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a b s t r a c t 

Artificial intelligence (AI) is an unstoppable force that is starting to permeate all aspects of 

our society as part of the revolution being brought into our lives (and into medicine) by the 

digital era, and accelerated by the current COVID-19 pandemic. As the population ages and 

developing countries move forward, AI-based systems may be a key asset in streamlining 

the screening, staging, and treatment planning of sight-threatening eye conditions, offload- 

ing the most tedious tasks from the experts, allowing for a greater population coverage, and 

bringing the best possible care to every patient. 

This paper presents a review of the state of the art of AI in the field of ophthalmol- 

ogy, focusing on the strengths and weaknesses of current systems, and defining the vision 

that will enable us to advance scientifically in this digital era. It starts with a thorough yet 

accessible introduction to the algorithms underlying all modern AI applications. Then, a 

critical review of the main AI applications in ophthalmology is presented, including dia- 

betic retinopathy, age-related macular degeneration, retinopathy of prematurity, glaucoma, 

and other AI-related topics such as image enhancement. The review finishes with a brief 

discussion on the opportunities and challenges that the future of this field might hold. 

© 2021 Elsevier Inc. All rights reserved.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Artificial Intelligence (AI) has experienced unparalleled
growth in recent years, excelling at cognitive tasks that com-
puters were never thought capable of performing. In the field
of ophthalmology, these techniques find a particularly good fit.
Firstly, the success of AI relies on having vast amounts of data,
which high-incidence conditions such as diabetic retinopa-
thy (DR) [1] or age-related macular degeneration (AMD) readily
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provide. Secondly, one of the most mature AI sub-fields is im-
age recognition, and eye fundus images or optical coherence
tomography (OCT) are widely adopted, low-cost, non-intrusive
imaging modalities, which show huge potential for automatic
analysis and quantification. 

At a global level, there are several key challenges in oph-
thalmology that AI can help overcome. Ongoing population
aging means that the incidence of conditions such as AMD
and DR (along with diabetes [2] ) will only continue to rise,
hence posing an ever-increasing burden on the already sat-
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urated healthcare systems of the world, with the last straw
being the COVID-19 pandemic. This is especially relevant for
Low- and Middle-Income Countries (LMIC) [1] , where such
systems are more brittle and there are not enough trained
specialists [3] . Furthermore, while retinopathy of prematu-
rity (ROP) only affects extremely premature infants in high-
income countries, in LMICs it affects older children and is ex-
periencing a rise in incidence due the better critical care for
premature babies [4] . In this context, AI-based systems can be
extremely useful in streamlining the screening, staging, and
treatment planning of such conditions, offloading the most
tedious tasks from the experts, allowing for a greater popu-
lation coverage, and bringing the best possible care to every
patient. 

In practice, AI systems have already shown performances
equal or above expert levels for DR grading [5 ,6 ,7] , AMD grad-
ing [8] , and general diagnosis from OCT images [9] . Not only
that, in 2018 the U.S. Food and Drug Administration (FDA) ap-
proved the IDx-DR [10] , an AI-based system for DR screening,
and the first FDA-authorized autonomous AI diagnostic sys-
tem in any field of medicine. Furthermore, the advent of ge-
netic testing [11] and the ubiquity of Electronic Health Records
(EHR) are paving the way for a fully personalized healthcare,
in which an algorithm will decide the optimal treatment and
dosage holistically [12] based on all the available patient infor-
mation. 

In the next two to five years, the field of ophthalmology
(and many others) will be deeply transformed by the univer-
sal adoption of these technologies [13] . It is therefore crucial
for the clinicians to have a solid understanding of the core al-
gorithms that are fueling this revolution (as it is crucial for the
data scientists to understand the underlying medical problem
too). Hence, a significant effort has been made in Section 2 to
introduce the key concepts and algorithms underlying most
publications in the field. Section 3 will present a summary of
the main lines of research, focusing on the observed trends.
Finally, Section 4 will discuss the main challenges and oppor-
tunities that will likely shape the future of AI and ophthalmol-
ogy. 

2. The algorithms powering the AI revolution 

AI is a very loosely used term, which encompasses many dif-
ferent fields with a shared purpose of developing systems able
to manifest intelligent behaviors. Frequently, however, AI is
used to refer to Machine Learning (ML), which is a sub-field
of AI that studies algorithms able to learn from experience.
Through this section, an attempt will be made to introduce
and demystify the few ML algorithms and ideas hiding behind
all the buzzwords and latest research using concrete examples
from the field of ophthalmology. 

2.1. Overview 

Section 2.2 will begin with a very brief dive into the his-
tory and recent achievements of AI and ML in general. Then,
Section 2.3 will introduce some basic ML concepts, and
Sections 2.3 and 2.4 will present the Linear Regression (LR) and
Logistic Regression algorithms, which are the simplest kind
of ML models and the basis for NNs. As it will be explained
in Section 2.5 , each neuron of a NN is just like a LR followed
by an activation function. Like physiological neurons, artifi-
cial neurons receive input signals and, through a simple inter-
nal calculation, generate an output signal. In the brain, many
simple neurons can be connected to achieve a very complex
and capable network; likewise, in artificial NNs, neurons are
arranged in layers and, as more layers are added, the NN be-
comes deeper and the knowledge it can represent becomes
more complex, hence the field now known as Deep Learning
(DL). 

Several modifications to this basic structure have been
proposed, such as Convolutional Neural Networks (CNNs)
( Section 2.6 ), which are specifically designed to deal with
imaging data, enabling, for instance, the detection, segmen-
tation, and classification of cells in a histopathological image
as being either cancerous or not, or the diagnosis of retinal
diseases from an OCT; or Recurrent Neural Networks (RNNs)
( Section 2.7 ), which allow us to deal with sequential (e.g.: tran-
sient) data, such as that from Electronic Health Records (EHRs).
For completeness, Sections 2.8 and 2.9 will present the Deci-
sion Tree (DT) algorithm, ensembling methods, and the basics
of Natural Language Processing (NLP). 

2.2. Brief history and recent advancements 

The field of ML started around the 1950s, with the invention
of the precursors of the current Neural Networks (NNs) and
the Gradient Descent (GD) algorithm, which is used to train
them. Over the years, several key discoveries ensued thanks to
the work of researchers such as Geoffrey Hinton, Yann LeCun,
and Yoshua Benigio, but it was not until the early 2010s when
the true revolution began, arguably due to the confluence of
three main factors: the theoretical breakthroughs that allowed
to train deep NNs, the explosion of available data for training
them, and the rise of Graphics Processing Units (GPU) com-
puting which made the training procedure feasible in terms
of time cost. 

The pivotal point was the proposal of the AlexNet NN
architecture [14] , which won the 2012 ImageNet [15] image
classification competition by a large margin. In 2015 Deep-
mind’s AlphaGo [16] was able to beat the world champion
in Go, a complex game requiring very-long-term planning. In
2019, OpenAI published the GPT2 [17] language model, which
was trained on a huge corpus of text scraped from the in-
ternet and was able to answer general questions and gener-
ate human-indistinguishable text given a prompt. Lastly, in
2020, Deepmind’s AlphaFold 2 [18] was able to achieve an un-
paralleled accuracy at predicting protein structure, bringing
it very close to experimental techniques, and being labeled
by many as the biggest discovery in computational biology in
the last decades [19] . Despite their relatively recent history, to-
day NNs are found everywhere, powering a plethora of every-
day applications including text, voice and image recognition,
stock market forecast, language translation, fraud prevention,
autonomous driving, genetic analysis, disease diagnosis, and
many more [20] . 
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Fig. 1 – Supervised learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – Linear regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Basic concepts 

Supervised Learning, the reigning paradigm inside ML, is
based on the diagram presented in Fig. 1 . An input x (e.g.: a
fundus image) is fed to a model which transforms it into an
output ˆ y (e.g.: DR grade). Notice that ˆ y represents the output
of the model, while y is the ground truth label. If the model is
perfect, then ˆ y = y . 

