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Abstract
Background: Over a life course, human adaptive immunity to antigenically mutable pathogens 
exhibits competitive and facilitative interactions. We hypothesize that such interactions may lead to 
cyclic dynamics in immune responses over a lifetime.
Methods: To investigate the cyclic behavior, we analyzed hemagglutination inhibition titers against 
21 historical influenza A(H3N2) strains spanning 47 years from a cohort in Guangzhou, China, and 
applied Fourier spectrum analysis. To investigate possible biological mechanisms, we simulated 
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individual antibody profiles encompassing known feedbacks and interactions due to generally recog-
nized immunological mechanisms.
Results: We demonstrated a long-term periodicity (about 24 years) in individual antibody responses. 
The reported cycles were robust to analytic and sampling approaches. Simulations suggested that 
individual-level cross-reaction between antigenically similar strains likely explains the reported cycle. 
We showed that the reported cycles are predictable at both individual and birth cohort level and 
that cohorts show a diversity of phases of these cycles. Phase of cycle was associated with the risk 
of seroconversion to circulating strains, after accounting for age and pre-existing titers of the circu-
lating strains.
Conclusions: Our findings reveal the existence of long-term periodicities in individual antibody 
responses to A(H3N2). We hypothesize that these cycles are driven by preexisting antibody 
responses blunting responses to antigenically similar pathogens (by preventing infection and/or 
robust antibody responses upon infection), leading to reductions in antigen-specific responses over 
time until individual’s increasing risk leads to an infection with an antigenically distant enough virus 
to generate a robust immune response. These findings could help disentangle cohort effects from 
individual-level exposure histories, improve our understanding of observed heterogeneous antibody 
responses to immunizations, and inform targeted vaccine strategy.
Funding: This study was supported by grants from the NIH R56AG048075 (DATC, JL), NIH 
R01AI114703 (DATC, BY), the Wellcome Trust 200861/Z/16/Z (SR), and 200187/Z/15/Z (SR). This 
work was also supported by research grants from Guangdong Government HZQB-KCZYZ-2021014 
and 2019B121205009 (YG and HZ). DATC, JMR and SR acknowledge support from the National 
Institutes of Health Fogarty Institute (R01TW0008246). JMR acknowledges support from the Medical 
Research Council (MR/S004793/1) and the Engineering and Physical Sciences Research Council (EP/
N014499/1). The funders had no role in the study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Editor's evaluation
This article follows the still unanswered concept of ‘original antigenic sin’ and shows the existence of 
a 24-year periodicity of the immune response against influenza H3N2. The valuable work suggests a 
long-term periodicity of individual antibody response to influenza A (H3N2) within a city.

Introduction
Over a life course, a key feature of human adaptive immune responses is the ability to continually 
update and refine responses to new antigens. A key example is immune responses to influenza, a 
pathogen that is constantly experiencing genetic and antigenic change. Antibodies mounted against 
a specific influenza virus decay (in either absolute magnitude or antigenic relevance) after exposure 
until re-exposure or infection to an antigenically similar virus occurs, whereupon back-boosting of 
antibodies acquired from previous infections (e.g., activation of memory B cells) can occur, as well as 
updating antigen-specific antibodies to the newly encountered infection (e.g., activation of naïve B 
cells) (Amanna et al., 2007; Edridge et al., 2020; Fonville et al., 2014; Kucharski et al., 2018). As 
antibodies are considered a correlate of protection from infection (Cowling et al., 2019; Dunning, 
2006; Krammer, 2019; Truelove et al., 2016), studies often measure antibodies against the circu-
lating strain to estimate the risk of infection. However, interactions between antibodies that were 
acquired from recent and long-ago infections can mean that characterization of antibodies to only 
currently circulating strains of pathogens may only partially capture antibody protection and risk of 
infection (Cowling et al., 2019; Ng et al., 2019; Yang et al., 2020).

Original antigenic sin (OAS) is a widely accepted concept describing the hierarchical and persistent 
memory of antibodies from the primary exposure to a pathogen in childhood. Recent studies suggested 
that non-neutralizing antibodies acquired from previous exposures can be boosted and may blunt 
the immune responses to new influenza infections (e.g., immunodominance) (Andrews et al., 2015; 
Auladell et al., 2022; Gouma et al., 2020; Krammer, 2019). Antibody-mediated immune response to 
multiple infections generated through repeated exposures to antigenically variable pathogens results 
in not only the facilitative interactions (e.g., back-boosting and cross-protection; Krammer, 2019), but 
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also competitive interactions (e.g., immune imprinting; Gostic et al., 2016; Reynolds et al., 2022; 
Vieira et al., 2021), and antigenic seniority (Lessler et al., 2012). Immune functions targeting anti-
genically specific pathogens may rise or lower in prevalence over a person’s lifetime, in response to 
both a new infection and these competitive and facilitative interactions. Such interactions provide 
positive and negative feedbacks that have routinely been found to drive cycles in other systems 
(e.g., predator–prey, host–parasite) (Post and Palkovacs, 2009; Yoshida et al., 2003). Therefore, we 
might expect feedback mechanisms to introduce intrinsic temporal cycles in an individual’s immune 
responses to antigenically variable pathogens over a lifetime, yet these cycles have not often been 
investigated.

Here, we examine seasonal influenza as a case study. Three subtypes of influenza (A(H3N2), 
A(H1N1), and B) cause an estimated 291,000–645,000 deaths globally every year (Iuliano et al., 2018). 
Although viruses of the same subtype share similar surface proteins, continuous genetic mutation 
leads to antigenic variation, resulting in escape from immune recognition by antibodies generated by 
previous infections. However, escape is not complete. Cross-reactive immunity across strains exists for 
viruses isolated at different times (Bedford et al., 2014; Fonville et al., 2014; Krammer, 2019; Smith 
et al., 2004). While high levels of antibody have been found to be protective from infection, they have 
also been found to be associated with reduced antibody responses to new infections and influenza 
vaccination (Auladell et  al., 2022). New infections were found to boost antibodies against previ-
ously encountered viruses as much if not more than that of the infecting virus (Auladell et al., 2022). 
Therefore, we hypothesized that the combination of antigen-specific and nonspecific responses may 
give rise to cycles in antibody responses over an individual’s life span. We tested the hypothesis 
that human adaptive immune responses exhibit nonlinear interactions with evolving viruses, creating 
intrinsic cycles in antibody responses.

To test the hypothesis, we characterized the periodic behavior of 777 paired antibody profiles, 
measured in 2010 (baseline) and 2014 (follow-up), measuring antibody responses (i.e., hemagglutina-
tion inhibition [HI] titers) to 21 A(H3N2) strains circulating over 47 years (Figure 1A, Figure 1—figure 
supplements 1–3; Jiang et  al., 2017; Yang et  al., 2020). Only 0.6% (n = 5) of participants self-
reported influenza vaccinations between the two visits; therefore, the observed changes in HI titers 
between the two visits were likely due to natural exposures. We used Fourier analysis to examine the 
periodicity of individual antibody responses, after accounting for shared variations arising from virus-
specific population-level circulation and/or laboratory measurement. We assessed the robustness of 
the observed cycles to multiple analytic and sampling methods. We then used a previously published 
mechanistic model that characterizes individual antibody responses to a set of antigenically similar 
strains to test the sensitivity of these cycles to multiple generally recognized biological mechanisms 
(Kucharski et  al., 2018). Finally, we determined whether the cyclic pattern in individual antibody 
responses is predictable and whether it could improve the prediction of the risk of seroconversion to 
circulating strains of influenza A(H3N2) over existing models.

