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a b s t r a c t 

Using the face as a biometric identity trait is motivated by the contactless nature of the capture process 

and the high accuracy of the recognition algorithms. After the current COVID-19 pandemic, wearing a face 

mask has been imposed in public places to keep the pandemic under control. However, face occlusion due 

to wearing a mask presents an emerging challenge for face recognition systems. In this paper, we present 

a solution to improve masked face recognition performance. Specifically, we propose the Embedding Un- 

masking Model (EUM) operated on top of existing face recognition models. We also propose a novel 

loss function, the Self-restrained Triplet (SRT), which enabled the EUM to produce embeddings similar to 

these of unmasked faces of the same identities. The achieved evaluation results on three face recognition 

models, two real masked datasets, and two synthetically generated masked face datasets proved that our 

proposed approach significantly improves the performance in most experimental settings. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face recognition is one of the preferable biometric recogni- 

ion solutions due to its contactless nature and the high accuracy 

chieved by face recognition algorithms. Face recognition systems 

ave been widely deployed in many application scenarios such as 

utomated border control, surveillance, as well as convenience ap- 

lications [1–3] . However, these systems are mostly designed to 

perate on none occluded faces. After the current COVID-19 pan- 

emic, wearing a protective face mask has been imposed in pub- 

ic places by many governments to reduce the rate of COVID-19 

pread. This new situation raises a serious unusually challenge for 

he current face recognition systems. Recently, several studies have 

valuated the effect of wearing a face mask on face recognition ac- 

uracy [4–7] . These studies have reported the negative impact of 

asked faces on face recognition performance. The main conclu- 

ion of these studies [4–7] is that the accuracy of face recognition 

lgorithm with a masked face is significantly degraded, in compar- 

son to unmasked face. 

Motivated by this new circumstance we propose in this paper 

 new approach to reduce the negative impact of wearing a facial 

ask on face recognition performance. The presented solution is 

esigned to operate on top of existing face recognition models and 
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hus, avoid retraining existing solutions developed for unmasked 

ace recognition. Recent works either proposed to train face recog- 

ition models with simulated masked faces [8] or to train a model 

o learn the periocular area of the face images exclusively [9] . Un- 

ike these, our proposed solution does not require any modification 

r training of the existing face recognition model. We achieved this 

oal by proposing the Embedding Unmasking Model (EUM) oper- 

ted on the embedding space. The input for EUM is feature embed- 

ing extracted from the masked face, and its output is new feature 

mbedding similar to an embedding of an unmasked face of the 

ame identity, whereas, it is dissimilar from any other embedding 

f other identities. To achieve that through our EUM, we propose a 

ovel loss function, Self-restrained Triplet Loss (SRT) to guide the 

UM during the training phase. The SRT shares the same learning 

bjective with the triplet loss i.e. it enables the model to minimize 

he distance between genuine pairs and maximize the distance be- 

ween imposter pairs. Nonetheless, unlike triplet loss, the SRT can 

ynamically self-adjust its learning objective by focusing on mini- 

izing the distance between the genuine pairs when the distance 

etween the imposter pairs is deemed to be sufficient. 

The presented approach is evaluated on top of three face recog- 

ition models, ResNet-100 [10] , ResNet-50 [10] and MobileFaceNet 

11] trained with the loss function, Arcface loss [12] , to validate the 

easibility of adopting our solution on top of different deep neural 

etwork architectures. With a detailed evaluation of the proposed 

UM and SRT, we reported the verification performance gain by 

he proposed approach on two real masked face datasets [4,8] and 

wo synthetically generated masked face datasets. We further ex- 

https://doi.org/10.1016/j.patcog.2021.108473
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erimentally supported our theoretical motivation behind our SRT 

oss by comparing its performance with the conventional triplet 

oss. The overall verification result showed that our proposed ap- 

roach improved the performance in most of the experimental set- 

ings. For example, when the probes are masked, the achieved 

MR100 measures (the lowest false non-match rate (FNMR) for 

alse match rate (FMR) ≤ 1.0%) by our approach on top of Mobile- 

aceNet are reduced by ∼ 28% and 26% on the two real masked 

ace evaluation datasets. 

In the rest of the paper, we discuss first the related works fo- 

using on masked face recognition in Section 2 . Then, we present 

ur proposed EUM architecture and our SRT loss in Section 3 . In 

ection 4 , we present the experimental setups and implementa- 

ion details applied in this work. Section 5 presents and discuss 

he achieved results. Finally, a set of conclusions are drawn in 

ection 6 . 

. Related work 

In recent years, significant progress has been made to im- 

rove face recognition verification performance with essentially 

on-occluded faces. Several previous works [13–16] addressed gen- 

ral face occlusion e.g. wearing sunglasses or a scarf. Nonetheless, 

hey did not directly address facial mask occlusion (before the cur- 

ent COVID-19 situation). 

After the current COVID-19 situation, four major studies evalu- 

ted the effect of wearing a facial mask on face recognition perfor- 

ance [4–7] . The National Institute of Standards and Technology 

NIST) has published two specific studies on the effect of masked 

aces on the performance of face recognition solutions submitted 

y vendors using pre-COVID-19 [6] and post-COVID-19 [7] algo- 

ithms. These studies are part of the ongoing Face Recognition 

endor Test (FRVT). The studies by the NIST concluded that wear- 

ng a face mask has a negative effect on face recognition perfor- 

ance. However, the evaluation by NIST is conducted using syn- 

hetically generated masks, which may not fully reflect the actual 

ffect of wearing a protective face mask on the face recognition 

erformance. The recent study by Damer et al. [4] has tackled this 

imitation by evaluating the effect of wearing a mask on two aca- 

emic face recognition algorithms and one commercial solution us- 

ng a specific collected dataset for this purpose from 24 partic- 

pants over three collaborative sessions. The study indicates the 

ignificant effect of wearing a face mask on face recognition per- 

ormance. A similar study was carried out by the Department of 

omeland Security (DHS) [5] . In this study, several face recognition 

ystems (using six face acquisition systems and 10 matching algo- 

ithms) were evaluated on a specifically collected dataset of 582 

ndividuals. The main conclusion from this study is that the accu- 

acy of most best-performing face recognition systems is degraded 

rom 100% to 96% when the subject is wearing a facial mask. 