Inside the model, f θ (x ) is a parametric function with
parameters θ (which are just some numbers). This means
that the transformation it performs on the input x to build
the output ˆ y depends on the value of its parameters. The core
concept behind Supervised Learning is the following: these
parameters θ , rather than being defined by hand, are learned
autonomously by the model, by training on many examples
of ( x ,y ) pairs. During the training process, θ is modified so that
f θ can model the transformation from x to y as accurately
as possible. Once the training finishes, the parameters reach
their optimal value, and f θ can then be used to infer (predict)
the output ˆ y given any input x . 

2.4. Linear regression 

LR is one of the simplest Supervised Learning algorithms and
the primary building block for NNs. As a practical example,
in Rohm and coworkers [18] the authors train a LR model on
the task of predicting “visual acuity (VA) after 90 days” (this
is the output y , measured in letters) for a patient with AMD,
given some features such as “current VA”, “mean VA last year”
and “zge” (these are the inputs x 1 , x 2 and x 3 ): 

• x 1 : Current VA 

• x 2 : Mean VA last year 
• x 3 : Age 
• y : VA after 90 days 

Note that many more input features are used in the origi-
nal paper, but only those three will be considered here for sim-
plicity. It must be noted that the authors use Lasso regression,
which is a regularized variant of the vanilla LR (regularization
is introduced in Section 2.5 ). 

Eq. 1 defines the LR model, where θ0 , θ1 , θ2 , and θ3 are
the parameters of the model. For instance, after training
the model, if the values for the parameters were: θ0 =
−0 . 5 , | θ1 = 1 , | θ2 = 0 , and θ3 = 0 , then the model would have
learned the following: “VA after 90 days" equals the “Current
VA" minus 0.5 letters. 

ˆ y = f θ ( x ) = θ0 + x 1 · θ1 + x 2 · θ2 + x 3 · θ3 (1)

The objective of the training procedure is to find the values
of θ0 , ..., θ3 that make f θ best able to model the relationship be-
tween x and y . In ML, this is done by looking at many examples
(653 patients are used in the paper) and learning from them.
SGD [9] , and its variants, is the most commonly used algorithm
for training NNs. Training algorithms are usually known as op-
timizers, as they optimize (minimize) the error by changing
the value of the parameters. 

SGD starts by setting the values of the parameters θ0 , ..., θ3

to a random value. Then, it iteratively (i.e., repeatedly) takes
a batch (i.e., several) of training samples ( x, y ) , computes the
Mean Squared Error (MSE) between ˆ y (the prediction obtained
by using the model: ˆ y = f θ (x ) ) and y (the ground truth) and
modifies the value of the parameters θ0 , ..., θ3 slightly in an at-
tempt to reduce that error. MSE is defined as (y − ˆ y ) 2 so that
when y equals ˆ y the error is zero and, otherwise, the error
grows quadratically as the distance between y and ˆ y increases.
At the end of the training, the error should have been reduced
and y should be approximately equal to ˆ y for all training sam-
ples. 

The average performance of the model on all the samples
is reported through metrics. In Rohm et al. [11] , the authors
report a Mean Absolute Error (MAE) of 5.5 letters and a Root
Mean Square Error (RMSE) of 9 letters (when considering pa-
tients with only one previous visit). The definition and inter-
pretation of these metrics can be found in Table 1 . Fig. 2 shows
a graphical representation of the LR model defined in Eq. 1 . 

The simplicity of the LR model allows for a direct in-
terpretation of the trained parameters. In this paper, θ1 =
−0 . 35 , | θ2 = 0 . 15 , and θ3 = 0 , which can be interpreted as: “VA
after 90 days” will be high if “Mean VA last year” has been high,
but lower than “Current VA”; also, “VA after 90 days” does not
depend on “Age”. 

Lastly, before training any kind of ML algorithm, a prepro-
cessing technique known as data normalization (or standard-
ization) is almost always employed. It consists in applying
Eq. 2 to each input feature, where x i represents the feature
i of the input x (e.g.: current VA), x̄ is its mean, and σ ( x i ) its
standard deviation. This formula allows to equalize the rela-
tive importance of the features; otherwise, a feature with large
values (such as “age”, which could have a value of 90), would
have an a priori higher importance than a feature such as “cur-
rent VA”, which has much smaller values. 

x i normalized = 

x i − x i (2)

σ ( x i ) 

https://doi.org/10.1016/j.survophthal.2021.03.003
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Table 1 – Comparison of metrics for regression, classification, and segmentation problems. 

TP = true positives; FP = false positives; TN = true negatives; FN = false negatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – Logistic regression model. 

 

 

 

 

 

 

 

 

 

 

2.5. Linear classification: logistic regression 

Consider again the previous problem, with the same inputs
but a different output: “VA increases after 90 days". This is
now a classification task with two possible outcomes: “VA in-
creases after 90 days” or “VA does not increase after 90 days”,
hence called a binary (two-class) classification task. Both these
outputs can be numerically encoded as follows: 

• 0: “VA does not increase after 90 days”
• 1: “VA increases after 90 days”

This encoding should be interpreted as the “Probability of
VA increasing after 90 days". With this setup, LR could be used
to learn to predict the output (which is now either 0 or 1). How-
ever, the output of the LR equation is unbounded ( ̂ y can take
any value, even above one or below zero), which is meaning-
less in the context of probabilities. To restrain ˆ y to always take
values between zero and one, a sigmoid ( σ (x ) = 

1 
1+ e −x ) activa-

tion function must be applied to the output of Eq. 1 , as shown
in Eq. 3 . This algorithm is called logistic regression, and it is
essentially a LR with the addition of the sigmoid function to
saturate the output between zero and one. 

ˆ y = σ ( θ0 + x 1 · θ1 + x 2 · θ2 + x 3 · θ3 ) (3)

Finally, even if the MSE loss from LR could be used, a more
appropriate loss for binary classification problems is Binary
Cross-Entropy (BCE). Fig. 3 shows a graphical representation
of the Logistic Regression model defined in Eq. 3 . An S-shaped
curve has been added to the output node to indicate that a sig-
moid function is applied to that node. For multi-class classifi-
cation problems, softmax ( σ ( x i ) = 

e x i ∑ 

j e 
x j 

) is used as activation

function, and Multi-Class Cross-Entropy as loss. 

2.6. Non-linear regression and classification: feed 

forward neural networks 

Unlike the previous algorithms, Feed Forward Neural Net-
works (FFNN, also known as multilayer perceptrons) can
model complex non-linear relationships between inputs and
outputs. By way of example, Aslam et al. [21] uses a FFNN
to infer the “current VA" of a patient with AMD (output y )
given some features extracted from an OCT, such as: “sub-

https://doi.org/10.1016/j.survophthal.2021.03.003


256 survey of ophthalmology 67 (2022) 252–270 

Fig. 4 – Feed forward neural network for regression with a 
two-neuron hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 – Good fitting (left) compared to overfitting (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

retinal fluid volume”, “subretinal hyperreflective material vol-
ume” and “retinal thickness” (inputs x 1 , x 2 , x 3 ). Fig. 4 shows the
structure of a NN similar to the one used in this paper, while
Eqs. 4 - 6 define its behavior. A FFNN is no more than a stack of
LR layers with activation functions in between. z 1 and z 2 are
intermediate features that the NN has learned, and the output
ˆ y is just a linear regression over these intermediate features. 

z 1 = ReLU 

(
θ1 

01 + x 1 · θ1 
11 + x 2 · θ1 

21 + x 3 · θ1 
31 

)
(4)

z 2 = ReLU 

(
θ1 

02 + x 1 · θ1 
12 + x 2 · θ1 

22 + x 3 · θ1 
32 

)
(5)

ˆ y = θ2 
0 + z 1 · θ2 

1 + z 2 · θ2 
2 (6)

The FFNN of Fig. 4 has one hidden layer with two neu-
rons (or units) and uses ReLU ( ReLU(x ) = x · (x > 0) ) as acti-
vation function. The NN from the mentioned paper is simi-
lar, but instead employs a single ten-neuron hidden layer, sig-
moid activation function, and considers 16 inputs (instead of
just three). The number of hidden layers, the number of neu-
rons in each layer, or the choice of the activation function (sig-
moid, ReLU, etc.) are all called hyperparameters of the model.
On one hand, they are similar to the parameters (also called
weights) in the sense that their values influence the final per-
formance of the model (e.g.: the larger the number of layers,
the more complex the relationships that the NN will be able
to learn). On the other hand, unlike the parameters, they are
not trained by SGD and, instead, they must be manually cho-
sen beforehand. Other notable examples of hyperparameters
are the batch size, the learning rate (which controls the speed
of the SGD algorithm), the choice of the input features, and, in
general, any decision that may affect the performance of the
model. NNs with many layers are known as Deep Neural Net-
works and define the sub-field of ML known as Deep Learning.