Results
Identifying long-term cycles in individual antibody responses to 
influenza A(H3N2)
Antibody titers against a set of strains isolated over 47 years, when ordered by the time of isolation 
of the tested strains, form a time series that describes the immune history of an individual and cover a 
range of antigenic distances (Figure 1—figure supplements 3 and 4; Yang et al., 2020). To describe 
variations in these time series attributable to virus-specific and/or individual-level host characteristics, 
we fitted a generalized additive model (GAM) of log-titers with strain-specific intercepts and nonlinear 
effects of age at serum collection (i.e., biological age) and age at the year when strains were isolated 
(i.e., birth cohort effect) (Kucharski et al., 2018). Strain-specific intercepts (Figure 1B, Figure 1—
figure supplement 1B) were estimated to adjust for the average population antibody responses due 
to A(H3N2) circulation and/or virus-specific differences in laboratory assay measurements. Residuals 
were then estimated to represent individual-level departures from population averages (Figure 1C, 
Figure 1—figure supplement 5) and were interpolated to annual resolution with spline function (see 
details in ‘Methods).

https://doi.org/10.7554/eLife.81457
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Figure 1. Long-term cycles in individual antibody responses to influenza A(H3N2) at baseline. (A) Hemagglutination inhibition (HI) titers against 
A(H3N2) strains at baseline. Each row shows an antibody profile for a participant. Participants are sorted by age (y-axis). Strains (x-axis) are sorted by 
the year of isolation, which are listed in the x-axis of (B). (B) Strain-specific intercepts. A generalized additive model (GAM) was fitted to log HI titers 
(shown in A) on age at sampling (spline), age at isolation (spline), and strains (categorical) (also used for C). With the model, we extracted strain-specific 
intercepts (representing population level activity; shown in B) and calculated the residuals between predicted and observed log HI titers for each 
individual (individual-level antibody responses; shown in C and used for D, E; details in Figure 1—figure supplement 5A). (C) Illustration of estimating 
individual time series of residuals. Estimates were derived from the GAM model in (B). Residuals were calculated as the difference between observed 
and estimated HI titers (i.e., black minus orange; shown as the blue line). (D) Illustration of a Fourier spectrum. Peak (i.e., the frequency explaining 
the largest variance) and weighted frequency of a Fourier spectrum of the interpolated time series of residuals shown in (C). (E) Distribution of peak 
frequencies of individual residuals. We performed Fourier spectral analysis (shown in D) on the time series of residuals of each person and extracted 
the peak frequency. The light green shows the distribution of peak frequencies across participants, with the dashed vertical line indicating the peak 
frequencies that had the highest proportions among individuals. Median (thick gray ticks), interquartile (gray boxes), and 95% intervals (thin gray ticks) of 
distributions from 1000 permutations.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Variance (%) explained by low frequencies and peak frequencies for Fourier spectra of individual residuals.

Figure supplement 1. Long-term cycles in individual antibody responses to influenza A(H3N2) at follow-up.

Figure supplement 2. Representative individual profiles of hemagglutination inhibition (HI) titers.

Figure supplement 3. Antigenic map and paired antigenic distances of influenza A(H3N2) strains.

Figure supplement 4. Conceptual plot for individual life-course immune responses to influenza.

Figure supplement 5. Representative individual profiles of residuals of hemagglutination inhibition (HI) titers.

Figure supplement 6. Illustration of estimation of individual time series of residuals and Fourier analysis of observed and permutation of time series.

Figure supplement 7. Validation using values generated from random distributions with no periodicity.

Figure supplement 8. Validation using values generated from periodic curves.

https://doi.org/10.7554/eLife.81457
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We investigated whether cyclic behavior was present in antibody responses by performing Fourier 
analysis on each individual’s time series of residuals (Figure 1—figure supplement 5). The periodicity 
for each participant was determined by the frequency (‘peak frequency’ hereafter) that explained the 
most variance in the Fourier spectrum (Figure 1D). To test the significance of these peak frequencies, 
we compared the distribution of peak frequency across participants with those distributions (i.e., 
null expectation) from 1000 permutations, in which observations for each time series were shuffled 
(Figure 1—figure supplement 6C and D). This null expectation represents the peak frequency distri-
bution of random nonperiodic time series and reflects the underlying structure that is introduced by 
our sampling and interpolation approaches (Figure 1—figure supplements 7 and 8).

We found that 33.6% (95% CI, 30.3–37.0%) of participants had a peak frequency corresponding to 
a long-term periodicity (i.e., 20–40 years, translated from frequencies of 0.025–0.050; see ‘Methods’) 
at baseline, which was significantly higher than null expectation (Figure  1E), suggesting that the 
observed cyclic patterns were not purely due to chance. This peak frequency range (corresponded 
to an ~24-year periodicity) accounted for a median 22.1% of the variance (interquartile range [IQR], 
11.1–35.4%) of individual-level residuals (Figure 1—source data 1). We observed similar periodicity 
at follow-up, indicating that such pattern was unlikely to be affected by recent exposures (Figure 1—
figure supplement 1C).

We conducted multiple sensitivity analyses and validations to test the robustness of the observed 
cycles in individual-level antibody responses to analytic methods and our sampling methods. 
Across these analyses, including methods that accounted for variation in each individual’s spectra 
(Figure 2A), irregularity in isolation intervals of tested strains (Figure 2B), and secular trends in our 
time series (Figure 2C, Figure 2—figure supplement 1), we found consistent evidence for long-term 
periodicity in antibody responses. Results were robust to leaving specific strains out of the analysis 
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Figure 2. Impacts of irregularly sampled data, interpolations, and long-term trends on cycles identified in individual antibody responses at baseline. 
(A) Distribution of weighted frequencies of individual Fourier spectra at baseline. We performed Fourier spectral analysis on the interpolated time 
series of residuals for each person and calculated the average frequency weighted by the variance explained (‘weighted frequency’; see Figure 1D). 
(B) Distribution of peak frequencies of individual Lomb–Scargle periodograms. We performed Lomb–Scargle periodograms on the time series of 
residuals for each person and extracted the frequency that explained the most variance (‘peak frequency’). (C) Distribution of peak frequencies of 
individual Fourier spectra of detrended residuals at baseline. We performed Fourier analysis on time series that removed the nonlinear trend identified 
using empirical mode decomposition (EMD) analysis.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of time series of residuals and their Fourier spectra before and after empirical mode decomposition (EMD).

Figure supplement 2. Distribution of peak frequencies across individuals when dropping titers of one tested strain for serums collected at baseline.

Figure supplement 3. Distribution of peak frequencies across individuals when dropping titers of one tested strain for serums collected at follow-up.

Figure supplement 4. Distribution of peak frequencies across individuals born before 1968.

Figure supplement 5. Cycles in immune responses to influenza in the Vietnam data.

https://doi.org/10.7554/eLife.81457
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(Figure  2—figure supplements 2 and 3) and method of interpolation (Figure  1—figure supple-
ments 7 and 8). A full description of sensitivity analyses including validation in subsets of our data is 
provided in ‘Methods’ (Figure 1—figure supplements 7 and 8, Figure 2—figure supplements 2–4).