Li et al. [9] proposed to use an attention-based method to 

rain a face recognition model to learn from the periocular area 

f masked faces. The presented method showed improvement in 

he masked face recognition performance. However, the proposed 

pproach is only tested on simulated masked face datasets, and 

t essentially only maps the problem into a periocular recogni- 

ion problem. A recent preprint by [8] presented a small dataset 

f 269 unmasked and masked face images of 53 identities crawled 

rom the internet. The work proposed to fine-tune FaceNet model 

17] using simulated masked face images to improve the recogni- 

ion accuracy. However, the proposed solution is only tested us- 

ng a small dataset (269 images). Recently, a rapid number of re- 

earches are published to address the detection of wearing a face 

ask [18,19] . These studies did not directly address the effect of 

earing a mask on face recognition performance or presenting a 

olution to improve masked face recognition. 
2 
Motivated by the recent evaluations effort s on the negative ef- 

ect of wearing a facial mask on the face recognition performance 

4–7] and driven by the need for exclusively developing an effec- 

ive solution to improve masked face recognition, we present in 

his work a novel approach to improve masked face recognition 

erformance. The proposed solution is designed to run on top of 

xisting face recognition models. Thus, it does not require any re- 

raining of the existing face recognition models as presented in 

ext Section 3 . 

. Methodology 

In this section, we present our proposed approach to improve 

he verification performance of masked face recognition. The pro- 

osed solution is designed to operate on top of existing face recog- 

ition models. To achieve this goal, we propose an EUM. The in- 

ut to our proposed model is a face embedding extracted from a 

asked face image, and the output is a so-called “unmasked face 

mbedding”, which is intended to be more similar to the embed- 

ing of the same identity without wearing a mask. Therefore, the 

roposed solution does not require any modification or training of 

he existing face recognition solution. Fig. 1 shows an overview of 

he workflow of the proposed approach in training and operational 

odes. 

Furthermore, we propose the SRT to control the model during 

he training phase. Similar to the well-known triplet-based learn- 

ng, the SRT loss has two learning objectives: (1) Minimizing the 

ntra-class variation, i.e., minimizing the distance between genuine 

airs of unmasked and masked face embeddings. (2) Maximizing 

he inter-class variation, i.e., maximizing the distance between im- 

oster pairs of masked face embeddings. However, unlike the tra- 

itional triplet loss, the proposed SRT loss function can self-adjust 

ts learning objective by only focusing on optimizing the intra-class 

ariation when the inter-class variation is deemed sufficient. When 

he gap in inter-class variation is violated, our proposed loss be- 

aves like a conventional triple loss. The theoretical motivation be- 

ind our SRT-loss is presented along with the functional formula- 

ion later in this section. In the following, this section presents our 

roposed EUM architecture and the SRT loss. 

.1. Embedding unmasking model architecture 

The EUM architecture is based on a fully connected neural net- 

ork (FCNN). Having an FCNN architecture, where all neurons are 

onnected in two consecutive layers, we can demonstrate a gener- 

lized EUM design. This is the case because this structure can be 

asily adapted to different input shapes, and thus can be adapted 

n the top of different face recognition models, motivating our de- 

ision to use FCNN. The model input is a masked feature embed- 

ing (i.e., resulting from a masked face image) of size D ( D depends 

n the face recognition network used), and the model output is a 

eature vector of the same size D . The proposed model consists of 

our fully connected layers (FC): an input layer, two hidden layers, 

nd an output layer. The input size for all FC layers is of size d.

ach of the input and the hidden layers is followed by batch nor- 

alization (BN) [20] and Leaky ReLU non-linearity activation func- 

ion [21] . The last FC layer is followed by BN. 

.2. Unmasked face embedding learning 

The learning objective of our model is to reduce the FNMR of 

enuine unmasked-masked pairs. The main motivation behind this 

earning goal is inspired by the latest reports on evaluating the ef- 

ect of the masked faces on face recognition performance by the 

ational Institute of Standards and Technology (NIST) [6] and the 

ecent work by Damer et al. [4] . The NIST report [6] stated that
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Fig. 1. The workflow of the face recognition model with our proposed EUM. The top part of the figure (inside the dashed rectangle) shows the proposed solution in 

operation mode. Given an embedding obtained from the masked face, the proposed model is trained with SRT loss to output a new embedding that is similar to the one of 

the unmasked face of the same identity and different from the unmasked face embedding from all other identities. 
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he false non-match rates (FNMR) are increased in all evaluated 

lgorithms when the probes are masked. For the most accurate al- 

orithms, the FNMR increased from 0.3% to 5% at FMR of 0.001% 

hen the probes are masked. On the other hand, the NIST report 

oncluded that FMR appeared to be less affected when probes are 

asked. A similar observation comes from the study by Damer 

t al. [4] . This work reported that the genuine score distributions 

re significantly affected by masked probes [4] . The study also re- 

orted that the genuine score distribution strongly shifts towards 

he imposter score distributions. On the other hand, the imposter 

core distributions do not seem to be strongly affected by masked 

ace probes. One of the main observations of the previous studies 

n Damer et al. [4] , Ngan et al. [6] , is that wearing a face mask sig-

ificantly increase the FNMR, whereas the FMR seem to be less af- 

ected by wearing a mask. Similar remarks have been also reported 

n our result (see Section 5 ). Based on these observations, we mo- 

ivate our proposed SRT loss function to focus on increasing the 

imilarity between genuine pairs of unmasked and masked face 

mbeddings, while maintaining the imposter distance at an accept- 

ble level. In the following, we briefly present the naive triplet loss 

ollowed by our proposed SRT loss. 

