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Abstract

Substance use disorder (SUD) is associated with severe health and social consequences. Continued 

drug use results in alterations of circuits within the mesolimbic dopamine system. It is critical to 

observe longitudinal impacts of SUD on neural activity in vivo to identify SUD predispositions, 

develop pharmaceuticals to prevent overdose, and help people suffering from SUD. However, 

implicated SUD associated areas are buried in deep brain which makes in vivo observation 

of neural activity challenging. The gradient index (GRIN) lens can probe these regions in 

mice and rats. In this short communications review, we will discuss how the GRIN lens can 

be coupled with other technologies such as miniaturized microscopes, fiberscopes, fMRI, and 

optogenetics to fully explore in vivo SUD research. Particularly, GRIN lens allows in vivo 
observation of deep brain regions implicated in SUD, differentiation of genetically distinct 

neurons, examination of individual cells longitudinally, correlation of neuronal patters with SUD 

behavior, and manipulation of neural circuits.
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1.1 Introduction

Substance use disorder (SUD) involves chronic drug use [1] and can result in inabilities to 

meet responsibilities, brain damage, and overdose [2]. Researchers have used animal models 

to explore neural correlates of SUD and identify hallmarks such as “titrating” internal drug 
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level [3], escalation [4], withdrawal [5], and drug-seeking [6]. Chronic SUD alters circuits 

within the mesolimbic system [7] such as nucleus accumbens (NAc) [8], amygdala [9], 

prefrontal cortex (PFC) [10], and hypothalamus [11]. Ideal technology for in vivo recording 

necessitates observation of deep brain regions, differentiation of genetically distinct cell 

types, longitudinal single-neuron tracking, and correlation of activity with behavior. In this 

short communication, we discuss how the gradient index (GRIN) lens can be implanted and 

used to achieve these criteria.

1.2 In Vivo Recording

Researchers have combined drug self-administration (SA) with in vivo recording 

technologies to correlate neural activity with behavior. Different techniques are useful for 

different circumstances and have pros and cons (Table 1). For instance, electrophysiology 

uses wires (steel, tungsten, platinum-iridium, etc.) to measure voltage changes in the 

extracellular environment. These act as a method to determine single-cell ‘spikes’ at high 

temporal resolution in deep brain regions [12, 13]. Neuronal subtypes are identified by 

distinct waveforms [14]. Drawbacks include data acquisition limited by channels, delicate 

microwires, and inability to differentiate between electrochemically similar neurons without 

optical manipulations [15]. Expression of immediate early gene C-fos labels large active 

neuronal populations and can be combined with transgenic animals [16, 17] at high 

spatial resolution but low temporal resolution [18] and activity does not always trigger fos 
expression [19]. Fast-scan cyclic voltammetry detects neurotransmission based on voltage 

oxidation at high temporal resolution in deep brain regions for specific neurotransmission 

studies [20, 21]. However, it cannot distinguish single neurons and can be clouded by high 

background current [22]. Fiber photometry quickly detects changes in population activity 

[23] using different types of sensors from deep brain regions [24] at axon terminals [25] and 

differentiates genetics at low cost [26] but lacks single-cell resolution [27]. The GRIN lens 

assists in vivo imaging in deep brain regions [28], using transgenic animals [29], and cost-

effective open-source devices like miniaturized microscopes (miniscopes) [30–33] to record 

hundreds of individual neurons in vivo (Figure 1A) over months [34] which can be difficult 

to analyze. Neuron activity can be correlated with deep learning behavioral analyses [35], 

and optically manipulated with another LED without additional fibers [36]. However, care 

must be taken because physically damaging the lens or photobleaching neurons obscures 

activity.