Additionally, we analyzed an independent out-of-sample data set from Vietnam (HI titers of 57 
strains for 69 participants measured annually, 2007–2012; Horby et al., 2012; Kucharski et al., 2018). 
Due to the lack of data on age, we compared long-term periodicity in HI titers and found a similar 
long-term periodicity in both studies (Figure 2—figure supplement 5), suggesting that similar cycling 
is likely present in other settings, even with population-level variations.

Cycles in individual antibody responses likely associated with 
homotypic cross-immunity
To investigate possible biological mechanisms, we simulated individual antibody profiles encompassing 
known feedbacks and interactions due to generally recognized immunological mechanisms (Figure 
3—source data 1 and 2). We primarily applied a model by Kucharski et al., 2015 that describes the 
snapshot of individual antibody dynamics, resulting from varied individual infection histories, narrow 
(i.e., against recent strains) and broad (i.e., against distant strains) range of cross-reactions of antigeni-
cally similar strains and antibody waning (Figure 3—figure supplement 1; Equation 9). We extended 
the model to allow for the influence of individual-level preexisting antibodies and population-level viral 
activity on individual infection hazard (Figure 3I, Figure 3—figure supplement 1; Equations 10 and 
11). Infection events are simulated annually and individually according to individual infection hazard, 
which is then used to inform the updated antibody profiles using Kucharski’s model (Figure 3—figure 
supplement 1). As viral circulating pattern at population level is not the focus of this study and its 
potential drivers (e.g., arising from homotypic and/or heterotypic cross-immunity) are inconclusive, 
we therefore assumed two scenarios (Figure 3I) to examine the impact of predictable (i.e., cyclic) or 
nonpredictable (i.e., random) annual attack rates on the observed individual antibody responses.

We simulated individual infection histories since 1968 and sampled these simulated histories with 
the same time resolution as tested strains measured in 2014. We applied Fourier analysis on the 
resulting individual time series (see ‘Methods’). We tested several potential biological mechanisms that 
can shape individual antibody profiles through influencing individual infection hazard (i.e., individual 
preexisting titer to the circulating strain and population-level circulation) and antibody responses after 
exposures (i.e., broad and narrow cross-reactions) (Figure 3I, Figure 3—figure supplement 1). The 
breadth of such cross-reactions was implicitly assumed to be determined by the antigenic evolution 
rate in our simulations, which is 0.778-unit changes in the antigenic space per year according to prior 
estimates (Fonville et al., 2014; Kucharski et al., 2018).

We assessed the periodic pattern of the simulation from two perspectives. First, we compared 
whether the peak frequency distribution from the simulation was significantly different from the null 
distribution to determine whether the simulated antibody profiles were periodic (Figure 3I). Next, we 
compared whether the simulated antibody responses had a higher proportion of peak frequency of 
0.025–0.050 compared with the null distribution, to determine whether the simulations could recover 
the long-term periodicity that was identified in the empirical data.

Multiple models showed qualitatively similar periodic behavior to data that is different from null 
distribution and had a significantly higher proportion of simulated individual responses with long-
term periodicity (Figure 3). A key model component that exhibited long-term periodicity was cross-
reactivity between antigenically similar viruses, especially broad-range (i.e., against distantly related 
strains) cross-reactions (Figure  3D–H). When the component of broad-range cross-reactions was 
absent in the model, population-level circulation alone was not able to recover the long-term period-
icity in individual antibody responses (Figure 3B). However, when cross-reaction in antibody responses 
was included in the model, a less predictable population-level activity (i.e., random compared to cyclic 
variation, Figure 3G and H) appeared to introduce more uncertainties in the observed cycles in indi-
vidual antibody responses.

Predicting seroconversion to recent strains using cycles in individual 
antibody responses
These results suggested that, after accounting for the impact of population-level A(H3N2) circulation, 
cross-reactivity from previously infected strains likely explained the reported cyclic patterns in an 

https://doi.org/10.7554/eLife.81457
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Figure 3. Cycles in simulated antibody responses from the model accounted for different mechanisms. Colored lines are the distribution of peak 
frequencies detected in the simulated antibody profiles across individuals. Gray lines are the distributions of peak frequencies of the 1000 permutations 
of the simulated antibody profiles. For each scenario, we simulated the life course of infections and immune responses for 777 individuals of the same 
age as the participants in our study and extracted the antibody profile in 2014 for the year’s corresponding to when our 20 strains were isolated. (A) No 
biological mechanisms were modeled, and the individual risk of infection each year was purely random with a fixed probability of 0.2. (B) Narrow (i.e., 
against antigenically similar strains) and broad (i.e., against distant strains) cross-reactions of antibodies were modeled, which would however not affect 
individual risk of infection every year (i.e., the risk of infection each year was purely random with a fixed probability of 0.2). (C) Individual risk of infections 
was modeled as the randomly varied population-level H3N2 activity every year (i.e., not affected by individual antibody responses), no cross-reactions of 
antibodies were modeled. (D–F) Narrow and broad cross-reactions of antibodies were modeled, with greater cross-reactions conferring higher level of 
protection. Population-level H3N2 activity were modeled as constant (D), randomly (E), and periodically (F) varied, respectively. (G) Broad cross-reactions 
of antibodies were modeled, with greater cross-reactions conferring higher level of protection. Random variations in population-level H3N2 activity were 
modeled. (H) Narrow cross-reactions of antibodies were modeled, with greater cross-reactions conferring higher level of protection. Random variations 
in population-level H3N2 activity were modeled. (I) Biological mechanisms included in models that generated results in (A–H).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Parameters used in the simulations.

Source data 2. Mechanisms examined in the simulations.

Figure supplement 1. Conceptual plot of modeling immune responses.

Figure supplement 2. Impact of antigenic evolution speed on the reported cycles in individual antibody responses.

https://doi.org/10.7554/eLife.81457
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individual’s antibody responses. As such, we hypothesized (1) that the position of individuals in their 
antibody response cycles could be predicted years in advance if the periodic behavior was stable over 
3–4 years and (2) that the position of individuals in their antibody response cycles are associated with 
responses to future strains. We measured the position in antibody response cycles using phase angles 
(Figure 4A).

To test the first hypothesis, we predicted the phase of individual antibody response residuals to 
strains circulating in 2012 (midpoint of baseline and follow-up; Figure 4B) by fitting a log-linear regres-
sion to the residuals of HI titers measured at baseline (2010) against 14 historical strains (i.e., isolated 
between 1968 and 2002) on harmonic terms that represent the long-term periodicity (assuming as 
24 years). We found high consistency between predicted and observed phases in 2012 across partic-
ipants (Figure 4C). For example, a consistency of 73% (95% CI, 65–79%) among individuals whose 
antibody responses were predicted to be in phase I (i.e., the first quarter of a cycle).

To test the second hypothesis, we fitted a logistic regression of seroconversion (i.e., fourfold rise 
in HI titers to A/Texas/2012 or A/HongKong/2014) between baseline and follow-up on the above-
mentioned predicted phase in 2012 (using strains isolated between 1968 and 2002), and adjusted 
for biological age at baseline and the average preexisting log-titer of the two strains. We found that 
individuals who were predicted to be in phase IV (i.e., the last quarter of a cycle) were 14% (95% CI, 
4–26%) more likely to experience seroconversion to the two recent strains compared to those in phase 
I (Figure 4D).