.2.1. Self-restrained triplet loss 

Previous works [17,22] indicated that utilizing triplet-based 

earning is beneficial for learning discriminative face embeddings. 

et x ∈ X represents a batch of training samples, and f (x ) is the 

ace embeddings obtained from the face recognition model. Train- 

ng with triplet loss requires a triplet of samples in the form 

 x a 
i 
, x 

p 
i 
, x n 

i 
} ∈ X , where x a 

i 
, the anchor, and x 

p 
i 

, the positive, are two

ifferent sam ples of the same identity, and x n 
i 
, the negative, is a

ample belonging to a different identity. The learning objective of 

he triplet loss is that the distance between f (x a 
i 
) and f (x 

p 
i 
) (gen-

ine pairs) with the addition of a fixed margin value (m) is smaller 

han the distance between f (x a 
i 
) and any face embedding f (x 

p 
i 
) of 

ny other identities (imposter pairs). In FaceNet [17] , triplet loss is 

roposed to learn face embeddings by applying the Euclidean dis- 

ance to normalized face embeddings. Formally, the triplet loss � t 
3 
or a mini-batch of N samples is defined as follow: 

 t = 

1 

N 

N ∑ 

i 

max { d( f (x a i ) , f (x p 
i 
)) − d( f (x a i ) , f (x n i )) + m , 0 } , (1)

here m is a margin applied to impose the separability between 

enuine and imposter pairs. An d is the euclidean distance applied 

n normalized features and it is given by: 

(x i , y i ) = ‖ 

x i − y i ‖ 

2 
2 . (2) 

Fig. 3 visualize two triplet loss learning scenarios. Fig. 3 a shows 

he initial training triplet, and Fig. 3 b and c illustrate two scenarios 

hat can be learnt using triplet loss. In both scenarios, the goal of 

he triplet loss is achieved i.e. d( f (x a 
i 
) , f (x n 

i 
)) > d( f (x a 

i 
) , f (x 

p 
i 
)) +

 . In Fig. 3 b (scenario 1), both distances are optimized. However, 

n this scenario, the optimization of d2 distance is greater than the 

ptimization of d1 distance. Whereas, in Fig. 3 c (scenario 2), the 

riplet loss enforces the model to focus on minimizing the distance 

etween the anchor and the positive. The optimal state for the 

riplet loss is achieved when both distance are fully optimized i.e. 

( f (x a 
i 
) , f (x 

p 
i 
)) is equal to zero and d( f (x a 

i 
) , f (x n 

i 
)) is greater than

he predefined margin. However, achieving such a state may not 

e feasible, and it requires a huge number of training triplets with 

arge computational resources for selecting the optimal triplets for 

raining. Given a masked face embedding, our model is trained to 

enerate a new embedding such as it is similar to the unmasked 

ace embedding of the same identity and dissimilar from other face 

mbeddings of any other identities. As discussed earlier in this sec- 

ion, the distance between imposter pairs is less affected by wear- 

ng a mask [4,6] . Thus, we aim to ensure that our proposed loss fo-

uses on minimizing the distance between the genuine pairs (simi- 

ar to scenario 2) while maintaining the distance between imposter 

airs. 

Training EUM with SRT loss requires a triple to be defined as 

ollows: f (x a 
i 
) is an anchor of masked face embedding, EUM( f (x a 

i 
)) 

s the anchor given as an output of the EUM, f (x 
p 
i 
) is a posi-

ive of unmasked embedding, and f (x n 
i 
) is a negative embedding 



F. Boutros, N. Damer, F. Kirchbuchner et al. Pattern Recognition 124 (2022) 108473 

Fig. 2. Naive triplet loss vs. SRT loss distance learning over training iterations. The plots show the learned d1 (distance between genuine pairs) and d2 (distance between 

imposter pairs) by each loss over training iterations. It can be clearly noticed that the anchor (model output) of the model trained with SRT loss is more similar to the 

positive than the anchor of the model trained with naive triple loss. 
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4

m

f a different identity than anchor and positive. This triplet is il- 

ustrated in Fig. 1 . We want to ensure that the distance (d1) be-

ween EUM( f (x a 
i 
)) and f (x 

p 
i 
) in addition to a predefined margin 

s smaller than the distance (d2) between EUM( f (x a 
i 
)) and f (x n 

i 
) . 

ur goal is to train EUM to focus on minimizing d1, as d2 is less

ffected by the mask. 

Under the assumption that the distance between the positive 

nd the negative embeddings (d3) is close to optimal and it does 

ot contribute to the back-propagation of the EUM model, we pro- 

ose to use this distance as a reference to control the triplet loss. 

he main idea is to train the model as a naive triplet loss when

2 (anchor-negative distance) is smaller than d3 (positive-negative 

istance). In this case, the SRT guides the model to maximize d2 

istance and to minimize d1 distance. When d2 is equal or greater 

han d3, we replace d2 with d3 in the loss calculation. This dis- 

ance swapping allows the SRT to learn only, at this point, to min- 

mize d1 distance. At any point of the training, when the con- 

ition on d2 is violated i.e d (d 2) < d (d 3) , the SRT behave again

s a naive triplet loss. We opt to compare the d2 and d3 dis- 

ances on the batch level to avoid swapping the distance on ev- 

ry minor update on the distance between the imposter pairs. In 

his case, we want to ensure that the d1 distance, with the ad- 

ition of a margin m , is smaller than the mean of the d3 dis-

ances calculated on the mini-batch of triplets. Thus, our loss is 

ess sensitive to the outliers resulting from comparing imposter 

airs. We define our SRT loss for a mini-batch of the size N as 

ollow: 

 SRT = 

⎧ ⎨ 

⎩ 

1 

N 

∑ N 
i max { d( f (x a 

i 
) , f (x p 

i 
)) − d( f (x a 

i 
) , f (x n 

i 
)) + m , 0 } if

1 

N 

∑ N 
i max { d( f (x a 

i 
) , f (x p 

i 
)) − μ(d3) + m , 0 } o

here μ(d2) is the mean of the distances between the anchor 

nd the negative pairs calculated on the mini-batch level, given 

s 1 
N 

∑ N 
i (d( f (x a 

i 
) , f (x n 

i 
)) . μ(d3) is the mean of the distances be-

ween the positive and the negative pairs calculated on the mini- 

atch level, given as 1 
N 

∑ N 
i (d( f (x 

p 
i 
) , f (x n 

i 
)) . An d is the euclidean

istance computed on normalized feature embedding ( Eq. (2) ). 

Fig. 2 illustrates the optimization of d1 (distance between gen- 

ine pairs) and d2 (distance between imposter pairs) by naive 

riplet loss and SRT loss over the training iterations of three EUM 

odels on top of ResNet-100 ( Fig. 2 a), ResNet-50 ( Fig. 2 b) and Mo-

ileFaceNet ( Fig. 2 c). Details on the training settings are presented 

n Section 4 . It can be clearly noticed that the d1 distance (anchor-

ositive distance) learned by SRT is significantly smaller than the 

ne learned by naive triplet loss. This indicates that the output em- 

edding of the EUM trained with SRT is more similar to the em- 

edding of the same identity (the positive) than the output em- 

edding of EUM trained with triplet loss. 

m

4 
2) < μ(d3) 

ise , 

(3) 

. Experimental setup 

This section presents the experimental setups and the imple- 

entation details applied in the paper. 