1.3 GRIN lens overview

Light of a particular wavelength is transmitted from a source (e.g., LED) through a filter 

and dichroic mirror downward through the GRIN lens towards samples [37]). Active cells 

emit visible light in response to specific wavelengths and relay though the same GRIN 

lens towards a sensor/objective (Figure 1A) [38]. Traditional microscopy enhances signal 

visibility by refracting light through glass and transmits signals from glass to air by focusing 

light to a point [39]. The GRIN lens is crafted to refract light within one continuous glass 

tube to a single focal point outside of the skull (Figure 1B) [40, 41].
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Without the GRIN lens light cannot pass deep tissue, and visualization > ~1mm [42] is 

restricted to ex vivo. Combining GRIN lens with 1-photon [34, 35, 43, 44] and 2-photon 

[45] excitation techniques helps reach target areas. Additionally, commercial GRIN lenses 

made from thallium-containing glass and salt melts can leach toxins but bio-compatible 

coatings reduce toxic-effects without dropping image quality [41, 46].

1.4 Samples of GRIN lens use in the field

1.4.1 GRIN Lens Combined with Miniscope Technology

Miniscope development revolutionized in vivo neuronal detection [34, 47, 48]. Originally, 

miniscopes used fibers to transmit light away from the organism [49] but have 

compartmentalized [50]. This decreased cost for behavioral microscopy and coincided with 

open-source miniscopes [31, 33, 50]. Miniscope and GRIN lens combination allows for 

single-cell visualization in deep regions such as NAc [34], and ventral tegmental area 

[43]. Potential GRIN lens limitations include out-of-focus fluorescence and poor optical 

sectioning (i.e., the ability to resolve samples embedded in tissue from noise [51], but are 

attenuated using an electrowetting lens to adjust the focal point [52, 53]. Motion blur can 

be adjusted in post-collection processes [34, 47, 48]. Major GRIN lens benefits involve 

targeting populations while preserving individualistic neural data. To target specific cell 

types transgenic animals can be bred to express cre-recombinase [54] in a multitude of cell 

types [55] and receptors such as μ-opioid [56], DRD1-[57], DRD2-[58], and other receptors 

[59].

An example experiment using cre-dependent viruses (e.g., GCaMP) injected into NAc 

(Figure 1A). In a DRD1-iCre rat only D1- expressing cells emit fluorophores when 

active and illuminated with a specific frequency [34]. Multiple genetic experiments using 

dual-color imaging through one GRIN lens [60] inject two spectrally distinct viruses: 

green-emitting cre-dependent GCaMP labels D1 cells and non-cre dependent red-emitting 

TdTomato [61] labels all cells. Intermittently shining distinct lights onto cells induces 

distinct fluorescence. Post-processing distinguishes D1 cells from remaining population. 

Deep learning analyses correlate cell-type specific activity associated with behavioral 

sequences [35] and can be theoretically applied to drug use during miniscope imaging [44, 

62].

Optogenetic tools for excitation/inhibition can be integrated with the GRIN lens [36, 63]. 

Optogenetics use viruses containing proteins for excitation/inhibition of cells in response 

to specific wavelengths [64, 65]. Light optically manipulates neurons and resulting activity 

changes pass back to visualize activity in vivo. GRIN lens-coupled techniques can be 

applied in future studies to visualize neuronal progression throughout drug SA, abstinence, 

and relapse which have been pioneered using other in vivo techniques but can be adapted 

using GRIN lenses to record more neurons over longer periods of time.

1.4.2 GRIN lens in tandem with fMRI and fiberscope

An alternative GRIN lens approach is in conjunction with functional magnetic resonance 

imaging (fMRI) and a fiberscope. fMRI measures whole brain activity based on changes in 
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cerebral blood flow [66]. A fiberscope uses calcium signaling to visualize neurons through 

an implanted GRIN lens, but relays towards CMOS-sensor [67, 68]. Researchers can use 

fiberscopes as a control for fMRI signal to understand effects of drug-associated cues 

across brain regions. For example, NAc and PrL are interconnected [69] and implicated 

in SUD [70, 71]. Following lens implants, animals would be trained for drug SA paired 

with a specific cue (e.g., a tone or odor). Animals would be placed in an fMRI (whole-

brain) while asleep or head-fixed but awake as the animal is re-exposed to drug cues and 

fiberscope imaging (single-cell) would simultaneously carry signals outside of the fMRI 

[72]. Variations in drug-associated cue signals between the imaging techniques, PrL vs. 

