following subsections 3.1 EEG time series, 3.2 Connectivity matrices

and 3.3 Complex network measures contain the results in more detail.

Table 2. Performances of the SVM classifier for the different data types used in this paper. The best performance is highlighted in bold. The classification of connectiv-

ity matrices best captured the changes in the brain due to ayahuasca.

Type of data Subset AUC Acc. F1 score Recall Precision

EEG time series Train 0.87 0.89 0.88 0.87 0.89

Test 0.85 0.88 0.86 0.85 0.86

Connectivity matrix Train 0.92 0.94 0.93 0.92 0.96

Test 0.88 0.92 0.90 0.88 0.94

Complex measure Train 0.79 0.81 0.79 0.79 0.78

Test 0.75 0.83 0.78 0.75 0.90

https://doi.org/10.1371/journal.pone.0277257.t002
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3.1 EEG time series

The performance of the test sample using the EEG time series was mean AUC of 0.85, mean

precision of 0.88, mean F1 score of 0.86, mean recall of 0.85, and mean accuracy of 0.86. The

precision measure is related to the positive class (with ayahuasca). Since the precision measure

was slightly higher than the recall measure, the model can better detect the presence of ayahua-

sca instead of the absence of it.

In Fig 4, the confusion matrix (Fig 4A), the learning curve (Fig 4B), and the ROC curve (Fig

4C) are plotted.

The learning curve evaluates the predictability of the model by varying the size of the train-

ing set [45]. Fig 4B shows that the highest accuracy in the test sample can only be achieved

when the entire database is used.

Not all electrodes of the EEG recording were equally important for the classification.

According to the SHAP values, the most important region for the model was T7, located in the

temporal region (see Fig 5). In order of importance, this region was followed by FC1, Fp1, P5,

Fig 4. Machine learning results using the EEG time series as input data. A) Confusion matrix indicating a true negative rate of 92.1% (blue according

to the color bar) and a true positive rate of 78.3% (orange according to the color bar). B) Learning curve for the training accuracy (blue) and for test

accuracy (green). C) ROC curve of class 0 (without ayahuasca) and class 1 (with ayahuasca). The gray dotted curve is the macro-average accuracy (area

under curve = 0.85) and the pink one the random classifier.

https://doi.org/10.1371/journal.pone.0277257.g004
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and Fz, located between frontal and central, frontal and parietal, parietal and frontal, respec-

tively (see Fig 6A). In addition, Fig 6B shows details of the impact of each feature on the

model. Positive SHAP values are shown when the presence of ayahuasca is detected, and nega-

tive SHAP values are shown when the absence of ayahuasca is detected. The colors indicate

whether the feature value was low (blue) or high (red). Since the feature consists of the ampli-

tudes of the EEG time series, it can be seen that for T7, the low amplitudes (blue dots) were

important to detect the absence of ayahuasca (negative SHAP values), and the high amplitudes

(red dots) were important to detect the presence of ayahuasca (positive SHAP values).

3.2 Connectivity matrices

For the connectivity matrices, the test sample performance was a mean AUC of 0.88, mean

accuracy of 0.92, mean F1 score of 0.90, mean recall of 0.88, and mean precision of 0.94.

Similar to the previous subsection 3.1 EEG time series, the precision measure was higher

than the recall measure and therefore the model can better detect the presence of ayahuasca. In

Fig 7, the confusion matrix (Fig 7A), the learning curve (Fig 7B), and the ROC curve (Fig 7C)

are plotted. Similar to EEG time series, the learning curve for the connectivity matrices shows

that the highest accuracy in the test sample can only be achieved when the entire database is

used.