.1. Face recognition model 

To provide a deep evaluation of the performance of the pro- 

osed solution, we evaluated our proposed solution on top of three 

ace recognition models - ResNet-100 [10] , ResNet-50 [10] and Mo- 

ileFaceNet [11] . ResNet is one of the widely used Convolutional 

eural Network (CNN) architecture used by several face recogni- 

ion models, e.g. ArcFace [12] and VGGFace2 [23] . 

MobileFaceNet is a compact model designed for low computa- 

ional powered devices. MobileFaceNet model architecture is based 

n residual bottlenecks proposed by MobileNetV2 [24] and depth- 

ise separable convolutions layer, which allows building a CNN 

odel with a much smaller set of parameters in comparison to 

tandard CNNs. To provide fair and comparable evaluation re- 

ults, ResNet-50 and MobileFaceNet are trained using the same 

oss function, the Arcface loss [12] , and the same training dataset, 

S1MV2 [12] . The MS1MV2 is a refined version of the MS-Celeb- 

M [25] dataset. For ResNet-100, we use the pretrained model re- 

eased by [12] . ResNet-100 is trained with ArcFace loss on MS1MV2 

12] . Our choice is to employ Arcface loss as it achieved state- 

f-the-art performance of several face recognition testing datasets 

uch as Labeled Face in the Wild (LFW) [26] . The achieved accuracy 

n LFW by ResNet-100, ResNet-50 and MobileFaceNet trained with 

rcface loss using MS1MV2 dataset are 99.83%, 99.80%, and 99.55%, 

espectively. The considered face recognition models are evaluated 

ith cosine-distance for comparison. The Multi-task Cascaded Con- 

olutional Networks (MTCNN) solution [27] is employed to detect 

nd align the input face image. All models process aligned and 

ropped face image of size 112 × 112 pixels to produce 512 − D em- 

edding feature by ResNet-100 and ResNet-50 and 128 − D embed- 

ing feature by MobileFaceNet. 

.2. Synthetic mask generation 

As there is no large-scale dataset with pairs of unmasked and 

asked face images, we opted to use a synthetically generated 

ask to train our proposed approach. Specifically, we use the syn- 
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Fig. 3. Triplet loss guides the model to maximize the distance between the anchor and negative such as it is greater than the distance between the anchor and positive 

with the addition of a fixed margin value. One can be clearly noticed the high similarity between the anchor and positive (d1) learned in scenario 2, in comparison to the 

d1 learned one in scenario 1, whereas, the distance, d2, between the anchor and the negative (imposter pairs) in scenario 1 is extremely large than the d2 in scenario 2. 

Fig. 4. Samples of the synthetically generated face masks of different shape and coverage. 
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1 The SRT implementation, training and evaluation codes, pretrained models and 

the list of mask types and colors applied on IJB-C and LFW are publicly released for 

reproducibility of the result https://github.com/fdbtrs/Self- restrained- Triplet- Loss . 
hetic mask generation method proposed by NIST [6] . The syn- 

hetic mask generation method depends on the Dlib [28] Toolkit 

or detecting and extracting 68 facial landmarks from a face im- 

ge. Based on the extracted landmark points, a face mask of dif- 

erent shapes, heights and colors can be drawn on the face im- 

ges. The detailed implementation of the synthetic mask genera- 

ion method is described in Ngan et al. [6] . The synthetic mask 

eneration method provided six mask types with different heights 

nd coverage: (A) wide-high coverage, (B) round-high coverage, (C) 

ide-medium coverage, (D) round-medium coverage, (E) wide-low 

overage, and (F) round-low coverage. Fig. 4 shows examples of the 

imulated face mask with different types and coverage levels. To 

ynthetically generate a masked face image, we first extract the fa- 

ial landmark points of the input face image. Then, a mask with a 

pecific color and type can be drawn on the face image using the 

, y coordinates of the facial landmarks points. 

.3. Dataset 

We used MS1MV2 dataset [12] to train our proposed approach. 

he MS1MV2 is a refined version of MS-Celeb-1M [25] dataset. 

he MS1MV2 contains 58 m images of 85 k different identities. We 

enerated a masked version of the MS1MV2 noted as MS1MV2- 

asked as described in Section 4.2 . The mask type (as described in 

ection 4.2 ) and color are randomly selected for each image to add 

ore diversity of mask color and coverage to the training dataset. 
5 
he Dlib failed in extracting the facial landmarks from 426 k im- 

ges. These images are neglected from the training dataset. A sub- 

et of 5 k images are randomly selected from MS1MV2-Masked to 

alidate the model during the training phase. 

The proposed solution is evaluated using two real masked face 

atasets: Masked Faces in Real World for Face Recognition (MRF2) 

8] and Masked face recognition (MFR) [4,29] . We also evaluated 

ur solution on two larger-scale datasets with synthetically gen- 

rated masks. We use the synthetic mask generation method de- 

cribed in Section 4.2 (proposed by NIST [6] ) to synthetically gen- 

rate masked faces from the Labeled Faces in the Wild (LFW) 

26] and IARPA Janus Benchmark -C (IJB-C) [30] . The mask type 

nd color are randomly selected for each image in the LFW and 

JB-C datasets to achieve a greater variety of mask types and col- 

rs 1 . In the following, we briefly describe each of the evaluation 

atasets used in this work. 

Masked faces in real world for face recognition (MRF2) MFR2 

8] contains 269 images of 53 identities crawled from the inter- 

et. Therefore, the images of the MRF2 dataset can be considered 

s captured under in-the-wild conditions. The dataset contains im- 

ges of real masked and unmasked faces with an average of 5 im- 

ges per identity. Masked face recognition (MFR) We deploy an ex- 

https://github.com/fdbtrs/Self-restrained-Triplet-Loss
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ended version of the MFR dataset [4,29] . The extended version of 

FR is collected from 48 participants using their webcams under 

hree different sessions- session 1 (reference) and session 2 and 3 

probes). The sessions are captured on three different days. Each 

ession contains data captured using three videos. In each session, 

he first video is recorded when the subject is not wearing a fa- 

ial mask in the daylight without additional electric lighting. The 

econd and third videos are recorded when the subject is wearing 

 facial mask and with no additional electric lighting in the sec- 

nd video and with electric lighting in the third video (room light 

s turned on). The first session (reference) contains 480 unmasked 

mages and 960 masked images. The second and the third sessions 

probe) contain 960 unmasked images and 1920 masked images. 