NNs have an enormous modeling power, and a sufficiently
large FFNN (with many layers and many neurons per layer)
could theoretically learn any dataset to perfection. However,
such a model is likely to fail when used on data that it has
not been trained with. This problem is known as overfitting
( Fig. 5 ). 

It is of utmost importance to detect and control overfitting,
otherwise, a seemingly excellent model could perform very
poorly when tested on real-world data. For this reason, when
developing an AI model, the available data is usually divided
into three subsets: 
• Train set ( ∼ 70% of the data): Used to train the parameters
(weights) of the model through SGD. 

• Validation set ( ∼ 15% of the data): After training on the
train set, the model is evaluated on the validation set.
Then, the hyperparameters of the model are manually
tweaked to try to improve the performance and the model
is retrained. This is an iterative process that usually ends
when the performance on the validation set cannot be fur-
ther improved. 

• Test set or external validation set ( ∼ 15% of the data): Kept
secret until both the parameters and the hyperparameters
are considered final. Then, the actual performance of the
model is evaluated on this set. 

In Aslam and coworkers [21] , out of 1210 OCTs, 847 (70%)
are used for training, 182 (15%) for validation, and 182 (15%)
for test. The RMSE on the train and test sets is 8.18 and 8.21
letters, respectively. The better performance on the train set
may evidence a very slight degree of overfitting. 

As an alternative to this three-way splitting procedure, k -
fold Cross-Validation (CV) consists in taking k disjoint subsets
of similar size, training the same model k times on k − 1 of
them, and validating with the remaining one. The CV perfor-
mance is computed as the average validation performance on
the k validation folds. Nevertheless, a properly independent
test set should also be used in addition to this technique, un-
less no hyperparameter tuning is performed on the validation
set (in which case there is no potential for overfitting). In any
case, any papers where no such test set is employed should be
interpreted with caution. CV is used in works such as Cao and
coworkers [22] , Arsalan and coworkers [23] , Schmidt-Erfurth
and coworkers [24] , or von der Emde and coworkers [25] . 

To combat overfitting there exist a set of techniques collec-
tively known as regularization. For instance, L 

1 regularization
adds the absolute value of the parameters to the loss, so that,
besides minimizing the error, the training procedure also tries
to minimize the magnitude of the parameters. A LR model
with L 

1 regularization is known as Lasso regression. 

2.7. Convolutional neural networks 

CNNs are NNs that have been modified to better deal with im-
age data. Due to their excellent performance on image recog-
nition tasks, and the ubiquity of imaging in the ophthalmo-
logical praxis, they are used in most of the research papers
covered in this review. There are two main tasks that CNNs
are designed to perform: classification and segmentation. As
shown in Fig. 6 , both types of CNNs take an image as input

https://doi.org/10.1016/j.survophthal.2021.03.003
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Fig. 6 – Types of CNNs: classification (above) and 

segmentation (below). Images from Sayres et al. [69] and 

Arsalan et al. [23] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e.g.: a fundus image); however, a classification CNN produces
a categorical output (e.g.: a DR rating), while a segmentation
CNN produces another image as output (e.g.: a retinal vessel
mask). 

The main building block of any CNN is the convolution,
which is a mathematical operation that takes an image as in-
put and applies a filter to it to produce an activation map (also
called feature map) as output ( Fig. 7 ). This filter is usually a
simple 3 × 3 matrix of parameters θ which can be learned
through SGD, thus enabling the CNN to learn by itself the fil-
ters that produce the feature maps that are optimal for solv-
ing a particular problem. Furthermore, feature maps can have
several channels (just like a fundus image has three channels:
red, green, and blue), each channel representing a different
feature of the input image. Finally, feature maps can be fur-
ther convolved with new filters, which allows to stack a series
of convolutions, hence creating a whole CNN. 

In Antony et al. [26] , the authors use a CNN architecture
known as VGG16 [27] to diagnose AMD from OCT A-scans (a
binary classification problem). Fig. 8 summarizes this archi-
tecture. Each box represents an activation map, which is ob-
tained as a result of applying a convolution and an activation
function (ReLU in this case) to the previous feature map. The
arrows in between boxes represent a downscaling operation
(max-pooling in this case), which reduces the resolution of the
preceding feature map. The first part of the CNN is known as
the encoder since it encodes all the important features of the
image into the last feature map. This last feature map is then
flattened into a feature vector (a list of numbers), which goes
through the classification head. This classification head is just
a FFNN ( Section 2.5 ) which takes a feature vector as input and
produces a single number as output: the probability of the pa-
tient having AMD. Therefore, each layer of the classification
head is just a layer from a standard NN. 

To summarize, CNNs work by filtering (convolving) an in-
put image with learnable filters and reducing its resolution
gradually, until a feature vector is obtained. Then, this feature
vector is fed through a FFNN to obtain the classification la-
bel. Section 2.5 used Aslam and coworkers [21] as an exam-
ple where the authors employed a FFNN to infer the “current
VA” of a patient with AMD given some features extracted from
an OCT, such as: “subretinal fluid volume,” “subretinal hyper-
reflective material volume” and “retinal thickness.” However,
it could be argued that this choice of features is somewhat
arbitrary, and maybe other features would have yielded bet-
ter results. In contrast, when using a CNN, it is the CNN that
learns by itself the optimal features to choose and encodes
them into the feature vector, which is then passed to a FFNN
for classification. This simple example shows that the differ-
ence between classical ML and DL is more than just the use
of deep NNs (NNs with many layers), but also the fact that the
features are not chosen by hand, but instead learned by the
algorithm. 

CNN architectures can be tailor-designed by an expert
by combining the basic building blocks (convolution, max-
pooling, activation function, etc.). However, there exist several
architectures that are known to perform very well in general,
such as VGG16 [27] , ResNet [28] , InceptionV3 [4] , and, more re-
cently, EfficientNet [29] . When a well-known architecture is
used, often a technique known as transfer learning [30] is also
employed. It consists in setting the initial values of the param-
eters (which are otherwise random, as described in SGD), to
the values of the parameters of that CNN trained on another
dataset, such as ImageNet. This technique, which is also used
by Antony and coworkers [26] , allows the CNN to leverage the
already trained filters, and just fine-tune them to the new task.
For the AMD diagnosis problem, the authors report a sensitiv-
ity, specificity, and Area Under the Curve (AUC) of 0.967, 0.91,
and 0.87, respectively. Table 1 provides an overview of the in-
terpretation of these metrics. 