Fig 5. Feature importance ranking for SVM classifier being the brain regions ranked in descending order of importance. Brain region T7 is most

important to classify the effect of ayahuasca. A) Feature ranking based on the average of absolute SHAP values over all subjects considering both classes

(gray:without ayahuasca, cyan: with ayahuasca). B) Same as A) but additionally showing details of the impact of each feature on the model.

https://doi.org/10.1371/journal.pone.0277257.g005
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In order to reveal the importance of the brain connections, the SHAP values were used as

in the preview subsection 3.1 EEG time series. The results are shown in Fig 8. From that the

most important connection was between F3 (frontal region) and PO4 (between parietal and

occipital region). In addition, in Fig 8B it can be seen that for the connection between F3 and

Fig 6. The five most important brain regions considering EEG time series as input data. A)—Sagittal left plane

showing the brain region for the channel T7 and P5. B) Axial dorsal plane showing the brain regions Fz, Fp1 and FC1.

The brain plot was made using Braph tool [119], based on the coordinates in [120, 121].

https://doi.org/10.1371/journal.pone.0277257.g006
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PO4, low values of correlation (blue dots) were important for detecting the absence of ayahua-

sca (negative SHAP values), and high values of correlation (red dots) were important for

detecting the presence of ayahuasca (positive SHAP values).

The location in the brain can be seen in Fig 9.

3.3 Complex network measures

The test sample performance using the complex network measures was a mean AUC of 0.75,

mean accuracy of 0.83, mean F1 score of 0.78, mean recall of 0.75, and mean precision of 0.90.

Similar to the previous subsections 3.1 EEG time series and 3.2 Connectivity matrices, the

precision measure was higher than the recall measure, and therefore the model can better

detect the presence of ayahuasca.

Fig 7. Machine learning results using the connectivity matrices as input data. A) Confusion matrix indicating a true negative rate of 75% (orange

according to the color bar) and a true positive of 100% (blue according to the color bar). B) Learning curve for the training accuracy (blue) and for test

accuracy (green). C) ROC curve of class 0 (without ayahuasca) and class 1 (with ayahuasca). The gray dotted curve is the macro-average accuracy (area

under curve = 0.88) and the pink one the random classifier.

https://doi.org/10.1371/journal.pone.0277257.g007
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In Fig 10, the confusion matrix (Fig 10A), the learning curve (Fig 10B), and the ROC curve

(Fig 10C) are plotted. Again, the entire database is necessary in order to get the highest

accuracy.

From the SHAP values in Fig 11 it can be seen that the most important measure for the

model was the CC, followed by assortativity, and the newly introduced measures ASC and

ASPC. In addition, in Fig 11B can be seen that for the CC measure, low values of this metric

(blue dots) were important for detecting the absence of ayahuasca (negative SHAP values),

and high values of this metric (red dots) were important for detecting the presence of ayahua-

sca (positive SHAP values).

4 Discussion

In this paper, we aimed to answer the question if it is possible to automatically detect brain

activity changes due to ayahuasca using machine learning and which features are most impor-

tant and could act as biomarkers.

Our results show that it is possible to automatically detect the changes due to ayahuasca.

The classification accuracy was above 75% for all three data abstraction levels. The classifica-

tion accuracy of connectivity matrices was higher than the raw EEG time series, suggesting

that connection changes are more important between brain regions than within brain regions.

Fig 8. Feature importance ranking for SVM classifier being the connections of brain regions ranked in descending order of importance. The

connection between the regions PO4 and F3 is the most important to classify the effect of ayahuasca. A) Feature ranking based on the average of

absolute SHAP values over all subjects considering both classes (gray: without ayahuasca, cyan: with ayahuasca). B) Same as A) but additionally showing

details of the impact of each feature on the model.

https://doi.org/10.1371/journal.pone.0277257.g008
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This result is important since the connectivity matrices improved the accuracy and produced

efficiency gains, such as reduced data storage and faster machine learning training. This would

be especially useful for larger datasets, where raw time series may be very costly, for example,

in hospital diagnosis systems.