Disentangling cohort effects using cycles in individual antibody 
responses
As a result of resonance, we expected intrinsic cycles in individual antibody responses to be correlated 
across birth cohorts (Figure  4E). There were indications of this in the correlation of phase across 
cohorts. For example, we observed a higher proportion of participants who were in phase IV for the 
2012 strain at baseline, when comparing the birth cohorts of 1986–90 (55%, 95% CI, 39–70%) with 
1961–65 (17%, 95% CI, 11–25%; chi-squared test, p<0.001). Moreover, we found that such cohort-
specific differences in phase composition (Pearson correlation = 0.67, p=0.01; Figure 4F) and the 
resulting proportions of seroconversion (Pearson correlation = 0.63, p=0.02; Figure 4G) correlated 
with the predicted cohort-specific composition of phase IV in 2012. Such correlations disappeared 
when assuming a 35- or 6-year periodicity (i.e., periodicities that were not supported by observations 
in Figure 1 and Figure 4—figure supplement 1). Of note, we found that a diversity of phases was 
exhibited by members of the same age cohorts, suggesting that individual’s cycles could depart from 
other members of their birth cohort.

Discussion
We demonstrate that human antibody responses to influenza A(H3N2) display long-term period-
icity, which are biologically consistent with nonlinear human adaptive immune responses (i.e., cross-
reactions) to evolving viruses. Our observations are validated by different analytic methods and 
validation in a separate study population tested by a different antibody assay. Our findings were 
robust to our sampling and interpolation methods. We further demonstrate that, at both individual 
and birth cohort levels, the phases of the antibody responses to the currently circulating strains are 
predictable and associated with seroconversion to these strains independent from the preexisting 
titers and age. Such findings could improve our forecasting of the individual and birth cohort-level 
risks of infections and our understanding of heterogenous immune responses and vaccine effective-
ness against influenza viruses.

We were able to qualitatively recover the observed long-term periodicity only when including 
cross-reactions between antigenically similar strains in the simulations. Particularly, our simulation 
results suggested that model including repeated exposures or population-level A(H3N2) activity alone 
did not recover the long-term periodicity (Figure 3). Such findings fit in previous observations that 
strain-transcending antibody responses to past infections accumulate and build up contemporary 
antibody profiles (Fonville et  al., 2014; Yang et  al., 2020). Of note, the long-term periodicity is 
a retrospective characterization of individual antibody profiles that arose from multiple exposures 
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Figure 4. Predicting seroconversion to the recently circulated strains using phases of individual antibody responses. (A) Concept plot for phases. 
Four phases were classified based on the phase angles between 0 and 360°. (B) Illustration of predicting phase in 2012 using individual residuals from 
baseline hemagglutination inhibition (HI) titer that were measured against 14 historical strains (i.e., isolation year up to 2002). Green dots and solid 
green lines indicate the residuals against historical strains that were used to fit the periodic function (shown in solid blue lines). With the fitted periodic 
function, we predicted phase angles in 2012 based on the predicted residuals for individual’s titers against strains that were circulating after the training 
period (shown in dotted blue lines). For reference, we also showed the observed baseline residuals for individual’s titers against strains that were 
circulating after the training period (indicated as green circles and dotted green lines). (C) Observed and predicted phase in 2012 across participants. 
Colors represent participants’ observed phase in 2012, with I, II, III, and IV represented by red, light blue, dark blue, and pink, respectively (same for 
D and E). (D) Observed cohort-specific distribution of phase in 2012. (E) Adjusted risk of seroconversion to recent strains (i.e., A/Texas 2012 or A/
HongKong/2014) between baseline and follow-up visits for different phases. We estimated associations between phases in 2012 that were estimated 
from individual antibody profile residuals and seroconversion to any of the two recent strains and adjusted for age at sampling and the average 
preexisting titer of the two strains. (F) Observed and predicted cohort-specific proportion of phase IV in 2012. (G) Predicted proportion of phase IV in 
2012 and the observed proportion of seroconversion to recent strains between baseline and follow-up for each cohort.

Figure 4 continued on next page
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and cross-protection, which should not be directly interpreted as the duration of onward protection 
conferred by existing antibodies.

Within-subtype cross-reactions may drive individual-level long-term periodicity in antibody 
responses through temporal (but waning) cross-protection (i.e., positive feedback) and blunting 
generation of specific antibodies (i.e., negative feedback) against the circulating strains. A recent 
cohort study found that homotypic cross-protection against PCR-confirmed infections for up to five 
seasons after infections supported cross-protection that eventually wanes (Wraith et al., 2022). In 
addition, the ~24-year periodicity implicitly suggested that antibodies gained from last immunizing 
events may interfere with the antibodies against the circulating strains for a maximum of 18 years (i.e., 
phases I–III in Figure 4B), before the antigenicity between the last immune strain and the circulating 
strain was too different to cause high-level cross-reactions in binding antibodies. This is in line with 
our previous findings that people’s sera showed very little to no cross-reaction with strains that were 
isolated 20 years prior to their births (Lessler et al., 2012; Yang et al., 2020).

Our findings suggest that long-term periodicity in HI titer may be driven by broad cross-reactions 
between strains that accumulate as people are exposed to multiple viruses over their lives. The 
breadth of such cross-reactions was determined by previously reported antigenic evolution (Fonville 
et al., 2014; Kucharski et al., 2018). In simulations, we found that antigenic evolution rates signifi-
cantly change the periodicity in individual antibody responses (Figure  3—figure supplement 2). 
Slower antigenic evolution rates shift cycles in individual antibody responses to longer periodicity, 
with the extreme that people could acquire lifelong immunity against antigenically stable viruses (e.g., 
measles) (Amanna et al., 2007). Though in our simulations faster antigenic evolution led to shorter 
cycles, high rates of antigenic evolution could diminish the periodicity in antibody responses through 
frequent reactions to re-exposures.

We found associations between the phase of antibody response cycles and the risk of serocon-
version to circulating strains after accounting for the homologous preexisting HI titers. Due to the 
low influenza vaccine coverage in our participants and in China in general, the observed seroconver-
sions likely reflected antibody responses after natural exposures during the study period. Previous 
studies have reported differential risk in individuals with the same homologous HI titer, proposing 
that unknown individual exposure histories and cohort effects are possible explanations (Turbelin 
et al., 2013; Yang et al., 2018). Our findings suggest that cyclic patterns in an individual’s antibody 
responses, which may be predictable at both individual and cohort levels, may contribute to this 
heterogeneity. In addition, our findings suggested that measuring seroconversion against a circulating 
strain could reveal a limited amount about protective immunity. Measuring responses to both circu-
lating and previously circulating viruses (as well as calculating phase) could improve characterization 
of people’s risk (Quandelacy et al., 2021).

We demonstrate that resonance of cycles in individual-level antibody responses could form varia-
tions in phase distribution of antibody responses across birth cohorts, which is consistent with previous 
findings that the fraction of A(H3N2) associated cases across different birth cohorts was found to 
change year to year (Turbelin et al., 2013; Yang et al., 2018). Our results also showed that the phase 
distribution of antibody responses across birth cohorts may be predictable and could be further used 
to predict the cohort-specific seroconversion against the circulating strains. This is potentially useful 
to determine and vaccinate the high-risk groups based on the exposure histories that could be shared 
by birth cohort. We did not attempt to explore the impact of antigenic evolution speed and the asso-
ciated dynamics in antibody responses on shaping age-specific patterns of cases, while we speculate 
that antigens with faster antigenic evolutions may attack different age groups at relatively similar risks, 
while antigens with slower antigenic evolutions tended to attack the children (e.g., A(H3N2) vs. B/
Victoria in Turbelin et al., 2013; Yang et al., 2018).