Regarding segmentation, in Arsalan and coworkers [23] , the
authors use a CNN to segment retinal vessels from a fundus
image. Their CNN architecture, albeit custom, is heavily in-
fluenced by the very famous U-Net architecture [31] , which
is outlined in Fig. 9 . Comparing it to the VGG16 architecture,
the U-Net is comprised of an encoder block (almost identical
to the encoder in VGG16), and a decoder block (which VGG16
does not have). The encoder block transforms the input im-
age into a very feature-rich intermediate feature map. The de-
coder block is identical to the encoder, except that the down-
sampling operations have been replaced by upsampling op-
erations. At the end of the decoder, the last activation map
passes through a sigmoid activation function, and a segmen-
tation mask is obtained. Additionally, skip connections (rep-
resented by upper arrows) transfer information from the en-
coder to the decoder. This primarily helps to improve the
sharpness of the output, which would otherwise be poor due
to all the downsampling and upsampling operations. Typical
loss functions for segmentation are BCE (which the authors
use) and Sørensen-Dice Similarity Coefficient (DSC) loss. 

For this problem, the authors report a sensitivity, speci-
ficity, AUC, and accuracy of 0.8526, 0.9791, 0.9883, and 0.9697
respectively. Despite the very good results, reporting accuracy
in a segmentation problem can be misleading, as there is of-
ten a huge imbalance between the classes. In Fig. 6 , the ves-
sel segmentation mask is mostly comprised of black pixels;
hence a model that simply produces a black image as output
could have very high accuracy (although the sensitivity would
be zero). A good alternative metric for reporting segmentation
results is the DSC ( Table 1 ). 

Although CNNs can be extremely powerful algorithms,
they require vast amounts of training images to avoid overfit-
ting, which is often a challenge with the often-scarce medical
imaging data. To help alleviate this issue, data augmentation
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Fig. 7 – Convolution: an image (or an activation map) is convolved with a filter (with learnable parameters θ), to produce an 

activation map (also called feature map). Images from Arsalan et al. [23] . 

Fig. 8 – VGG16 architecture. OCT image from Antony et al. [26] . 

Fig. 9 – U-Net architecture. Fundus image and vessel segmentation mask from Arsalan et al. [23] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[32] allows to artificially increase the amount and variability of
the training images by applying a series of random transfor-
mations (rotations, shifts, contrast and brightness modifica-
tions, etc.) to them. This method, which is employed by many
authors, such as Arsalan et al. [23] , can also be understood as
a form of regularization. 

Concerning interpretability, NNs are black boxes: unlike LR,
the trained parameters are generally not interpretable, and it
is difficult to understand how or why these algorithms pro-
duce a particular prediction. For classification CNNs, a tech-
nique known as Class Activation Maps (CAMs) (used in Antony
et al. [26] ), allows to peek at what parts of the image the CNN
is looking at when it makes a particular prediction ( Fig. 10 ).
Another similar, more recent, technique is the Integrated Gra-
dient Method, which is employed by Bellemo et al. [33] . 

Three-dimensional (3D) CNNs are CNNs that can take full
3D-images (such as an OCT B-scan) as input ( Fig. 11 ). They are
identical to their two-dimensional (2D) counterparts, except
that they use 3D convolutions, 3D max-pooling operations, etc.
It must be noted that 3D images can also be analyzed with a
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Fig. 10 – Class activation maps for a CNN trained on AMD classification. The colored regions are important for the CNN to 

perform the classification task. Image from Antony et al. [26] . 

Fig. 11 – 3D CNN for OCT B-scan segmentation. Images from 

De Fauw et al. [47] . 

Fig. 12 – Recurrent neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 – Decision tree for classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2D-CNN on a slice-by-slice basis. 3D-CNNs, however, can make
better use of the contextual information provided only by the
whole 3D image. 

As discussed in Section 2.4 , data standardization is a typi-
cal preprocessing step in any ML pipeline, including CNNs. For
images, however, Eq. 2 is not usually applied over all the im-
ages in the dataset at once, but rather over all the pixel intensi-
ties of an image, for each image independently. I. e.: after stan-
dardization, any given image will have a mean pixel intensity
of 0 and a standard deviation of 1. This is a simple yet effective
way of correcting intensity differences among images before
feeding them to a CNN. 

2.8. Recurrent neural networks 

RNNs are NNs specifically designed to handle sequential (e.g.:
transient) data, such as EHRs. Internally, they keep a hidden
state h t , which can be seen as a summary of all the past in-
formation (e.g.: input values and patterns) that are relevant
to the task that the network is performing. To produce a pre-
diction, they combine the previous hidden state h t−1 and the
current input x t to generate the output ̂ y t ( Fig. 12 ). The most
commonly used architecture is the Long Short-Term Memory
(LSTM) [18] . No uses of this kind of NNs have been found in
the ophthalmology literature, yet they have been included for
completeness. 

2.9. Decision trees and ensemble methods 

Decision Trees (DT) are non-linear supervised learning algo-
rithms that encode the input-output relationship in a tree
structure ( Fig. 13 ). They can be used both for regression and
classification problems and have the advantage of being eas-
ily interpretable. 

Very often, instead of training a single DT, an ensemble of
many different DT (known as Random Forest) is trained on
the same problem. Then, the majority vote of the ensemble
(in classification problems), or the mean prediction (in regres-
sion problems) is taken as the final output. Ensembling can be
applied to any model (even to different kinds of models). As
an example, in Gargeya and Leng [34] , the authors train a CNN
on the task of DR detection from fundus images. Then, after
training the CNN, they strip out the classification head and in-
stead substitute it for a Gradient Boosting classifier, which is a
variant of Random Forest. Thus, when given a fundus image,
the CNN produces a feature vector, to which they also append
patient metadata; all this information is forwarded to a Ran-
dom Forest, which makes the final prediction. 

2.10. Natural language processing 

Unlike previous sections, Natural Language Processing (NLP)
is not a specific algorithm or method, but rather a field within
AI that attempts to build algorithms able to understand nat-
ural language. Even if no direct applications have been found
in the context of ophthalmology, it may be used to interpret
medical reports. From a technical point of view, the input to
NLP algorithms is typically a series of tokens (e.g.: words or
parts of words) and the output is typically either a class (for
text classification, sentiment analysis, etc.) or another series
of tokens (for text translation, question answering, text sum-
marization, etc.). Although NLP models used to employ RNNs
due to their ability to deal with sequences (of tokens in this
case), now the Transformer [7] architecture is used almost ex-
clusively due to its superior efficiency and scalability. Recent
papers in the field, such as GPT-2 [1] , have shown that impres-
sive natural language models are achievable, but at the cost
of using a prohibitively large training dataset, billions of pa-
rameters, and an immense computational budget (the latest
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iteration of GPT, GPT-3 [14] , is estimated to have cost at least
4.6$ million only in training costs). 

Human communication is extremely complex, as it implic-
itly assumes a shared model of the world, which machines can
only begin to understand by ingesting large amounts of data.
Therefore, even if NLP can still be applied successfully to many
tasks without the need for such complex models, state-of-the-
art NLP applications will likely be kept private and under a li-
censing fee for the foreseeable future, since the entry barrier
to the technology has risen significantly. 

3. AI in ophthalmology: past and present 

Up until now, ophthalmologists have taken diagnostic, moni-
toring, and treatment decisions regarding various ocular dis-
eases based on their clinical characteristics, tests run on the
many devices used in this specialty, and the appreciable dif-
ferences between a healthy eye versus the different stages of
a diseased one. AI is a discipline on the rise, which will poten-
tially free ophthalmologists from these monotonous tasks. At
present, its main focus lies on fundus and OCT image analy-
sis using CNNs for the classification, gradation, segmentation,
and prediction of eye diseases. 

This section will present an overview of the evolution,
state-of-the-art, and predicted future developments of AI ap-
plied to DR ( Section 3.1 ), AMD ( Section 3.2 ), ROP ( Section 3.3 ),
and glaucoma ( Section 3.5 ), as well as other AI-related applica-
tions and/or diseases, such as image enhancement or vessel
segmentation (Section 3.6). To accompany the textual expla-
nation, three tables are used: Table 2 , for models employing
OCTs as inputs, Table 3 for models employing fundus images
as input, and Table 3 , specifically for VA prediction or estima-
tion. 

