Skip to main content
. 2022 Dec 16;17(12):e0277257. doi: 10.1371/journal.pone.0277257

Table 2. Performances of the SVM classifier for the different data types used in this paper.

The best performance is highlighted in bold. The classification of connectivity matrices best captured the changes in the brain due to ayahuasca.

Type of data Subset AUC Acc. F1 score Recall Precision
EEG time series Train 0.87 0.89 0.88 0.87 0.89
Test 0.85 0.88 0.86 0.85 0.86
Connectivity matrix Train 0.92 0.94 0.93 0.92 0.96
Test 0.88 0.92 0.90 0.88 0.94
Complex measure Train 0.79 0.81 0.79 0.79 0.78
Test 0.75 0.83 0.78 0.75 0.90