In this study, we did not explore the interactions between individual-level antibody responses with 
population-level A(H3N2) activity (e.g., epidemic sizes). We minimized the impacts from population 
level by performing the Fourier analysis with individual departures from population average and 
validating the results with data from the Vietnam cohort. Simulation results further suggested that 

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Impact of periodicity on predictions of cohort-specific phases and seroconversions to circulating strains.

Figure 4 continued
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the population-level virus activity alone was not able to recover the observed periodicity, though 
epidemics with less regularity seemed to increase the variability in individual-level periodicity in the 
presence of broad cross-reactions (Figure 3G and H).

We recognize that HA-binding antibodies only mediate about half of the protection against 
influenza infections, while other forms of immunity, including neutralizing antibodies, non-HA head-
specific inhibitory antibodies, and cellular immunity, would provide independent protections against 
infection and the severity of the diseases (Cowling et al., 2019; Meade et al., 2020; Ng et al., 2019; 
Stadlbauer et al., 2019). The breadths and oscillation patterns may differ across different forms of 
immunity.

Our work has several limitations. First, between-subtype interactions have not been incorporated 
into our framework. It is arguable that whether infections with A(H1N1) could confer years-long 
cross-protections against A(H3N2) in humans at individual level (Sonoguchi et al., 1985), while prior 
findings tended to support that between-subtype interaction could alter the transient cycles (i.e., 
within seasons) (Goldstein et al., 2011; Meade et al., 2020; Ranjeva et al., 2019). Nevertheless, 
our simulation results suggested that only including population-level circulation – regardless of its 
underlying drivers – could not recover the observed long-term periodicities in individual antibody 
responses. Second, our simulation results, while robust across parameter settings, may depend on 
the simplifying assumptions on immunological mechanisms we made (e.g., individual immunity-
dependent protection) and therefore only qualitatively recovered the observed pattern. Finally, the 
exact value for the long-term periodicity was determined by a series of fixed frequencies that were 
examined in the Fourier analysis, which depend on the number and span of the tested strains. There-
fore, more accurate values for the periodicity could be estimated if the tested strains were sampled 
more densely.

Methods
Ethical approval
The following institutional review boards approved the study protocols: Johns Hopkins Bloomberg 
School of Public Health (IRB 1716), University of Florida (IRB201601953), University of Liverpool, 
University of Hong Kong (UW 09-020), and Guangzhou No. 12 Hospital (‘Research on human influenza 
virus immunity in Southern China’). Written informed consent was obtained from all participants over 
12 years old; verbal assent was obtained from participants 12 years old or younger. Written permission 
from a legally authorized representative was obtained for all participants under 18 years old.

Cohort and serological data
We used serum collected from 777 participants who were recruited to an ongoing Fluscape cohort in 
Guangzhou, China, and provided blood samples for both a baseline visit (December 2009 to January 
2011) and a follow-up visit (June 2014 to June 2015) (Jiang et al., 2017; Yang et al., 2020). The 
cohort recruited 40 locations that are randomly distributed in a fan-shaped area spanning from the 
city center to the neighboring rural areas. Participants, aged 2–86 years old with a male-to-female 
ratio of 1.106:1 at baseline sampling, were recruited from households that were randomly selected in 
these locations. Details of the cohort and participants included have been described previously (Jiang 
et al., 2017; Yang et al., 2020).

We measured antibody titers against 21 A(H3N2) strains using HI assays of paired serum collected 
from the two visits (Yang et al., 2020). Strains tested were isolated from 1968 to 2014, and priority 
was given to those included in vaccine formulation and/or used to construct the antibody landscape 
by Fonville et  al., 2014. The strains we used are A/Hong Kong/1968, X-31 (isolated in 1970), A/
England/1972, A/Victoria/1975, A/Texas/1977, A/Bangkok/1979, A/Philippines/1982, A/Missis-
sippi/1985,A/Sichuan/1987, A/Beijing/1989, A/Beijing/1992, A/Wuhan/1995,A/Victoria/1998, A/
Fujian/2000, A/Fujian/2002, A/California/2004, A/Brisbane/2007, A/Perth/2009, A/Victoria/2009, A/
Texas/2012, and A/Hong Kong/2014 (Yang et al., 2020). These virus strains were obtained through 
the World Health Organization (WHO) collaboration network and passaged on Madin–Darby Canine 
Kidney (MDCK, ATCC CCL-34) cells or 9-day-old embryonic chicken eggs. Detailed laboratory 
methods have been described previously (Lessler et al., 2011; Yang et al., 2020).

https://doi.org/10.7554/eLife.81457
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Statistical analysis
Generalized additive model
To extract population- from individual-level A(H3N2) activity, we fitted a GAM of log HI titers 
(Figure 1A, Figure 1—figure supplement 1A) on the spline of age at baseline sampling, the spline of 
age at circulation (i.e., difference between year of strain isolation and year of birth of the participant) 
with strain-specific intercepts, which has been described in detail in a previous study (Lessler et al., 
2012). In brief, log-titer for strain ‍j‍ and participant ‍i‍ is modeled as

	﻿‍ E
(
logTi,j

)
= β0,j + β1s

(
ai
)

+ β2s
(
ai − yj

)
‍� (1)

where ‍s
(
.
)
‍ denotes spline terms, ‍ai‍ denotes the age of the participant ‍i‍ at baseline sampling, and 

‍yj‍ denotes the number of years since strain ‍j‍ was isolated until baseline sampling. Strain-specific inter-
cepts ‍β0,j‍ were estimated and further used as a proxy for the population-level variations in A(H3N2) 
activities between 1968 and 2014 in the main analysis (Figure 1B, Figure 1—figure supplement 1B).

Residuals were calculated as the difference between observed and predicted log-titers from the 
fitted GAM to characterize individual-level A(H3N2) immune responses (Figure 1C, Figure 1—figure 
supplement 6A). A time series of residuals for participant ‍i‍ was derived as

	﻿‍ Ri
(
j
)

= logTi,j − E
(
logTi,j

)
‍� (2)

and then chronologically ordered by the year of strain isolations. HI titers for baseline and follow-up 
visits were fitted separately, and only titers to strains that were isolated after the person was born were 
included in the model.

Fourier analysis
Periodicity in individual antibody responses to influenza was examined using Fourier spectral analysis 
with linear detrending, from which variances explained by each frequency were extracted (Figure 1D, 
Figure  1—figure supplement 6B). As the tested A(H3N2) strains were irregularly spaced in time 
(2–3-year intervals), we fitted a spline and interpolated the time series to a yearly resolution before 
applying the Fourier analysis.

For individual-level periodicity, we extracted the frequency that explained the most variance (i.e., 
the greatest spectral power; ‘peak frequency’ hereafter) for each individual (Figure 1D, Figure 1—
figure supplement 6B) and plotted the distribution of peak frequencies across 777 participants 
(Figure 1E, Figure 1—figure supplement 1C). To test the significance against the null distributions, 
we compared the observed distribution of peak frequencies with the distribution of peak frequencies 
from 1000 permutations. In each permutation, we shuffled the time series of residuals for each person 
and extracted the peak frequency for each individual (Figure 1—figure supplement 6C and D).