3.1. Diabetic retinopathy 

DR is a condition that affects the small blood vessels of the
retina in the eyes of people with diabetes. It is estimated that
approximately 93 million people across the world have DR
and it is expected that a third of the world’s diabetic pop-
ulation will develop it at some point [35] . Diabetic macular
edema (DME) is an additional complication that can occur at
any stage, and it is associated with significant visual loss. DME
is characterized by the thickening of the macular region of the
retina due to fluid build-up from blood leaks. There are sev-
eral effective treatments available, such as laser photocoagu-
lation, anti-vascular endothelial growth factor (VEGF) drugs,
intravitreal steroid injections, and vitrectomy. Many of these
can prevent vision loss, stabilize vision, and in certain cases
improve it provided DME is detected and treated in the early
stages. In this context, AI can boost the implementation of au-
tomated generalized screening for deferrable DR and DR stag-
ing, among several other applications. 

Currently, AI-automated DR screening and staging from
fundus images is one of the most promising AI tools in
medicine. Over the last few years, many authors have shown
that such systems can consistently match the performance
of the experts, sometimes outperforming them, [20 ,36] , while
being a more cost-effective [37] and wider-reaching alterna-
tive to current screening programs. Furthermore, commercial
systems for DR screening are already available, with IDx-DR
being the first FDA-authorized autonomous AI diagnostic sys-
tem [38] and, more recently, EyRIS SELENA + [33 ,39] receiving
clearance for use both in the European Union and Singapore
[40] . 

As can be seen in Table 2 , Agurto et al. [8] proposed in
2011 one of the first ML-based models to detect DR and other
related pathologies (such as microaneurysms, hemorrhages,
and exudates), as well as AMD-related pathologies such as
drusen, pigmentation, and geographic atrophy (GA) by using
RIST (378 patients) and UTHCSA (444 patients) datasets for
training and validation. The AUCs ranged from 0.890 to 0.920
for detecting DR with visual impairment, achieving a sensitiv-
ity of 0.95 with a specificity set at 0.5. Also, for the determina-
tion of DR-related pathologies, they reached an AUC between
0.770 and 0.980. 

However, it was not until 2016 that the DL revolution be-
gan in ophthalmology. Since, the size (the number of patients)
of the datasets (see Tables 2 , 3 , and 4 ) has increased over time
and, in current AI systems, metrics such as AUC, accuracy, sen-
sitivity, and specificity have improved. Besides sheer dataset
size, there tends to be an ever-increasing heterogeneity in the
imaging data (e.g.: heterogeneities in scanners, medical cen-
ters, patient ethnicities, etc.), and a shift of focus from basic
classification to grading (i.e., mere detection vs. disease stag-
ing), which are all factors that might pose a greater challenge
for the algorithms, but eventually result in more robust and
useful systems. Current AI models in the field are almost ex-
clusively based on CNNs. 

As an example of these trends, in 2018, Krause et al. [36] de-
veloped a CNN for DR and DME detection and staging: DR
was classified according to the International Clinical Dia-
betic Retinopathy disease severity scale: no DR, mild, mod-
erate, severe, and proliferative, while DME was classified as
either referrable or not. The Inception-V4 CNN model was
trained on the 1.5 million fundus images from the Eye-PACs
dataset, while the 2000 images from the Eye-PACS-2 dataset
were employed for validation, achieving comparable results
to three retinal specialists and three US board-certified oph-
thalmologists. For instance, for moderate or worse DR clas-
sification, the model achieved a sensitivity and specificity
of 97.1% and 92.3% (respectively), compared to a median of
75.2% and 97.9% for the ophthalmologists, and a median
of 74.6% and 99.3% for the retinal specialists. For referrable
DME classification, the model presented a sensitivity and
specificity of 94.9% and 94.4%, compared to 91.5% and 98.7%
for the median ophthalmologist. Nevertheless, the combina-
tion of the experts (by majority vote) still outperformed the
model. 

Most authors employ fundus images for developing DR di-
agnosis systems, which are generally more accessible than
OCTs. Hassan et al. [41] argued that perhaps, using both fun-
dus and OCT images the performance could be improved.
Their CNN-based model achieved a sensitivity and specificity
of 0.970 and 0.920, for referrable DME detection, which are sim-
ilar results to those obtained in the previous model, suggest-
ing that OCTs may provide little advantages as compared to
fundus images for this task. 

https://doi.org/10.1016/j.survophthal.2021.03.003
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Table 2 – Summary of most relevant works where fundus images are taken as input. 

Year Reference Topic Model Dataset 
(patients) 

Output: classes AUC Sens. Spec. Better than 
experts? (N) 

2020 Varadarajan et al. 
[68] 

DME CNN 

(InceptionV3) 
Thailand (4732) / 
EyePACS-DME 
(554) 

Center-involved DME 0.890 0.850 0.800 Yes (3) 

Intraretinal fluid 0.810 
Subretinal fluid 0.880 

2020 Singh and 
Gorantla [71] 

DME CNNs 
(Hierarchical 
Ensemble of 5) 

Messidor (1200) / 
IDRiD (516) 

DME 0.947/ 0.979 0.972/ 0.945 

DME: (three-class grading) 0.964 0.958 
2019 Arsalan et al. [23] DR, Vessel seg. CNN (Custom, 

Vess-Net) 
DRIVE (40) / 
CHASE-DB1 (128) 
/ STARE (20) 

Vessel segmentation map 0.980–0.988 0.802–0.853 0.979–0.984 

2019 Sayres et al. [69] DR CNN 

(InceptionV4) 
Patients from 

Krause2018 
(1612) 

DR: None, mild, moderate, 
severe, prolif. 

0.925 0.946 Yes (10) 

2019 Cao et al. [22] DR Naive Bayes on 
grey coocurrence 
matrix 

Private (1000) DR 0.938 0.949 0.928 

2019 Yang et al. [67] DR CNN (IDx-DR) Private (500) DR: None, mild, moderate, 
severe, prolif. 

0.988 0.880 

2019 Peng et al. [70] AMD (Bilateral 
images) 

CNN 

(Inceptionv3: 
DeepSeeNet) 

AREDS (4549) AMD: AREDS early AMD 

progression risk scale (five 
classes) 

0.590 0.930 Yes (88) 

Drusen: Small / none, 
medium, large 

0.940 0.718 0.871 Yes 

Pigment. abnorm. 0.930 0.732 0.957 Yes 
Late AMD 0.970 0.627/ 0.538 0.987/ 0.898 No 

2019 Coyner et al. [50] ROP CNN 

(InceptionV3) 
i-ROP (898) ROP: Image quality 

assesment (2 classes) 
0.9650 0.939 0.836 Same (6) 

2019 Tan et al. [72] ROP CNN (ROP.AI) Australasian 
ART-ROP ( ∼500) 

ROP: Normal, plus-disease 0.9770 0.939 0.807 

ROP: Normal, pre-plus 
disease 

0.814 0.807 

2018 Grassmann et al. 
[45] 

AMD CNN (Ensemble 
of six) 

AREDS (3654) / 
KORA (5555) 

AMD: AREDS scale (13 
classes) 

0.538/0.328 0.969/0.957 Yes 

2018 Rajalakshmi 
et al. [73] 

DR (Phone 
images) 

CNN (EyeArt) Private (296) DR grade: Any, DME, prolif., 
referrable 

0.781–0.993 0.688–0.898 

2018 Kanagasingam 

et al. [74] 
DR CNN (IDx-DR) Private (193) DR: None, mild, moderate, 

severe, prolif. 
0.920 

2018 Krause et al. [36] DR CNN 

(InceptionV4) 
EyePACS (242252) DR: None, mild, moderate, 

severe, prolif. 
0.986 0.970 0.917 Same (6) 