NAc, awake vs. asleep, and correlations with relevant limbic brain regions are also possible.

1.5 Future Directions

The GRIN lens enables a wide range of possibilities for future deep-brain microscopy. New 

techniques and tools can extract precise neurophysiological information such as sensors 

which detect changes in endocannabinoid [73], serotonin [74], dopamine [75], or voltage 

[76]. A novel “clear optically matched panoramic access channel technique (COMPACT) 

works by inserting a GRIN lens into an implanted tube which can be adjusted dorsoventrally 

to capture refracted light [77]. This method reduces GRIN lens scar tissue and allows for 

multiple within-subject mesolimbic targets implicated in SUD (i.e., PrL and NAc [78]). 

Overall, the GRIN lens provides powerful research and technological developments to 

ultimately help people suffering from SUD.
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Figure 1A: 
Depiction GRIN lens+ miniscope in vivo imaging. Miniscope is head mounted to a baseplate 

and allows for freely animal movement. A blue LED is triggered and light is reflected by 

a dichroic mirror into brain via the GRIN lens (see also, Figure 1b). Neurons infected with 

GCaMP emit green fluorescence while active in response to blue light. Green light (i.e., 

neural activity) is relayed back through the GRIN lens, past the dichroic mirror towards an 

imaging sensor and relayed offsite for analysis
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Figure 1B: 
Schematic of an enlarged GRIN lens (seen in Figure 1A: Blue LED light is relayed through 

the GRIN lens. When neurons are active and simultaneously lit by the LED, these neurons 

fluoresce and produce light (green), some of which is gathered by the GRIN lens and 

relayed towards the objective for offsite analysis. Light is manipulated by the GRIN lens 

and meets at a specific focal point where the image is clear. Out-of-focus (i.e., focal length 

adjustment) can be via physical placement of the objectives or with an electrowetting lens 

(see Figure 1A) to resolve the image.
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Table 1:

In vivo recording techniques benefits/drawbacks

In Vivo 
Techniques

Materials Pros Cons

Extracellular 
Electrophysiology

• Microelectrode 
(tungsten, steel, 
or platinum-
iridium)

• Single neuron resolution

• Can even detect multiple 
neurons per channel

• High Temporal 
Resolution

• Physiological 
identification of neurons 
by firing properties

• Deep Brain Probing

• Number of neurons 
dependent on inserted 
channels

• Unable to differentiate 
between cell 
types with similar 
electrophysiological 
properties

• Microwires are delicate 
and can break

Protein c-Fos • c-Fos protein 
(Activity 
Marker)

• Superior spatial resolution 
(whole brain analysis)

• Cell-type and pathway 
specific genetic markers

• Slow result designation

• Activity is not always 
triggered by c-Fos

• No single neuron targeting

Fast-Scan Cyclic 
Voltammetry

• Carbon fiber 
Microelectrode

• High temporal resolution 
(~100ms)

• Can detect different types 
of neurotransmission 
(dopamine, noradrenergic, 
etc.)

• Deep Brain Probing

• Large background current

• Requires background 
subtraction

• Localized (not single 
neuron) targeting

Fiber Photometry • Glass Cannula • Extends beyond Calcium 
Indicators

• Can use transgenic 
animals for genetic 
studies

• Cost-efficient

• Region specific 
population activity at 
axon terminals

• Deep Brain Probing

• No individual cellular 
resolution (whole field 
analysis)

GRIN Lens • Glass Lens with 
Biocompatible 
coating

• Can be combined with 
transgenic animals for 
genetic studies

• Optogenetics do not 
require a separate channel

• Sensor based longitudinal 
recordings over months

• Single Neuron targeting 
and population targeting 
over months

• Deep Brain Probing

• Open-source miniscopes 
allow for cost effective 
application

• Lens requires 
biocompatible coating

• Scratched lenses, 
photobleaching, and scar 
tissue can impede 
detection of neural activity

• High analytical burden 
(100s of single neurons 
from a single subject)

• Out-of-focus fluorescence 
must be attenuated

• Post-processing must be 
taken to correct for motion 
blur
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