Skip to main content
. 2021 Mar 16;67(1):252–270. doi: 10.1016/j.survophthal.2021.03.003

Table 3.

Summary of most relevant works in classification and segmentation tasks, where OCT images are taken as input.

Year Reference Topic Model Dataset (patients) Output: classes AUC Sens. Spec. Better than experts? (N)
2019 Motozawa et al. [46] AMD CNN (Custom, VGG-like) Private (271) AMD 0.995 1,000 0.918
AMD: Fluid, no fluid 0.991 0.984 0.883
2019 Antony et al. [26] AMD CNN (VGG16) Private (384) AMD (+ relevant B-scans) 0.967 0.910 0.870
2019 Hassan et al. [41] DME: Fluid seg., Vessel seg. (Fundus + OCT) CNN (Custom) + Heavy processing Rabani and Zhang (683) DME 0.970 0.920 Yes (3)
Segmentation: Hard exudates, Blood vessel, Retinal fluid (DSCs: 0.707,
0.820, 0.902)
2019 Kuwayama et al. [76] AMD, DR, ERM + Others CNN (Custom) Private (1200) Normal 0.850 0.970
Wet AMD 1,000 0.770
DR 0.780 1,000
ERM 0.750 0.750
2018 De Fauw et al. [47] AMD, DR, ERM + Others CNN (Segmentation, Custom) + CNN (Classification, Custom) UK National Heatlh Service (NHS) (14884) Referral: urgent, non urgent 0.992 Yes (8)
Normal 0.995 Same
MRE 0.990 Yes
CNV 0.993 Yes
Drusen 0.974 Same
ERM 0.966 Same
Others (GA, CSR, Full/partial thickness macular hole, VMT) 0.980 Same
2018 Shigueoka et al. [57] Glaucoma (OCT + SAP) Feature extraction + Several ML classifiers University of Campinas, Brazil (124) Glaucoma: Early or moderate, none 0.931 0.900 0.800 Same (3)
2017 Schlegl et al. [77] AMD, DME: Fluid seg. CNN (Segmentation, custom) Private (1200) Intraretinal fluid 0.940
Subretinal fluid 0.933