2018 Brown et al. [52] ROP CNN (Vessel seg.: 
U-Net) + CNN 

(Classif.: 
InceptionV1) 

i-ROP (898) ROP 0.940 0.930 0.940 Yes (8) 

( continued on next page ) 
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Table 2 ( continued ) 

Year Reference Topic Model Dataset 
(patients) 

Output: classes AUC Sens. Spec. Better than 
experts? (N) 

ROP: Plus disease 0.980 1,000 0.940 
2018 Wang et al. [51] ROP CNN (custom, 

Inception-like) 
Chengdu Women 
Children’s 
Central Hospital 
(1273) 

ROP 0.849 0.969 Same (3) 

ROP: Minor, severe 0,736 0,933 
2017 Li et al. [16] Glaucoma CNN 

(InceptionV3) 
Guangdong 
(3970) 

Glaucoma: Referable, 
nonreferable 

0.986 0.956 0.920 

2017 Gargeya and 
Leng [34] 

DR CNN (Cus- 
tom) + Decission 
tree (Grad. 
Boosting) 

EyePACS 
( ∼15000) / 
Messidor-2 (874) / 
E-Optha ( ∼100) 

DR: Referable, Non 
Referable 

0.940–0.970 0.900–0.940 0.870–0.980 

2017 Ting et al. [39] DR CNN (VGG-19) SIDRP 10-15 
(27979) / 
Guangdong 
(3970) + 9 others 

DR: Referable, non referable 0.889-0.983 0.905-1.000 0.733-0.916 

Glaucoma SIDRP 10-15 
(27979) + 5 others 

Glaucoma: Referable, non 
referable 

0.942 0.964 0.872 

AMD Idem AMD: Referable, non 
referable 

0.931 0.932 0.887 

2017 Burlina et al. [2] AMD CNN (AlexNet) AREDS (4613) AMD 0.940 0.846 0.920 Same 
2016 Abràmoff et al. 

[75] 
DR CNN (IDx-DR 

vX2.1) 
Messidor-2 (874) DR: None or mild, present, 

vision-threatening 
0.980 0.968 0.870 

2016 Gulshan et al. [3] DR, DME CNN 

(InceptionV3) 
EyePACS (4997) / 
Messidor-2 (874) 

DR: Referable, non referable 0.991/ 0.990 0.903/ 0.870 0.981/ 0.985 

DME: Referable, non 
referable 

0.974 0.907 0.938 

2012 Zheng et al. [44] AMD Hierarchical 
trees + SVM 

ARIA (161) / 
STARE (97) 

AMD 0.994 1,000 

2011 Agurto et al. [8] AMD, DR (3 FOV 

fundus) 
Feature extrac- 
tion + Partial 
Least Squares 

RIST (378) / 
UTHSCSA (444) 

DR: Normal, 
sight-threatening 

0.890/ 0.920 0.950 0.500 

DR-related: 
Microaneurysms, 
hemorrhages, exudates, 
neovascularization, etc. 

0.770-0.980 0.830–1.00 0.500 

AMD-related: Drusen, 
Pigment. abnorm., GA 

0.770-0.920 0.88–1.000 0.500 

https://doi.org/10.1016/j.survophthal.2021.03.003
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Table 3 – Summary of most relevant works in classification and segmentation tasks, where OCT images are taken as input. 

Year Reference Topic Model Dataset 
(patients) 

Output: classes AUC Sens. Spec. Better than 
experts? (N) 

2019 Motozawa et al. 
[46] 

AMD CNN (Custom, 
VGG-like) 

Private (271) AMD 0.995 1,000 0.918 

AMD: Fluid, no fluid 0.991 0.984 0.883 
2019 Antony et al. [26] AMD CNN (VGG16) Private (384) AMD ( + relevant B-scans) 0.967 0.910 0.870 
2019 Hassan et al. [41] DME: Fluid seg., 

Vessel seg. 
(Fundus + OCT) 

CNN (Cus- 
tom) + Heavy 
processing 

Rabani and 
Zhang (683) 

DME 0.970 0.920 Yes (3) 

Segmentation: Hard 
exudates, Blood vessel, 
Retinal fluid 

(DSCs: 0.707, 

0.820, 0.902) 
2019 Kuwayama et al. 

[76] 
AMD, DR, 
ERM + Others 

CNN (Custom) Private (1200) Normal 0.850 0.970 

Wet AMD 1,000 0.770 
DR 0.780 1,000 
ERM 0.750 0.750 

2018 De Fauw et al. 
[47] 

AMD, DR, 
ERM + Others 

CNN 

(Segmentation, 
Custom) + CNN 

(Classification, 
Custom) 

UK National 
Heatlh Service 
(NHS) (14884) 

Referral: urgent, non urgent 0.992 Yes (8) 

Normal 0.995 Same 
MRE 0.990 Yes 
CNV 0.993 Yes 
Drusen 0.974 Same 
ERM 0.966 Same 
Others (GA, CSR, Full/partial 
thickness macular hole, 
VMT) 

0.980 Same 

2018 Shigueoka et al. 
[57] 

Glaucoma 
(OCT + SAP) 

Feature extrac- 
tion + Several ML 
classifiers 

University of 
Campinas, Brazil 
(124) 

Glaucoma: Early or 
moderate, none 

0.931 0.900 0.800 Same (3) 

2017 Schlegl et al. [77] AMD, DME: Fluid 
seg. 

CNN 

(Segmentation, 
custom) 

Private (1200) Intraretinal fluid 0.940 

Subretinal fluid 0.933 

https://doi.org/10.1016/j.survophthal.2021.03.003
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Table 4 – Summary of most relevant works in the task of VA prediction, where OCT images are taken as input. 

Year Reference Topic Model Dataset (patients) Output Results 

2019 von der Emde et al. [25] AMD, VA (Fundus 
Autofluor.+ Infrarred 
Reflection) 

CNN 

(Segmentation) + Random 

Forest 

Private (90) VA Fundus-controlled 
perimetry (mesopic, 
cyan, red) 

MAE: 3.94, 4.9, 4.02 dB 

2018 Rohm et al. [11] AMD, VA (EHR) Lasso LR Private (653) VA delta at 3 months MAE: 0.16 logMAR 
Private (453 of above) VA delta at 12 months MAE: 0.11 logMAR 

2017 Aslam et al. [21] AMD, VA (Patient Age) FFNN Private (1210) VA at current time R2: 0.852 (letters) 
2017 Schmidt-Erfurth et al. [24] AMD, VA CNN 

(Segmentation) + Random 

forest 

HARBOR (614) BCVA at 12 months R2: 0.7 (logMAR) 

https://doi.org/10.1016/j.survophthal.2021.03.003
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Besides DR diagnosis, some authors, such as Rasti and
coworkers [17] , focused on anti-VEGF response prediction for
DME treatment. In this paper, a CNN was trained on OCT im-
ages from 127 subjects to classify them as either experiment-
ing at least a 10% reduction in retinal thickness following
the treatment, or not. The authors obtained a sensitivity and
specificity of 80.1% and 85.0% on a 5-fold CV set. Even if CV is
not ideal for validating a model, it shows potential for future
research on the topic. 

3.2. Age-related macular degeneration 

AMD is the main cause of irreversible vision loss in people
aged 50 + years in developed countries [42] . The estimations
of prevalence indicate that it affects 9% of people aged 45-
85 across the world, amounting to a total of 196 million peo-
ple. It is a complex disease, associated with genetic and en-
vironmental risk factors, which is typically characterized by
the appearance of drusen (yellow lipid deposits under the
retina). Recently, anti-angiogenic drugs have revolutionized
the treatment of wet (advanced) AMD, significantly reduc-
ing blindness and visual impairment if the condition is diag-
nosed early, the patient is referred, the treatment is adhered
to, and guidelines and protocols are complied with. This dis-
ease is typically graded employing a 13-class system based on
the AREDS [43] scale, where higher scores represent more ad-
vanced stages, and class 13 is reserved for ungradable images.