Validations and sensitivity analyses
Weighted frequency
The peak frequency of the Fourier spectrum we extracted only represents the frequency that 
explained the most variance, but it cannot reflect the variance explained by the other frequencies, 
that is, whether the Fourier spectrum is skewed toward the peak frequency or is flatly distributed 
(Figure 1D, Figure 1—figure supplement 6). Thus, we calculated the average frequency weighted 
by the variance explained (‘weighted frequency’), to represent the weighted center for each spectrum 
(Figure 1—figure supplement 6B). The weighted frequency ‍fw‍ was calculated as

	﻿‍
fw =

∑
k fkvk∑
k vk ‍� (3)

where ‍fk‍ and ‍vk‍ denote the ‍kth‍ examined frequency and its estimated variance the Fourier spec-
trum. We found that our data was more likely to show lower weighted frequencies and longer periods 
compared to the permutations (Figure 2A).

https://doi.org/10.7554/eLife.81457
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Addressing irregularly sampled intervals with Lomb–Scargle periodogram
To examine the impact of using irregularly sampled intervals and interpolation on the results from the 
Fourier spectrum analysis, we performed a sensitivity analysis using the Lomb–Scargle periodogram 
(Glynn et al., 2006), which is often used to detect the periodicity of irregularly sampled time series. As 
in the previously described Fourier spectrum analysis, we derived the spectrum for each individual’s 
time series of residuals using the Lomb–Scargle periodogram, which estimated the variance explained 
at each frequency. We then extracted the frequency with the most variance explained, that is, ‘peak 
frequency’ for each spectrum. Similar to the main analysis, we compared the distribution of observed 
peak frequency derived from Lomb–Scargle periodogram across participants with those from 1000 
permutations (Figure 2B). In each permutation, we shuffled the time series of residuals for each indi-
vidual (maintaining the irregularity in the sampling), and then extracted the peak frequency of the 
Lomb–Scargle periodogram for each shuffled time series.

Removing nonlinear trends with empirical mode decomposition (EMD)
Although we removed the linear trend before applying Fourier analysis, several time series contained 
nonlinear trends that could potentially bias the estimate of the peak frequency to lower values (e.g., 
participants 1 and 2 in Figure 2—figure supplement 1). In order to avoid this issue, we performed 
Fourier analysis with the time series of residuals after removing nonlinear trends using EMD (Huang 
et al., 1998).

To do this, we first applied EMD to each individual’s time series of residuals, and extracted the 
underlying trend, defined as the ‘residue’ remaining after all intrinsic mode functions have been 
extracted (Figure 2—figure supplement 1). We then detrended the time series by subtracting this 
‘residue’ from the original time series. Finally, the peak frequency of the Fourier spectrum of the 
detrended time series was extracted for the individual, and the distribution of peak frequencies was 
plotted across individuals (Figure 2C). For each permutation, we shuffled the individual’s time series 
and applied EMD to the shuffled time series. The remaining steps for the permutation analysis were 
the same as above.

For participants whose time series showed nonlinear trends (e.g., participants 1 and 2 in Figure 2—
figure supplement 1), peak frequency shifted to a higher frequency after detrending with EMD. 
Meanwhile, for participants whose time series showed cycles (e.g., participants 3 and 4), the low-
frequency cycles were no longer detectable after detrending with EMD. Therefore, the results shown 
in Figure 2B were the distribution of peak frequencies after removing both nonlinear trends and some 
low-frequency cycles. The 20–40-year cycles were still detectable for both visits, suggesting that the 
long-term cycle we detected was not solely explained by the nonlinear trend of the time series.

Dropping every other strain
In order to test whether the reported cycles in the individual residuals were influenced by the rela-
tively stronger responses to some strain (e.g., X-31, A/Mississippi/1985, A/Beijing/1992, and A/
Fujian/2002), we dropped 1 out of the 21 strains and repeated the Fourier analysis to the time series 
of the remaining 20 strains. For the permutation test, we shuffled the time series of the remaining 20 
strains and reinterpolated the shuffled time series for each individual. Results suggested that drop-
ping out one strain did not affect our conclusions (Figure 2—figure supplements 2 and 3).

Validations using random values or values from periodic curves
We tested the robustness of our results from the Fourier analysis with a time series of 21 irregularly 
sampled data points with the same time resolution as our data. Time series consisted of random 
values generated from varying underlying distributions. Briefly, we drew a set of random values for 
each individual and the length of time series was based on the individual’s year of birth. We performed 
the interpolations, Fourier analysis, and extracted the peak frequency of the Fourier spectrum for each 
new time series. Finally, the distribution of peak frequencies for the simulated time series and their null 
distributions from permutations were compared.

We performed this analysis using values drawn from normal and lognormal distributions without 
periodicity (Figure 1—figure supplement 7A and B). In addition, we randomly replaced 2–4 points 
in each individual’s time series with outlier values that are rare in the underlying distribution in order 

https://doi.org/10.7554/eLife.81457
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to mimic the relatively higher titers to several strains observed in the data (Figure 1—figure supple-
ment 7C and D). There were no significant differences between peak distributions of the simulated 
random time series and their permutations, suggesting that the low frequencies identified in our real 
data cannot be explained by the correlation structure introduced by irregularly sampled intervals, 
interpolation, randomness, and outlier values.

We then applied the Fourier analysis on time series generated by sampling from periodic curves 
with white noise. To do this, we first simulated a time series from 1968 to 2014 on a yearly basis for 
each participant from a sinusoidal curve with a certain periodicity and white noise. We then subset 
the simulated time series to the years when our tested A(H3N2) strains were isolated relative to each 
participant’s year of birth. We applied the previously described interpolation and Fourier analysis to 
the subset of each time series. We repeated the above analysis for 777 participants and compared the 
distributions of peak frequencies from simulated time series and their 1000 permutations (Figure 1—
figure supplement 8). Four scenarios were tested: (1) time series of all participants had a single 
25-year periodicity; (2) time series of all participants had a single 16-year periodicity; (3) time series of 
half of the participants had a single 25-year periodicity, and time series of the other half of participants 
had a single 16-year periodicity; and (4) time series of all participants contained two superimposed 
periodic curves, with periodicities of 25 and 5 years. Results suggested that the method we used in 
the main analysis can uncover the real low-frequency signals, while uncovering high-frequency signals 
could be challenging due to the resolution of our data.

Excluding participants who were born after 1968
To examine the effects of participants who had a relatively shorter exposure history of A(H3N2) on the 
reported cycles, we repeated the Fourier spectrum analysis with time series of residuals for a subset 
of participants (n = 487) who could have experienced all tested A(H3N2) strains,that is, born before 
1968. The analysis follows the same steps as the main analysis except that the distributions of peak 
frequencies were plotted across 487 eligible participants. Cycles with low frequencies were found 
for the subset of senior participants as well, with an increasing proportion of participants having the 
lowest frequency (Figure 2—figure supplement 4).

Sera from Vietnam study
In order to test our results with a different population, we repeated the analysis with publicly available 
data reported in a previous Vietnam study (Bedford et al., 2014; Kucharski et al., 2015). Longitu-
dinal sera were collected for 69 participants in Ha Nam, Vietnam. Participants were aged 7–95 years in 
2012, of which 48% were under 30s (Fonville et al., 2014). Sera were repeatedly collected from these 
participants between 2007 and 2012 on a yearly basis (Fonville et al., 2014). HI titers were measured 
for 57 A(H3N2) strains isolated between 1968 and 2011, with a finer resolution in the more recent 
years (Fonville et al., 2014).