Labeled faces in the wild (LFW) LFW [26] is an unconstrained 

ace verification benchmark. It contains 13,233 images of 5749 

dentities. The number of comparison pairs in unrestricted with la- 

eled outside data protocol [26] of LFW is 60 0 0 (30 0 0 genuine and

0 0 0 imposter comparisons). 

IARPA janus benchmark-C (IJB-C) IJB-C dataset [30] is one of the 

argest face verification benchmark. IJB-C consists of 31,334 still 

mages and 117,542 frames of 11,779 videos of 3531 identities. The 

:1 mixed verification protocol [30] of IJB-C contains 19,557 gen- 

ine and 15,638,932 impostor comparisons. 

.4. Evaluation settings 

We reported the verification performances for each of the eval- 

ation datasets under seven experimental settings. Also, for each 

f the conducted experiments, we report the failure to extract rate 

FTX) to capture the effect of wearing a face mask on face detec- 

ion. FTX measure is the proportion of comparisons where the fea- 

ure extraction was not possible. For IJB-C and LFW, we used the 

ounding box provided by the datasets to align and crop the face. 

herefore, the FTX for LFW and IJB-C are 0.0% in all experimen- 

al settings. For MFR and MRF2 datasets, we reported the FTX for 

ach of the experiment settings. The conducted experiments are 

efined as follow: Unmasked reference-unmasked probe (UMR-UMP) 

he unmasked references are compared to unmasked probes. For 

FW and IJB-C, we followed the evaluation protocol given by each 

f these datasets and evaluated them based on the provided com- 

arison pairs. The number of genuine comparisons is 30 0 0 in LFW 

nd 19,557 in IJB-C. The number of imposter comparisons is 30 0 0 

n LFW and 15,638,932 in IJB-C. The evaluation of UMR-UMP on the 

FR2 dataset is done by performing N:N comparisons between all 

nmasked faces resulting in 90 genuine and 9416 imposter com- 

arisons. For the MFR dataset, we performed N:M comparisons be- 

ween the unmasked reference of the first session (reference ses- 

ion) and unmasked probe of the second and the third sessions 

probe sessions) resulting in 9600 genuine and 451,200 imposter 

omparisons. The FTXs of MFR and MRF2 when the probes and the 

eferences are unmasked are 0.0%. 

Unmasked reference-masked probe (UMR-MP) The unmasked ref- 

rences, in this case, are compared to masked probes. For LFW 

nd IJB-C datasets, we utilized the exact comparison pairs defined 

n UMR-UMP experimental settings. Different from UMR-UMP, the 

robes, in this case, are synthetically masked (as described in 

ection 4.2 ). We considered the first image in defined pairs as a 

eference and the second image is considered as a probe. For the 

RF2 dataset, we performed N:M comparisons between unmasked 

nd masked sets resulting in 296 genuine and 15,090 imposter 

omparisons. The FTX of MRF2, in this setting, is 0.9497%. For the 

FR dataset, we performed N:M comparisons between unmasked 

eferences of the first session and masked probes of the second 

nd the third sessions. The FXT, in this case, is 4.4237%, and the 

umber of comparisons is 16,490 genuine and 864,341 imposter 

omparisons. 
6 
Unmasked reference-masked probe (UMR-MP(T)) The unmasked 

eferences are compared to masked probes. Different from UMR- 

P, the masked probes are processed by EUM model trained with 

onventional triplet loss (T). 

Unmasked reference-masked probe (UMR-MP(SRT)) The unmasked 

eferences are compared to masked probes processed by EUM 

odel trained with SRT loss. In UMR-MP(T) and UMR-MP(SRT), the 

umber of genuine and impostor pairs and the FTXs are identical 

o UMR-MP experimental setting. 

Masked reference-masked probe (MR-MP) The masked references 

re compared to masked probes. For LFW and IJB-C, we utilized 

he same comparison pairs described in UMR-UMP experimental 

etting. Both reference and probe are synthetically masked. The 

umber of genuine and imposter comparisons, in this case, is the 

ame as in UMR-UMP experimental setting. For the MRF2 dataset, 

e performed N:N comparisons between masked faces resulting 

n 639 genuine and 24,010 imposter comparisons. The FTX, in this 

ase, is 1.2030% for the MRF2 dataset. For the MFR dataset, we per- 

ormed N:M comparisons between the masked faces of the first 

ession and the masked faces of the second and the third sessions 

esulting in 31,318 genuine and 1,729,424 imposter comparisons. 

he FTX, in this case, is 4.4736% for the MFR dataset. 

Masked reference-masked probe (MR-MP(T)) The masked refer- 

nces are compared to masked probes. Both masked references and 

robes are processed by EUM trained with conventional triplet loss 

T). The comparison pairs and the FTX are the same as in the MR- 

P experimental setting. 

Masked reference-masked probe MR-MP(SRT) The masked refer- 

nces are compared to masked probes. Masked references and 

robes are processed by EUM trained with SRT loss. The compar- 

son pairs and the FTX for all evaluation datasets, in this experi- 

ental case, are identical to the MR-MP case. 

.5. Model training setup 

We trained six instances of the EUM model. The first, sec- 

nd, and the third instances, ResNet-100 EUM(SRT), ResNet-50 

UM(SRT) and MobileFaceNet EUM(SRT), are trained with SRT loss 

sing feature embeddings obtained from ResNet-100, ResNet-50 

nd MobileFaceNet, respectively. The fourth, fifth and sixth in- 

tances, ResNet-100 EUM(T), ResNet-50 EUM(T) and MobileFaceNet 

UM(T), are trained with triplet loss using feature embeddings 

btained from ResNet-100, ResNet-50 and MobileFaceNet, respec- 

ively as an ablation study to our proposed SRT. The proposed EUM 

odels in this paper are implemented by Pytorch and trained on 

vidia GeForce RTX 2080 GPU. All models are trained using an SGD 

ptimizer with an initial learning rate of 1e −1 and batch size of 

12. The learning rate is divided by 10 at 30 k , 60 k , 90 k training it-

rations. The early-stopping patience parameter is set to 3 (around 

0k training iteration) causing ResNet-100 EUM(SRT), ResNet-50 

UM(SRT), MobileFaceNet EUM(SRT), ResNet-100 EUM(T), ResNet- 

0 EUM(T) and MobileFaceNet EUM(T) to stop after 10k, 80k, 70k, 

0k, 60k, 10k training iterations, respectively. 