One of the first models for automated AMD classification
was proposed by Zheng and coworkers [44] in 2012. Leveraging
two public fundus image datasets of 258 patients, the tech-
nique was capable of classifying referrable / non-referrable
AMD with an AUC of 0.994, a specificity of 1, and a sensitiv-
ity of 0.994. They also made comparisons with the four prior
papers published on the topic by other research groups and
confirmed the superiority of the new method. Nevertheless,
10-fold CV was employed for validation (instead of a test set,
or an external validation set), which might have biased the re-
sults. 

Similar to DR, since 2016 AI-based AMD diagnosis started
receiving a renewed interest. In 2018, Grassmann and cowork-
ers [45] , employed an ensemble of six CNNs (using AlexNet,
VGG, ResNet, etc.) to automatically grade fundus images ac-
cording to the 13-class AREDS scale (which is a much more
challenging problem compared to the previous binary -i.e.:
referrable AMD vs. non-referrable- AMD classification). They
used the AREDS dataset (with over 120,000 fundus images
from over 5000 patients) for training and testing, and the Co-
operative Health Research in the Region of Augsburg (KORA)
dataset (5555 images) as an external validation set. Exter-
nal validation sets are comprised of images from a different
dataset (different hospital, possibly different scanners) than
those used for training, and hence can often be more represen-
tative of the real-world performance of the model (especially
if several external validation sets are employed). The average
(over all 13 classes) sensitivity and specificity for the AREDS
test set was 0.538 and 0.969, while for the KORA external val-
idation set, it was 0.328 and 0.957. This data, which has been
taken from the supplementary material of said paper, allows
us to introduce an interesting topic: the difficulty in interpret-
ing the results. Even if the sensitivities seem low, such values
are to be expected for a 13-class classification problem where
the differences between adjacent classes are minimal. In fact,
the authors break down the KORA results (considering only
patients aged 55 + ) by ranges of classes: for intermediate AMD
(AREDS classes 4-9) the sensitivity/specificity was 0.822/0.971,
and for late-stage AMD (AREDS classes 10-12), it was 1/0.965.
Researchers should carefully consider whether a 13-class sys-
tem for automated AMD classification is needed, while the
clinicians should take care to correctly interpret the results. 

Unlike in DR, many published papers on this topic em-
ploy OCT images as input, instead of fundus images. For
instance, Motozawa and coworkers [46] employ a simple
CNN architecture to predict whether an OCT was normal
or contained AMD-related findings (drusen, pseudo-drusen,
Pigmented Epithelial Detachment (PED), geographic atrophy,
etc.). The model was trained on 271 patients from a pri-
vate dataset, from which the training and the validation set
were extracted. Once again, this is not ideal methodologically,
since there seems to be no proper test set, and hence the
model might be overfitted and the results overestimated. They
achieved a sensitivity/specificity of 1/0.918. 

To close off the topic of AMD detection, De Fauw and
coworkers [47] is hitherto one of the best articles both in
terms of methodology and results. It introduced a two-stage
model comprised of a CNN for segmentation (epiretinal mem-
brane [ERM], subretinal and intraretinal fluid, etc.), followed
by an ensemble of CNNs for classification. It could deter-
mine the prognosis for a large number of pathologies (such
as choroidal ceovascularization [CNV], MRE, Global Serious
Retinopathy [GSR], etc.) using OCTs from 14,884 patients (from
two different scanners), and reaching an AUC above 0.99 for
the majority of the diseases (and above 0.966 for all of them),
hence equaling the performance of an expert ophthalmolo-
gist in those tasks. They also classified the OCTs in terms of
referral urgency (urgent, semi-urgent, routine, and observa-
tion only), achieving an AUC of 0.9921 for the urgent class and
outperforming the experts in this task. Regarding the meth-
ods, they used a proper training/validation/test set split ap-
proach, which is explained in detail both in the main paper
and the supplementary material. Their two-stage model ap-
proach (segmentation + classification) not only achieves ex-
cellent results but also helps the end-user (the ophthalmol-
ogist) understand the final predictions better since these are
directly based on the informative segmentations generated in
the first stage. 

Regarding VA prediction in the context of AMD,
Table 4 summarizes the most relevant papers. For instance, in
von der Emde and coworkers [25] and Aslam and coworkers
[21] , the authors tried to predict VA at present without mea-
suring, while in Rohm et al. [11] and Schmidt-Erfurth et al.
[24] VA is predicted three or twelve months after undergoing
treatment with anti-angiogenic drugs. These studies may
offer significant assistance with treatment for this pathology,
which requires a high degree of adherence and compliance to
maximize the resulting VA. 

Finally, some authors have delved into the topic of AMD
progression prediction. For instance, Bhuiyan and coworkers
[48] employed the AREDS dataset to predict the incidence of
late AMD from fundus images over two years, achieving an
accuracy of 86.36%. Yim and coworkers [15] focused instead on
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predicting the progression to wet AMD in the second eye using
OCT images, reaching a sensitivity/specificity of 0.80/0.55, and
outperforming most of the consulted experts. 

3.3. Retinopathy of prematurity 

ROP is a retinovascular disease that affects both extremely
premature infants in developed countries to older babies
worldwide (due to the lack of appropriate screening in middle-
income countries) [6 ,49] . Even if early treatment has shown to
be effective, much is still to be known about this condition [50] .

Wang et al. [51] introduced one of the first ML models
based on CNNs for determining the presence and severity
of ROP from fundus images. They used a dataset of 1,273
patients, attaining a sensitivity and specificity of 0.849 and
0.969. That same year, Brown and coworkers [52] , attempted to
identify ROP in fundus images by employing first a U-net CNN
to perform capillary segmentation, which was then combined
with the fundus image (as an additional channel) to perform
classification (normal, pre-plus disease, plus-disease). They
achieved a sensitivity of 0.930 and a specificity of 0.940 for
plus-disease diagnosis, outperforming 6 out of 8 experts.
Similar models have been developed as of recent (see Table 2 ),
obtaining overall very compelling results. An AI solution for
ROP screening might be particularly timely for middle-income
countries, where this disease is becoming more prevalent due
to better critical care for premature babies combined with the
lack of experts able to detect and manage the disease. 

3.4. Glaucoma 

Glaucoma is a disease of the optic nerve, which becomes dam-
aged due to the increase of pressure as aqueous humor builds
up in the eye. It is a major cause of visual impairment and
blindness all over the world [53] , with 3.54% of people affected
by it between ages 40 and 80, an estimate of 76 million people
by 2020 [54] . Although it can be treated (typically with daily
eye drops), it manifests itself mostly asymptomatically. Along
with glaucoma, the main causes of blindness worldwide are
cataracts and uncorrected refraction errors [55] . In this con-
text, AI can play a crucial role in helping implement cost-
effective generalized screening and optimizing early treat-
ment. 

In 2018, Li and coworkers [16] used fundus images from
3,970 patients to train a CNN model to detect referrable glau-
comatous optic neuropathy (vertical cup-to-disc ratio of 0.7 or
more), achieving an AUC of 0.986, a sensitivity of 0.956, and
a specificity of 0.920. In addition to image normalization and
data augmentation, a preprocessing step known as local space
average color [56] was employed to improve the color consis-
tency of the images, even if the illumination changed. 