In the Vietnam study, multiple strains had been isolated in the same year, resulting in multiple 
titers being available for a given year for each individual. Therefore, we fitted a cubic spline in order 
to derive a time series that captured the geometric mean titers to strains isolated in the same year. 
We then applied Fourier analysis to each splined time series and extracted the peak frequency of 
each spectrum. The distribution of peak frequencies was characterized across 69 individuals by the 
year of serum collection (Figure 2—figure supplement 5). For the permutation analysis, HI titers 
were shuffled before fitting splines to the time series. As the age of participants was not available, we 
performed the analysis with raw titers without adjustment on age. Significant cycles with frequencies 
ranging from 0.050 to 0.075 (~13–20 years) were detected for serums collected in 2007, 2009, 2010, 
and 2011, coinciding with the frequencies detected using the raw titers of serums collected in our 
baseline visit.

Simulations of life-course infection history and immune responses
Model descriptions
In order to explore the mechanisms behind the reported dynamics of human immune responses to 
influenza, we applied a previously described mechanistic model (Kucharski et al., 2018) to generate 
realizations of lifelong infection history and subsequent immune responses. Simulations were individ-
ually based on a yearly scale and returned as antibody profiles consisting of titers to a panel of 47 

https://doi.org/10.7554/eLife.81457


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Yang et al. eLife 2022;11:e81457. DOI: https://doi.org/10.7554/eLife.81457 � 15 of 22

strains (i.e., strains isolated from 1968 to 2014) that were tested in 2014. The simulations consisted of 
the following steps:

1.	 Construct initial antibody profile. An initial antibody profile was generated for the sera collected 
in 1968 for participants who were born on or before 1968, or the year of birth for participants 
who were born after 1968. Titers to all 47 strains were assumed to be 0 for initial antibody 
profiles.

2.	 Extract preexisting titers for each season. For an examined year ‍y‍, we extracted the titer to the 
strain that was isolated in ‍y‍ from the latest antibody profile (i.e., antibody profile measured in 
year ‍y‍) (Figure 3—figure supplement 1).

3.	 Determine the probability of infection of the circulating strain. The probability of an individual 
infected by the strain isolated in year ‍y‍ was calculated according to the immunity-dependent 
protection (Equation 11; see section ‘Modeling immunity-dependent protection’ for details) 
and annual A(H3N2) activity (Figure 3—source data 1). For the initial year (i.e., 1968), we 
imposed a pandemic with an attack rate of 50% in the main analysis. The strain isolated in year 
‍y‍ was assumed to be the circulating strain of that year.

4.	 Simulate infection event. Infection outcome was randomly generated following a binomial 
distribution with the probability calculated in step 3. Infection outcomes were simulated for 
each individual every year.

5.	 Update immune responses. Immune responses (i.e., boost and cross-reactions from infections 
and/or immunity decay) to the whole panel of strains were updated based on the annual infec-
tion outcome (Figure 3—figure supplement 1) using the previously described model and esti-
mates (Equations 4–9 and Figure 3—source data 1; see section ‘Modeling immune responses’ 
for details; Kucharski et al., 2018). The updated antibody profiles are then used in step 2 for 
the following year (Figure 3—figure supplement 1).

6.	 Repeat steps 2–5 until 2014 and extract the antibody profiles measured in 2014.

We simulated antibody profiles for 777 individuals of the same ages as the participants in our study. 
For each individual, we repeated the above six steps from 1968 (or the year of birth) to 2014 and 
extracted the antibody profiles to all 47 strains in 2014 for further analyses.

In order to explore the mechanisms that created the observed cycles, we performed simulations 
under different scenarios that considered several generally recognized components of immunity 
(Figure 3I):

1.	 Baseline scenario (Figure 3A), which assumed a constant 50% annual probability of infection for 
all individuals and no cross-reaction or cross-protection from past infections.

2.	 Population activity-only scenario (Figure 3B), which assumed a random varied population-level 
viral activity that would affect individual probability of infection, and no cross-reaction or cross-
protection from past infections.

3.	 Narrow cross-reaction scenario (Figure  3C), which assumed annual individual probability of 
infection would be determined by individual preexisting titer and a random varied population-
level viral activity, and cross-reactions only to a narrow range of antigenic relatives (i.e., recent 
strains).

4.	 Broad cross-reaction scenario (Figure 3D), which assumed annual individual probability of infec-
tion would be determined by individual preexisting titer and a random varied population-level 
viral activity, and cross-reactions only to a broad range of antigenic relatives (i.e., distant strains).

5.	 Cross-reaction-only scenario (Figure  3E), which assumed a constant 50% annual probability 
of infection for all individuals, and cross-reaction to both narrow and broad range of antigenic 
relatives, but no cross-protection from past infections.

6.	 No population activity-only scenario (Figure 3F), which assumed annual individual probability 
of infection would be determined by individual preexisting titer but not population-level viral 
activity, and cross-reactions and cross-protection to both narrow and broad range of antigenic 
relatives.

7.	 Random population activity scenario (Figure 3F), which assumed annual individual probability of 
infection would be determined by individual preexisting titer and a random varied population-
level viral activity, and cross-reactions and cross-protection to both narrow and broad range of 
antigenic relatives.

8.	 Periodic population activity scenario (Figure  3F), which assumed annual individual proba-
bility of infection would be determined by individual preexisting titer and a periodically varied 
population-level viral activity (5-year periodicity), and cross-reactions and cross-protection to 
both narrow and broad range of antigenic relatives.

https://doi.org/10.7554/eLife.81457
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Modeling immune responses
We adapted the previously described model to simulate immune responses after exposures (Kucharski 
et al., 2018); the parameters used are shown in Figure 3—source data 1. The immune response after 
an infection is divided into long-term boosting, ‍dl

(
j, mt

)
‍, and short-term boosting, ‍ds

(
j, mt

)
‍, modeled 

as

	﻿‍ dl
(
j, mt

)
= max

(
0, 1 − σlδj, mt

)
‍� (4)

	﻿‍ ds
(
j, mt

)
= max

(
0, 1 − σsδj, mt

)
‍� (5)

where ‍δj, mt‍ denotes the difference in antigenic difference between strain ‍j‍ and the previously 
infecting strain ‍mt‍:

	﻿‍ δj, mt = ρTj, mt‍� (6)

‍Tj, mt‍ denotes the number of years between when the tested strain ‍j‍ and the infected strain ‍mt‍ were 
isolated, and ‍ρ‍ is the rate of change in antigenic units per year. Parameters ‍σl‍ and ‍σs‍ represent the 
durations of cross-reactions. Short-term immunity also wanes, as set by the waning duration ‍ω‍ and the 
number of years between the year of infection by strain ‍mt‍ and year of testing ( ‍Tmt‍ ):

	﻿‍ w
(
mt
)

= max
(
0, 1 − ωTmt

)
‍� (7)

The antigenic seniority was scaled by a suppression parameter ‍τ ‍ and the order of infection ( ‍Nm‍ ) 
among all infected strains ‍Xt‍ :

	﻿‍ s
(
Xt, mt

)
= max

(
0, 1 − τ

(
Nm − 1

))
‍� (8)

Prior study estimated ‍τ ‍ as 0.04, while we explored both 0 and 0.04 and found minimal impact on 
our main results. Therefore, we assumed ‍τ ‍ as 0 for simplicity.