4.1 EEG time series

The raw EEG time series analysis revealed that the frontal and the temporal lobe were the most

affected brain regions. In line with that, studies using single photon emission computed

Fig 9. The most important connection of brain regions considering connectivity matrices as input data. Axial dorsal plane showing the brain

regions connection between F3 and PO4. The brain plot was made using Braph tool [119], based on the coordinates in [120, 121].

https://doi.org/10.1371/journal.pone.0277257.g009
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tomography (SPECT) have reported that ayahuasca increases blood perfusion in the frontal

regions of the brain, more specifically, the insula, left nucleus accumbens, left amygdala, para-

hippocampal gyrus, and left the subgenual area [16, 122]. Furthermore, works using functional

magnetic resonance imaging have observed activation in the brain’s occipital, temporal, and

frontal areas [10, 123]. These regions are related to introspection, emotional processing, and

the therapeutic effects of traditional antidepressants [124] and most interestingly, it may also

affect motor and cognitive functions in other neurological disorders, such as Parkinson’s dis-

ease and Alzheimer’s disease, respectively [125, 126].

4.2 Connectivity matrices

The correlation between the left frontal cortex (F3) and right parietal-occipital (PO4) was most

important in terms of brain connections.

[127] showed that synchronization in the gamma band between the parietal-occipital and

frontal cortices was present during face recognition tasks. Since the EEG time series data used

Fig 10. Machine learning results using the complex network measures as input data. A) Confusion matrix indicating a true negative rate of 50%

(orange according to the color bar) and a true positive rate of 100% (blue according to the color bar). B) Learning curve for the training accuracy (blue)

and for test accuracy (green). C) ROC curve of class 0 (without ayahuasca) and class 1 (with ayahuasca). The gray dotted curve is the macro-average

accuracy (area under curve = 0.75) and the pink one the random classifier.

https://doi.org/10.1371/journal.pone.0277257.g010
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in this work only contained the gamma band, the P04-F3 connection could point to similar

cognitive processes in the subjects during ayahuasca-mediated visual hallucinations.

4.3 Complex network measures

The most important complex network measure was CC. CC is a centrality measure that can be

defined as the inverse of the average length of the shortest path from one node to all other

nodes in the network [128]. The idea is that important nodes participate in many shortest

paths within a network and, therefore, play an important role in the flow of information in the

brain [93]. The CC was also the most important measure in other papers related to the differ-

entiation of patients with AD [129–132]. In these papers, CC was shown to decrease due to

AD disease, while ayahuasca ingestion increased the median value of this measure (see Fig 12).

The second most important complex network measure was assortativity. This measure

refers to the resilience of networks [90]. A positive assortativity coefficient indicates a network

with a resilient core due to the interconnected nodes of high degree [128]. This measure was

also associated with AD in several works [133, 134] whose results showed an increase in the

assortativity value in contrast to what was found here, where with the use of ayahuasca, the

assortativity value (median) decreased (see on Fig 12). It should be noted that although the

median value decreased, the upper confidence interval of the distribution increased.

In summary, the results suggest a possible relationship between ayahuasca and AD in terms

of the brain network, indicating a therapeutic potential. Indeed, a possible mechanism of how

Fig 11. Feature importance ranking for SVM classifier being the features ranked in descending order of importance. The CC measure is the most

important to classify the effect of ayahuasca. A) Feature ranking based on the average of absolute SHAP values over all subjects considering both classes

(gray: without ayahuasca, cyan: with ayahuasca). B) Same as A) but additionally showing details of the impact of each feature on the model.

https://doi.org/10.1371/journal.pone.0277257.g011
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ayahuasca acts against AD was described in [19]. According to this, the ayahuasca compound

dimethyltryptamine (DMT) agonizes the sigma 1 receptor (Sig-1R) and thereby regulates

endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR), which are thought

to play a crucial role in neuropsychiatric diseases such as AD.

The seven measures developed here concerning community detection are ranked among

the twenty most important measures for classification, with ALC ranking third (see Fig 11).

ALC is associated with the size of the largest community found by the leading eigenvector

community (LC) detection algorithm. This metric shows increased values (compared to con-

trols) in communities with larger path lengths after the use of ayahuasca (Fig 11B), indicating

communities with larger paths after using this psychedelic. Larger brain communities were

also found in [135] after the use of ayahuasca. There are two contrasting concepts in the brains

of large vertebrates: functional segregation (or specialization) and integration (or distributed

processes) [136, 137]. Larger communities also indicate that the balance between functional

segregation and integration in the brain was disrupted. This suggests that the distribution of

information is slower.