.6. Evaluation metric 

The verification performance is reported as Equal Error Rate 

EER), as well as, FMR100, and FMR10 0 0, which are the low- 

st FNMR for a FMR ≤ 1.0% and ≤0.1%, respectively. Addition- 

lly, we calculate and report the operation thresholds at FMR100 

FMR100_Th) and FMR1000 (FMR1000_Th) for each of the evalu- 

ted models and each of the benchmarks based on UMR-UMP ex- 

erimental setting (unmasked reference - unmasked probe). Based 

n FMR100_Th and FMR10 0 0_Th thresholds, we report the FMR, 

he FNMR, and the average of the FMR and FNMR (Avg) at these 
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hresholds for all experimental settings. This aims to estimate a re- 

listic scenario where the operational threshold is decided on the 

onventional UMR-UMP performance. We also report the mean of 

he genuine scores (G-mean) and the mean of imposter scores (I- 

ean) to analysis the shifts in genuine and imposter scores distri- 

utions induced by wearing a face mask and to demonstrate the 

mprovement in the verification performance achieved by our pro- 

osed solution. For each of the evaluation settings, we plot the re- 

eiver operating characteristic (ROC) curves, showing FMR100 and 

MR10 0 0 clearly by providing a log-scale FMR axis. Further, we en- 

ich our reported evaluation results by reporting the Fisher Dis- 

riminant Ratio (FDR) to provide an in-depth analysis of the sepa- 

ability of genuine and imposters scores for different experimental 

ettings. FDR is a class separability criterion described in Poh and 

engio [31] , and it is given by: 

 DR = 

(μG − μI ) 
2 

(σG ) 2 + (σI ) 2 
, (4) 

here μG and μI are the genuine and imposter scores mean val- 

es and σG and σI are their standard deviations values. The larger 

he FDR value, the higher is the separation between the genuine 

nd imposters scores and thus better expected verification perfor- 

ance. 

. Result 

In this section, we present and discuss our achieved results. 

irst of all, we experimentally present the negative impact of wear- 

ng a face mask on face recognition performance. Then, we present 

nd discuss the impact of our EUM trained with SRT on enhanc- 

ng the separability between the genuine and imposter comparison 

cores. Then, we present the gain in the masked face verification 

erformance achieved by our proposed EUM trained with SRT on 

he collaborative and in-the-wild masked face recognition. Finally, 

e present an ablation study on SRT to experimentally support our 

heoretical motivation behind the SRT loss by comparing its perfor- 

ance with the triplet loss. 

.1. Impact of masked face on the face recognition verification 

erformance 

Tables 1 –4 present a comparison between the baseline evalu- 

tion where reference and probe are unmasked (UMR-UMP), the 

ase where only the probe is masked (UMR-MP), and the case 

here reference and probe are masked (MR-MP). On UMR-UMP 

ase, the considered face recognition models, ResNet-100, ResNet- 

0, and MobileFaceNet, achieve a very high verification perfor- 

ance. This is demonstrated by scoring 0.0%, 0.0% and 0.0% EER 

n the MFR dataset ( Table 1 ), 0.0%, 0.0% and 0.0106% on the MRF2

ataset ( Table 2 ), 0.2660%, 0.3333% and 0.6333% EER on the LFW 

 Table 3 ) and 1.5340%, 1.6881% and 2.2396% EER on IJB-C dataset 

 Table 4 ), respectively, by model ResNet-100, ResNet-50 and Mo- 

ileFaceNet. 

The verification performances of the considered models are 

ubstantially degraded when evaluated on real and synthetically 

enerated masked face images. This is indicated by the degra- 

ation in verification performance measures and FDR values, in 

omparison to the case where probe and reference are unmasked. 

obileFaceNet achieved lower verification performance on MR-MP 

han UMR-MP evaluation setting, as seen in Tables 1–4 . Further- 

ore, ResNet-50 achieved lower verification performance in the 

R-MP than the UMR-MP setting when it is evaluated on MFR, 

RF2, and IJB-C datasets. For example, on the MFR dataset, the 

chieved EER by ResNet-50 model is 1.2492% (UMR-MP). This er- 

or rate is raised to 1.2963% for the MR-MP evaluation setting, 

s seen in Table 1 . On LFW, the ResNet-50 model achieved very 
7 
lose performance for the MR-MP and the UMR-MP evaluation set- 

ing. In this case, the achieved EER by ResNet-50 are 1.4667% for 

he UMR-MP evaluation setting and 1.3667% for the MR-MP eval- 

ation setting. Furthermore, ResNet-100 achieved lower verifica- 

ion performance for the MR-MP evaluation setting than the UMR- 

P evaluation setting when it is evaluated on MRF2 and IJB-C 

atasets. On LFW and MFR, the ResNet-100 model achieved very 

lose performance for the MR-MP and the UMR-MP evaluation set- 

ings. When the FMR and FNMR measures are calculated based on 

MR100_Th 

UMR-UMP , the achieved FMR and FNMR are higher on 

he MR-MP than the UMR-MP case in most of the settings. When 

he threshold is set to FMR10 0 0_Th 

UMR-UMP , the achieved FMR and 

NMR are lower when both reference and probe are masked (MR- 

P) than in the case where only probes are masked (UMR-MP) 

n most of the evaluation settings. Also, one can be noticed that 

earing a face mask (UMR-MP and MR-MP cases) has a higher ef- 

ect on the FNMR than FMR when these measures are calculated 

ased on FMR100_Th 

UMR-UMP or FMR10 0 0_Th 

UMR-UMP . These re- 

ults are also supported by the G-mean, I-mean, and FDR shown in 

ables 1–4 . 