Finally, the titer against strain ‍j‍ for person ‍i‍ tested in year ‍t‍ is

	﻿‍
µi,j,t =

∑
mt∈Xt

s
(
Xt, mt

) [
µldl

(
j, mt

)
+ µsw

(
mt
)

ds
(
j, mt

)]
‍� (9)

where ‍µl‍ and ‍µs‍ denote the mean log-titers of long-term and short-term boost to an infecting 
strain, respectively.

Modeling immunity-dependent protection
For the baseline scenario and cross-reaction-only scenario, the probability of infection was assumed 
to be a constant. For the cross-protection and antigenic seniority scenarios, a higher HI titer to a 
circulating A(H3N2) strain is assumed to be associated with lower risk of infection with that strain 
(Figure 3—figure supplement 1). We assumed that the 50% protective titer is 1:40 (i.e., ‍µ50 = 3‍ on a 
log scale). The titer-dependent risk of infection is modeled as (Vieira et al., 2021)

	﻿‍
pI|µ = 1

1 + eβ
(
µ − µ50

)
‍� (10)

where ‍β‍ is the scale parameter of the titer-dependent protection estimated in previous studies 
(Yuan et al., 2017). After adjusting for annual A(H3N2) activity ( ‍λt‍ ), the titer-dependent probability 
of infection of strain ‍j‍ for person ‍i‍ tested in year ‍t‍ s

	﻿‍
pI|µi, j, t = λt

1 + eβ
(
µi, j, t − µ50

)
‍� (11)

The annual A(H3N2) activity, ‍λt‍ , was included to explore the impact of the virus circulation at 
population level on the observed long-term cycles in individual antibody responses. Three different 
hypothetical scenarios were assumed for ‍λt‍ :

1.	 ‍λt = 0.2‍, where annual activity was assumed as constant across the 47  years with an annual 
attack rate of 20%.

2.	 ‍λt‍ ~ Uniform(0, 0.2), where annual activity varies between 0 and 0.2 randomly.
3.	 ‍λt = 0.2sin

(
2πt/5

)
‍, where annual activity varies year to year with a periodic pattern.

https://doi.org/10.7554/eLife.81457
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The main objective of this analysis was to demonstrate that population circulation alone was not 
able to recover the observed periodicity in individual antibody responses. Thus, although there remain 
debates about the interactions between influenza subtypes, we showed that it seemed not to be the 
main driver of the observed periodicity in individual antibody responses.

Prediction of individual antibody responses to future strains using 
intrinsic cycles
Estimation of the phase
We estimated the phase angle ( ‍py,i‍ , in degree) of antibodies against a strain ‍j‍ that circulated in a 
given year ‍y‍ for person ‍i‍, to represent the position where the antibody against the tested strain stands 
in the entire antibody responses of this person. We first fitted a regression to the time series of indi-
vidual residuals ( ‍Ri

(
y
)
‍) for strains that were isolated during a certain period and included harmonic 

terms that represent the periodic patterns in the antibody responses.

	﻿‍ Ri
(
y
)

= γ0 + γ1sin
(
2πyf

)
+ γ1cos

(
2πyf

)
‍� (12)

where ‍f ‍ is assumed as the inverse of the periodicity that most of our participants showed, that is, 
24 years. With the estimated coefficients from Equation 12, we predict the phase angle in radian ( ‍ry,i‍ 
) of strain ‍j‍ that circulated in given year ‍y‍ for person ‍i‍ as follows:

	﻿‍ ry, i = 2πyf0 + ϕi‍� (13)

where ‍ϕi‍ denotes the person ‍i‍ ’s phase shift:

	﻿‍ ϕi = atan2
(
γ1, γ2

)
‍� (14)

We then translated the phase angle from radian to degree as follows:

	﻿‍ py, i = 180◦×ry,i
π ‍� (15)

The phase angle in degree was then classified into four categories, namely, phase I (0–90°), II 
(91–180°), III (181–270°), and IV (271–360°) (Figure 4A). Of note, we fitted the model aiming to esti-
mate the position of the harmonic oscillators and did not consider for other nonharmonic factors; 
therefore, the model may not fully capture the variations of the data.

Comparison between observed and predicted phase in 2012
We predicted the phase angle (in degree) for the strain that circulated in 2012, which is the middle 
between our baseline (2010) and follow-up (2014) visit. We first fitted Equation 12 to HI titers that 
were measured for strains isolated between 1968 and 2002 measured at baseline (i.e., 14 strains, 
Figure 4B). Predicted phase in 2012 was then estimated using Equations 13–15. To estimate the 
observed phase in 2012, we fitted the model in Equation 12 to the full panel of tested strains (i.e., 21 
strains) measured at baseline and calculated the phase angle using Equations 13–15.

To assess the consistency between the prediction and observation of phases in 2012, we plotted 
the distribution of the observed phase in 2012 among people who were predicted to in each of the 
four phases in 2012 (Figure 4C).

Association between phase and seroconversion
We examined the association between the phase in individual antibody responses and antibody 
responses to circulating strains (Figure 4D). We measured the antibody responses circulating strains 
as the seroconversion (i.e., fold of change ≥4) to either A/Texas/2012 or A/HongKong/2014 (i.e., 
strains that were circulated between baseline and follow-up). We fitted a logistic regression to sero-
conversion and adjusted for the predicted phase (in categories) in 2012, the average of titers against 
the two tested strains at baseline (i.e., preexisting titers in log scale), and the participants’ age at 
baseline.

https://doi.org/10.7554/eLife.81457
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Disentangle birth cohort effects using intrinsic cycles in individual antibody 
responses
To examine the differences in phase distribution across different birth cohorts, we first estimated 
the observed individual phase in 2012 by fitting Equations 12–15 to the full panel of tested strains 
measured at baseline. We compared the distribution of phase in 2012 among 5-year binned birth 
cohorts using chi-squared test (Figure 4E).

We estimated the phase distribution across birth cohorts using the predicted phase in 2012, which 
was derived by fitting Equations 12–15 to the HI titers against strains isolated between 1968 and 
2002 measured at baseline. We examined the association between the predicted and observed phase 
distribution across birth cohorts by calculating the Pearson correlation between the predicted and 
observed proportion of phase IV in each birth cohort (Figure 4F).

We examined the association between the predicted cohort-specific proportion of phase IV and the 
observed proportion of seroconversion to either A/Texas/2012 or A/HongKong/2014 using Pearson 
correlation (Figure 4G).

Software and programs
The studies were performed following the STROBE checklist wherever is applicable. All analyses were 
performed in R version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria). We used the 
‘mgcv’ package to fit GAMs (Wood, 2011). The Lomb–Scargle periodogram was performed with 
the ‘spectral’ package (Seilmayer, 2016). We performed the empirical mode decomposition with 
the ‘EMD’ package (Kim and Oh, 2009). Simulations of life-course infection history and immune 
responses were performed with the ‘Rcpp’ package (Eddelbuettel and François, 2011). Source 
code used in this study is openly available at https://github.com/UF-IDD/Fluscape_Periodicity, (copy 
archived at swh:1:rev:2fa04290f2749633f1b236be3f7fd36b33aee954; Yang, 2022).
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