Overall, the classification was successful by considering the complete set of measures rather

than just one single measure. As shown in Fig 12, even the most important measures CC and

assortativity, did not show much difference between the first window (without ayahuasca) and

the other windows (with ayahuasca). Together with the other less important measures, how-

ever, the machine learning method was able to distinguish both classes successfully. This leads

to the conclusion that a single feature is insufficient as a biomarker, while the different features

used in this work may serve as a biomarker.

5 Conclusion

In summary, the results obtained in our study demonstrated that the application of machine

learning methods was able to detect changes in brain connectivity during ayahuasca use auto-

matically. Additionally, we demonstrated that the connectivity matrices are the best abstrac-

tion level to detect brain changes caused by this psychedelic.

Fig 12. Boxplot of the closeness centrality and assortativity measures. These measures were calculated for all subjects in the first, second and third

windows (respectively in pink, green and blue). It can be seen that the median of the closeness centrality measure (central bar in the boxplot) increased

with the use of ayahuasca. The median of the assortativity, in contrast, decreased with the use of ayahuasca.

https://doi.org/10.1371/journal.pone.0277257.g012
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At level abstraction A, our findings suggest that this substance affects important brain

regions related to cognitive, psychiatric, and motor functions. These effects may alleviate dif-

ferent symptoms of diseases affecting the brain.

At level abstraction B, the connection between F3 and PO4 is the most important while

using ayahuasca according to our classifier model, a significant discovery in psychedelic litera-

ture. This connection may point to a cognitive process similar to face recognition in individu-

als during ayahuasca-mediated visual hallucinations.

Concerning the complex network measures at level abstraction C, CC, assortativity, and

one of the new measures developed here, ALC, capture the best brain changes caused by aya-

huasca. The new ALC measure inferred that larger communities are associated with this psy-

chedelic and the opposite in its absence. Larger communities suggest that the distribution of

information is slower with the use of this substance. Therefore, the present study’s findings

support that cortical brain activity becomes more entropic under psychoactive substances.

[138–140]. There is, however, evidence that psychedelics do not simply make the brain more

random, but after the typical organization of the brain is disrupted, strong and topologically

far-reaching functional connections emerge which are not present in the natural state of mind.

While our methodology has proven effective, it is focused on the acute evaluation of psyche-

delics. Consequently, more research is necessary to determine how psychedelics affect the

functional connectivity of the brain over the long term using our workflow.

In summary, we have developed a robust computational workflow that provides insights

into the mechanism of action of ayahuasca and the interpretability of how it modifies brain

networks.

Finally, the same methodology applied here may help interpret EEG time series from

patients who consumed other psychedelic drugs, such as pure DMT [141]. In future work, we

aim to apply this workflow to recordings from our laboratory using in vitro neuronal networks

on microelectrode arrays to study the effects of psychedelics at a single network level. Thus,

regardless of the equipment used to collect the data, we would like to verify whether the same

method used here can detect changes due to different psychedelics.
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14. de Lima Osério F, de Macedo LRH, de Sousa JPM, Pinto JP, Quevedo J, de Souza Crippa JA, et al.

The therapeutic potential of harmine and ayahuasca in depression: Evidence from exploratory animal

and human studies. The ethnopharmacology of ayahuasca. 2011; 75:85.

15. Frood A. Ayahuasca psychedelic tested for depression. Nature News. 2015;. https://doi.org/10.1038/

nature.2015.17252

PLOS ONE Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0277257 December 16, 2022 20 / 26