We also make four general observations: (1) The compact 

odel, MobileFaceNet, achieved lower verification performance 

han the ResNet-100 and ResNet-50 model. One of the reasons for 

his performance degradation might be due to the smaller embed- 

ing size of MobileFaceNet (128-D), in comparison to the embed- 

ing size of 512-D in ResNet-100 and ResNet-50. Moreover, the 

ize of the MobileFaceNet network (1m parameters) is extremely 

maller than ResNet-100 (65m parameters) and ResNet-50 (36m 

arameters), which might affect the generalization ability of the 

obileFaceNet model. (2) The considered models achieved lower 

erformance when evaluated on the MRF2 dataset than the case 

hen evaluated on the MFR dataset. This result was expected as 

he images in the MRF2 dataset are crawled from the internet 

ith high variations in facial expression, pose, illumination. On the 

ther hand, the images in the MFR dataset are collected in a col- 

aborative environment. (3) The considered models achieved lower 

erformance on LFW and IJB-C datasets in comparison to MFR and 

RF2 as they are larger scale. The considered models achieved 

ower performance when evaluated on IJB-C than the case when 

valuated on LFW. This result was expected as the evaluation pro- 

ocol of LFW is simpler than the IJB-C, and the IJB-C has shown 

o be more challenging than LFW in multiple studies [12,23] . (4) 

he considered models achieved relatively higher G-mean scores 

n the UMR-MP than the MR-MP experimental setting. This indi- 

ates a higher similarity between genuine pairs in the MR-MP than 

he UMR-MP. However, the achieved verification performances by 

MR-MP cases on most of the evaluated datasets are higher than 

he achieved ones by MR-MP. One of the contributing factors for 

he difference in the performance is that the imposter distribution 

s shifted more toward genuine distribution in the MR-MP cases 

han the UMR-MP ones, i.e. masked face pairs are more similar (in 

omparison to unmasked-masked pairs) even if the identities are 

ifferent. This statement can be clearly observed from the achieved 

-mean values shown in Tables 1–4 . This shifting in imposter dis- 

ribution strongly affects the verification performance of the con- 

idered models. 

To summarize, wearing a face mask has a negative effect on 

ace recognition performance. This observation is experimentally 

roved by evaluating the verification performance of three face 

ecognition models, ResNet-100, ResNet-50, and MobileFaceNet, 

n two real masked datasets (MFR and MRF2) and two syn- 

hetically generated masked face datasets (LFW and IJB-C). This 

esult supports and complements the previous findings in the 

tudies in Damer et al. [4] , Security [5] , Ngan et al. [6] , 7 ]

valuating the impact of wearing a mask on face recognition 

erformance. 



F. Boutros, N. Damer, F. Kirchbuchner et al. Pattern Recognition 124 (2022) 108473 

Table 1 

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained with triplet loss 

and EUM trained with SRT loss. The result is reported on MFR dataset. The FMR100_Th UMR-UMP are equal to 0.2307, 0.2652 and 0.3246 for ResNet-100, ResNet-50 and 

MobileFaceNet, respectively. The FMR10 0 0_Th UMR-UMP are equal to 0.3482, 0.3926 and 0.4476 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The lowest EER 

and the lowest average error of FMR100 and FMR10 0 0 at the defined threshold for each of the evaluation cases are marked in bold. One can notice the significant 

improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases. 

FMR100_Th UMR-UMP FMR10 0 0_Th UMR-UMP 

MFR Setting EER% FMR100% FMR10 0 0% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR 

UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8534 0.0252 70.7159 

UMR-MP 0.8914 0.8793 2.3347 0.4829 1.1886 0.8358 0.0082 6.0461 3.0272 0.5271 0.0203 15.0316 

UMR-MP(T) 1.0430 1.0794 4.7726 0.3084 2.4257 1.3670 0.0000 17.4773 8.7386 0.4331 0.0188 12.0587 

UMR-MP(SRT) 0.7702 0.6610 2.0558 0.4717 0.9460 0.7089 0.0108 4.8029 2.4068 0.5379 0.0221 15.9027 

MR-MP 0.8014 0.7695 1.3155 4.3230 0.5971 2.4601 0.4031 0.8685 0.6358 0.7314 0.0560 18.7469 

MR-MP(T) 0.9598 0.9471 2.6348 16.0855 0.4513 8.2684 2.4656 0.7660 1.6158 0.7415 0.1185 15.2544 

ResNet-100 

MR-MP(SRT) 0.8270 0.8015 1.4433 3.6616 0.6482 2.1549 0.3083 0.9994 0.6539 0.7248 0.0486 18.3184 

UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8538 0.0349 55.9594 

UMR-MP 1.2492 1.4251 3.7780 0.4308 1.9709 1.2008 0.0007 10.6246 5.3126 0.5254 0.0251 12.6189 

UMR-MP(T) 1.9789 2.9533 7.9988 0.5626 4.0206 2.2916 0.0000 30.6549 15.3275 0.4401 0.0392 9.4412 

UMR-MP(SRT) 0.9611 0.9460 2.5652 0.5595 1.2129 0.8862 0.0030 7.4591 3.7310 0.5447 0.0272 13.4045 

MR-MP 1.2963 1.4145 2.6311 3.7683 0.8302 2.2993 0.2222 2.0467 1.1345 0.7232 0.0675 15.1356 

MR-MP(T) 1.3091 1.4560 2.8259 96.3681 0.0000 48.1840 62.1757 0.1980 31.1868 0.8269 0.4169 13.0528 

ResNet-50 

MR-MP(SRT) 1.1207 1.1367 2.4523 3.2837 0.8717 2.0777 0.2227 1.8775 1.0501 0.7189 0.0557 15.1666 

UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8432 0.0488 37.3820 

UMR-MP 3.4939 6.5070 20.5640 0.2723 12.3833 6.3278 0.0088 40.4063 20.2075 0.4680 0.0307 7.1499 

UMR-MP(T) 5.2759 12.7835 28.8175 0.2151 21.7829 10.9990 0.0149 66.7192 33.3671 0.3991 0.0501 5.9623 

UMR-MP(SRT) 2.8805 4.6331 13.4384 0.3746 7.3802 3.8774 0.0097 30.1516 15.0807 0.5013 0.0383 8.6322 

MR-MP 3.5060 6.8842 17.3479 4.6039 2.8674 3.7357 0.5465 8.6723 4.6094 0.6769 0.1097 7.9614 

MR-MP(T) 4.2947 7.9124 16.3772 94.0982 0.0064 47.0523 61.3860 0.6354 31.0107 0.8082 0.4716 6.6455 

MobileFaceNet 

MR-MP(SRT) 3.1866 5.6166 13.5290 3.1906 3.1867 3.1886 0.2658 9.4802 4.8730 0.6636 0.0837 8.0905 

Table 2 

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained with triplet loss 

and EUM trained with SRT loss. The result is reported using MRF2 dataset. The FMR100_Th UMR-UMP are equal to 0.1711, 0.2038 and 0.2351 for ResNet-100, ResNet-50 and 

MobileFaceNet, respectively. The FMR10 0 0_Th UMR-UMP are equal to 0.2316, 0.2639 and 0.3041 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The lowest EER 

and the lowest average error of FMR100 and FMR10 0 0 at the defined threshold for each of the evaluation cases and each of the evaluated models are marked in bold. One 

can notice the significant improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases. 