Shigueoka and coworkers [57] used OCTs and standard au-
tomated perimetry (SAP) from 124 patients as input to a ML
model trained for discerning between healthy and glaucoma-
tous individuals. From the OCTs, 17 features were extracted
by measuring retinal nerve fiber layer thickness at different
points of the image, while from SAP, mean deviation, pat-
tern standard deviation, and glaucoma hemifield test features
were computed. Several ML classification algorithms, such as
RFs and FFNNs were applied to the problem and validated
using 10-fold CV. The best performing model was a Radial
Basis Function (RBF) Network, which is an algorithm simi-
lar to a FFNN, but using special RBF activation functions in-
stead. It proved to attain a statistically similar performance
when compared to glaucoma specialists and the Combined
Structure-Function Index. The authors conclude the paper
marking the importance of such a technique in the context
of primary care as a key tool for the diagnosis, treatment, or
early referral to a specialist, especially when there is no glau-
coma specialist available. 

3.5. Others 

Besides the previously discussed conditions, there a growing
field of research in several related techniques and diseases.
For instance, automatic retinal blood vessel segmentation in
fundus images can provide useful information for several clin-
ical applications [58] . For instance, Arsalan et al. [23] train a
residual U-Net CNN for this task using three different datasets
(for a total of 200 images), achieving an AUC above 0.982 for all
datasets. Even if 200 images might seem insufficient, segmen-
tation models usually require much fewer images to train as
compared to classification models, since every image contains
much more information: a full segmentation mask, i.e. a label
for every pixel, versus a single label for the whole image. Fur-
thermore, as an expert, generating the segmentations for the
system is much more time consuming, so datasets tend to be
smaller. 

Another related topic is AI image enhancement, which
consists in training a CNN to improve the quality of an im-
age, increase its resolution, remove artifacts, reduce noise, etc.
Halupka and coworkers [59] employ two kinds of models to
remove speckle noise from OCTs: a pure CNN, and a Gen-
erative Adversarial Network (GAN). GANs are typically com-
prised of two CNNs: a generator and a discriminator; both are
trained in tandem: the generator tries to fool the discrimina-
tor by generating OCTs that look real, while the discriminator
tries to identify whether any given OCT (generated or not) is
actually real. After training, the generator should be able to
generate realistic-looking OCT images. In the context of this
paper, a GAN is used to enhance the features of the original
OCT image. After training, the authors achieve a significant
improvement in objective metrics with the pure CNN for noise
reduction, while the GAN generates images that are qualita-
tively perceived as better by the experts. In fact, GANs can be
more “creative” and bolder at adding detail, which human per-
ception favors. In the wider context of ophthalmology, GANs
could also be used to generate synthetic (artificial) images af-
ter being trained on a dataset (e.g.: to complement smaller
datasets). 

Keratoconus is a corneal disease resulting in irregular
astigmatism and vision loss, which is typically analyzed by
using a technique known as Scheimpflug imaging. Since 2010,
a few authors have employed ML systems trained on fea-
tures extracted from Scheimpflug maps to identify kerato-
conus [60 ,61] , achieving AUCs above 0.98 in CV. Cataracts are
the clouding of the lens of the eye, resulting in a decrease of
vision, and representing a major cause for visual impairment
in LMICs [62] . In this context, AI has contributed to the devel-
opment of more accurate intraocular lens calculation formu-
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las [63] . As a final example, Achiron et al. [64] used an RF ML
algorithm to predict the outcome of refractive surgeries on a
dataset of over 17,000 cases. 

4. Discussion: challenges and opportunities 

The global population aging is jeopardizing our sight, the
sense held by humans to be most important [65] . It is esti-
mated that DR will affect 300 million people by 2025 and 500 by
2050 [5] , with up to 30% of diabetic patients presenting any de-
gree of DR, and 10% suffering from sight-threatening DR. Sim-
ilarly, AMD is already the main cause for vision loss in older
patients in developed countries [42] and, as life expectancy
rises, the incidence of advanced AMD will also rise. The situa-
tion is yet direr in LMICs, where the life expectancy has risen
sharply over the last few decades, yet they lack the medical
professionals needed to detect and manage these diseases.
For instance, Hussain and coworkers [66] estimates an AMD
prevalence of 0.6-1.1% in these countries by 2030. 

Although eye-related AI research is broad, right now it fo-
cuses on detection and staging of diseases from either fundus
or OCT images through CNNs, achieving expert-level perfor-
mances in many cases. Even if the deployment of these sys-
tems is still limited, it is foreseeable that this trend will con-
tinue and that these algorithms will slowly but surely make
their way into the clinical practice in the next few years. In
the future it will be possible to automatically classify all oph-
thalmological using an image-based AI system; moreover, in
a second phase, we will likely supplement these systems with
additional patient information including, but not limited to,
demographic data, medical history, comorbidities, or genetic
indicators. 

This could signify a true revolution: the automated global
screening for eye diseases could mean earlier detection and
referral, speeding-up treatment by adapting the treatment
guidelines to the reality of each patient, encouraging adher-
ence and compliance by patients and, ultimately, resulting in
a better life for the patient. This is especially true for LMIC,
where there are not enough experts to attend to their aging
population (or their newborns, in the case of ROP). We are
already past the time of wondering whether a certain tech-
nique will work or not. We already know it does. Instead, we
should focus on developing systems that are properly vali-
dated and employ data from a wide array of sensors, medi-
cal centers, and a representative cohort of the population (in
terms of age, sex, ethnicity, diseases, etc.). The lack of diversity
within datasets is especially concerning from an ethical point
of view, as it could exacerbate the already serious healthcare
disparities between population groups. Therefore, we should
actively strive to improve collaboration among centers world-
wide to obtain the best datasets possible, and we should also
stop to reflect on how to best bring these methods to the clin-
ical practice. We are already on our way there, but much work
is still to be done, and it depends on all the actors involved
(ophthalmologists, data scientists, corporations, individuals,
etc.) to do their part to make this a reality. Also, AI progress
should advance in parallel with new treatment strategies to
complement each other. 
We are living in a digital era, accelerated with the emer-
gence of COVID, where there is a critical need for clean (or
“green”) systems, to reduce costs and inefficiencies, and to im-
prove time management. In this situation, AI has the key for
addressing some critical questions, such as: Will I have to go to
a retinal specialist for diagnosis, or will I be able to do this from
home using my mobile device and receive a response in real-
time? Will there be a system to monitor treatment adherence
and provide real-time alerts and guidance? When will tech-
nology enable all data to be integrated into a worldwide health
system that will expand knowledge on a global scale? As 5G
continues to expand, smartphones will provide a baseline set
of devices able to run AI algorithms locally, while some of the
heaviest computing tasks will be offloaded to the cloud. Even-
tually, AI systems might be the tools that will enable doctors
to make significant improvements to patient management,
achieving a better life for everyone through science and tech-
nology. 

5. Conclusion 

AI may be the answer to healthcare system sustainability
amidst an aging world population, the quick developments of
LMIC countries, and a deadly global pandemic. We are already
on our way, but to succeed we require collaboration and good-
will from all actors involved. Lastly, time is one of the most
valuable resources and, the more doctors and ophthalmolo-
gists are freed by AI, the more time they will have to focus on
the reason for their existence: the patient. 

6. Method of literature search 

The literature search for this review was based on combining a
set of keywords from the medical field (ophthalmology, retina,
glaucoma, Retinopathy of Prematurity, Age-Related Macular
Degeneration and Visual Acuity) with a set of keywords from
the Machine Learning field (Artificial Intelligence, Deep Learn-
ing, and Convolutional Neural Network). All terms from each
set were independently combined with all terms from the
other. 

The main repository for the search was PubMed, although
Google Scholar was also employed for completeness. Articles
deemed relevant (by inspection of the title and abstract) from
January 2016 to June 2020 were reviewed, amounting to a to-
tal of around 400. The main inclusion criteria were the per-
ceived quality of the research and the focus on Artificial In-
telligence. A few select articles published before 2016 were in-
cluded for historical purposes, as well as some articles deal-
ing with closely related topics (such as keratoconus, or image
enhancement). Most of the papers were in English; only the
abstract was considered for those that were not. 
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