https://doi.org/10.1080/02791072.1998.10399709
http://www.ncbi.nlm.nih.gov/pubmed/9924839
https://doi.org/10.1080/02791072.2020.1789247
https://doi.org/10.1080/02791072.2020.1789247
http://www.ncbi.nlm.nih.gov/pubmed/32748709
https://doi.org/10.1016/j.jep.2010.02.013
http://www.ncbi.nlm.nih.gov/pubmed/20219660
https://doi.org/10.1016/j.jep.2020.112743
http://www.ncbi.nlm.nih.gov/pubmed/32171895
https://doi.org/10.1016/j.pnpbp.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22691716
https://doi.org/10.1038/s41598-020-61169-x
https://doi.org/10.1038/s41598-020-61169-x
http://www.ncbi.nlm.nih.gov/pubmed/32139811
https://doi.org/10.1017/S0033291718001356
https://doi.org/10.1017/S0033291718001356
http://www.ncbi.nlm.nih.gov/pubmed/29903051
https://doi.org/10.1097/JCP.0000000000000436
https://doi.org/10.1097/JCP.0000000000000436
http://www.ncbi.nlm.nih.gov/pubmed/26650973
https://doi.org/10.1007/978-3-030-55688-4_2
https://doi.org/10.1038/nature.2015.17252
https://doi.org/10.1038/nature.2015.17252
https://doi.org/10.1371/journal.pone.0277257
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68. Mincholé A, Rodriguez B. Artificial intelligence for the electrocardiogram. Nature medicine. 2019; 25

(1):22–23. https://doi.org/10.1038/s41591-018-0306-1 PMID: 30617324

69. Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G. High-accuracy prostate cancer pathology using

deep learning. Nature Machine Intelligence. 2020; 2(7):411–418. https://doi.org/10.1038/s42256-020-

0200-7

70. Dukart J, Weis S, Genon S, Eickhoff SB. Towards increasing the clinical applicability of machine learn-

ing biomarkers in psychiatry. Nature Human Behaviour. 2021; 5(4):431–432. https://doi.org/10.1038/

s41562-021-01085-w PMID: 33820977

71. Park Y, Kellis M. Deep learning for regulatory genomics. Nature biotechnology. 2015; 33(8):825–826.

https://doi.org/10.1038/nbt.3313 PMID: 26252139

72. Ito Y, Unagami M, Yamabe F, Mitsui Y, Nakajima K, Nagao K, et al. A method for utilizing automated

machine learning for histopathological classification of testis based on Johnsen scores. Scientific

reports. 2021; 11(1):1–11. https://doi.org/10.1038/s41598-021-89369-z PMID: 33967273

73. Kim J, Lee J, Park E, Han J. A deep learning model for detecting mental illness from user content on

social media. Scientific reports. 2020; 10(1):1–6. https://doi.org/10.1038/s41598-020-68764-y PMID:

32678250

74. Li Y, Nowak CM, Pham U, Nguyen K, Bleris L. Cell morphology-based machine learning models for

human cell state classification. NPJ systems biology and applications. 2021; 7(1):1–9. https://doi.org/

10.1038/s41540-021-00180-y PMID: 34039992

75. Yu X, Pang W, Xu Q, Liang M. Mammographic image classification with deep fusion learning. Scientific

Reports. 2020; 10(1):1–11. https://doi.org/10.1038/s41598-020-71431-x PMID: 32873872

76. Berryman S, Matthews K, Lee JH, Duffy SP, Ma H. Image-based phenotyping of disaggregated cells

using deep learning. Communications Biology. 2020; 3(1):1–9. https://doi.org/10.1038/s42003-020-

01399-x PMID: 33188302

77. Yang S, Kweon J, Roh JH, Lee JH, Kang H, Park LJ, et al. Deep learning segmentation of major ves-

sels in X-ray coronary angiography. Scientific reports. 2019; 9(1):1–11. https://doi.org/10.1038/

s41598-019-53254-7 PMID: 31729445

78. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level

arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.

Nature medicine. 2019; 25(1):65–69. https://doi.org/10.1038/s41591-018-0268-3 PMID: 30617320

79. Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric

disorders: a systematic review. Molecular Psychiatry. 2021; 26(1):70–79. https://doi.org/10.1038/

s41380-020-0825-2 PMID: 32591634

80. Patel D, Kher V, Desai B, Lei X, Cen S, Nanda N, et al. Machine learning based predictors for COVID-

19 disease severity. Scientific Reports. 2021; 11(1):1–7. https://doi.org/10.1038/s41598-021-83967-7

PMID: 33633145

PLOS ONE Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0277257 December 16, 2022 23 / 26

https://doi.org/10.1038/s41598-020-73107-y
https://doi.org/10.1038/s41598-020-73107-y
http://www.ncbi.nlm.nih.gov/pubmed/33037248
https://doi.org/10.1038/s41598-017-03623-x
http://www.ncbi.nlm.nih.gov/pubmed/28607441
https://doi.org/10.1038/s41746-019-0128-7
http://www.ncbi.nlm.nih.gov/pubmed/31304398
https://doi.org/10.1038/s41598-019-44022-8
http://www.ncbi.nlm.nih.gov/pubmed/31147560
https://doi.org/10.1038/s41598-021-83020-7
https://doi.org/10.1038/s41598-021-83020-7
http://www.ncbi.nlm.nih.gov/pubmed/33564090
https://doi.org/10.1038/s41746-020-00365-5
http://www.ncbi.nlm.nih.gov/pubmed/33293570
https://doi.org/10.1038/s41598-021-88172-0
http://www.ncbi.nlm.nih.gov/pubmed/33903608
https://doi.org/10.1038/s41598-019-57083-6
http://www.ncbi.nlm.nih.gov/pubmed/31937795
https://doi.org/10.1038/s41591-018-0306-1
http://www.ncbi.nlm.nih.gov/pubmed/30617324
https://doi.org/10.1038/s42256-020-0200-7
https://doi.org/10.1038/s42256-020-0200-7
https://doi.org/10.1038/s41562-021-01085-w
https://doi.org/10.1038/s41562-021-01085-w
http://www.ncbi.nlm.nih.gov/pubmed/33820977
https://doi.org/10.1038/nbt.3313
http://www.ncbi.nlm.nih.gov/pubmed/26252139
https://doi.org/10.1038/s41598-021-89369-z
http://www.ncbi.nlm.nih.gov/pubmed/33967273
https://doi.org/10.1038/s41598-020-68764-y
http://www.ncbi.nlm.nih.gov/pubmed/32678250
https://doi.org/10.1038/s41540-021-00180-y
https://doi.org/10.1038/s41540-021-00180-y
http://www.ncbi.nlm.nih.gov/pubmed/34039992
https://doi.org/10.1038/s41598-020-71431-x
http://www.ncbi.nlm.nih.gov/pubmed/32873872
https://doi.org/10.1038/s42003-020-01399-x
https://doi.org/10.1038/s42003-020-01399-x
http://www.ncbi.nlm.nih.gov/pubmed/33188302
https://doi.org/10.1038/s41598-019-53254-7
https://doi.org/10.1038/s41598-019-53254-7
http://www.ncbi.nlm.nih.gov/pubmed/31729445
https://doi.org/10.1038/s41591-018-0268-3
http://www.ncbi.nlm.nih.gov/pubmed/30617320
https://doi.org/10.1038/s41380-020-0825-2
https://doi.org/10.1038/s41380-020-0825-2
http://www.ncbi.nlm.nih.gov/pubmed/32591634
https://doi.org/10.1038/s41598-021-83967-7
http://www.ncbi.nlm.nih.gov/pubmed/33633145
https://doi.org/10.1371/journal.pone.0277257


81. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st

international conference on neural information processing systems; 2017. p. 4768–4777.

82. Cerqueira V, Torgo L, Mozetič I. Evaluating time series forecasting models: An empirical study on per-

formance estimation methods. Machine Learning. 2020; 109(11):1997–2028. https://doi.org/10.1007/

s10994-020-05910-7

83. Bouktif S, Fiaz A, Ouni A, Serhani MA. Optimal deep learning lstm model for electric load forecasting

using feature selection and genetic algorithm: Comparison with machine learning approaches. Ener-

gies. 2018; 11(7):1636. https://doi.org/10.3390/en11071636

84. Rojas GM, Alvarez C, Montoya CE, de la Iglesia-Vayá M, Cisternas JE, Gálvez M. Study of resting-
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