FMR100_Th UMR-UMP FMR10 0 0_Th UMR-UMP 

MRF2 Setting EER% FMR100% FMR10 0 0% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR 

UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7605 0.0019 46.4218 

UMR-MP 4.0515 6.7568 7.0946 0.9079 6.7568 3.8323 0.1127 7.0946 3.6036 0.4454 -0.0000 9.3458 

UMR-MP(T) 4.0515 6.7568 9.4595 0.7820 6.7568 3.7694 0.0530 11.1486 5.6008 0.3677 -0.0012 8.3377 

UMR-MP(SRT) 3.3757 5.4054 7.0946 0.9145 5.7432 3.3289 0.1127 7.0946 3.6036 0.4587 -0.0003 9.8264 

MR-MP 3.7522 3.7559 8.4507 4.3648 3.4429 3.9039 1.0079 3.7559 2.3819 0.6757 0.0183 6.4714 

MR-MP(T) 4.3817 9.0767 21.5962 20.6247 2.5039 11.5643 9.3461 3.1299 6.2380 0.6947 0.0834 5.8089 

ResNet-100 

MR-MP(SRT) 3.4416 4.3818 8.4507 3.8651 3.1299 3.4975 0.8247 4.3818 2.6033 0.6738 0.0099 6.4496 

UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7477 0.0038 37.9345 

UMR-MP 4.3895 6.7568 10.4730 0.7025 8.4459 4.5742 0.0795 10.8108 5.4452 0.4263 0.0005 8.2432 

UMR-MP(T) 6.4169 7.7703 12.1622 0.4241 8.7838 4.6040 0.0000 17.9054 8.9527 0.3567 -0.0066 6.8853 

UMR-MP(SRT) 4.7274 7.4324 9.4595 0.8748 7.4324 4.1536 0.1193 9.1216 4.6205 0.4553 0.0014 8.4507 

MR-MP 6.8831 10.0156 13.7715 4.2316 7.8247 6.0281 1.1662 9.7027 5.4344 0.6496 0.0301 4.7924 

MR-MP(T) 6.8831 9.7027 14.0845 97.8759 0.0000 48.9379 90.7622 0.0000 45.3811 0.7759 0.3663 4.8791 

ResNet-50 

MR-MP(SRT) 6.2578 9.0767 11.8936 2.9738 8.1377 5.5557 0.8413 9.3897 5.1155 0.6488 0.0144 4.9381 

UMR-UMP 0.0106 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7318 0.0078 26.4276 

UMR-MP 6.4169 16.8919 24.3243 0.9874 16.8919 8.9397 0.0663 27.3649 13.7156 0.3803 -0.0019 4.6457 

UMR-MP(T) 7.7685 15.8784 34.4595 0.6759 18.9189 9.7974 0.0596 37.1622 18.6109 0.3304 -0.0027 4.2067 

UMR-MP(SRT) 6.079 12.5000 21.9595 0.9675 13.1757 7.0716 0.0928 22.2973 11.1950 0.4157 -0.0018 5.2918 

MR-MP 8.4777 18.1534 28.7950 6.5056 10.3286 8.4171 1.9908 14.0845 8.0377 0.6087 0.0509 3.2505 

MR-MP(T) 8.7634 17.5274 26.2911 95.9683 0.0000 47.9842 84.9896 0.0000 42.4948 0.7638 0.3966 3.5408 

MobileFaceNet 

MR-MP(SRT) 7.8232 15.0235 22.5352 3.9733 9.0767 6.525 1.1745 14.3975 7.7860 0.6087 0.0241 3.5815 
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.2. Impact of our EUM with SRT on the separability between 

enuine and imposter comparison scores 

The proposed approach significantly enhanced the separability 

etween the genuine and imposter comparison scores in the con- 

idered face recognition models and both evaluated datasets. This 

mprovement can be seen in the increase in the FDR separabil- 

ty measure achieved by our proposed EUM trained withSRT in 

omparison to the achieved FDR measures by the considered face 

ecognition models, as shown in Table 1–4 . This indicates a gen- 

ral improvement in the verification performance of face recogni- 

ion and thus enhancing the general trust in the verification de- 
8 
ision. For example, when the ResNet-50 model is evaluated on 

he MFR dataset and the probe is masked, the FDR increases from 

2.6189 (UMR-MP) to 13.4045 (UMR-MP(SRT)) using our proposed 

pproach, as shown in Table 1 . Similar observations can be made 

hen the evaluation dataset is synthetically masked. For exam- 

le, when ResNet-100 is evaluated on the synthetically generated 

asked face of IJB-C, the FDR increases from 9.7516 (UMR-MP) to 

.9005 (UMR-MP(SRT)) using our proposed approach, as shown in 

able 4 . This improvement in the separability between the genuine 

nd the imposter samples by our proposed approach is achieved in 

ost of the evaluation settings, where the FDR increased in 20 out 

f 24 experimental settings. 
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Table 3 

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50, and MobileFaceNet models along with EUM trained with triplet loss 

and EUM trained with SRT loss. The result is reported using synthetically generated masked faces of the LFW dataset. The FMR100_Th UMR-UMP are equal to 0.1736, 0.2052 

and 0.2449 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The FMR10 0 0_Th UMR-UMP are equal to 0.2451, 0.2617 and 0.3450 are for ResNet-100, ResNet-50 and 

MobileFaceNet, respectively. The lowest EER and the lowest average error of FMR100 and FMR10 0 0 at the defined threshold are marked in bold. It can be noticed the 

significant improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases. 

FMR100_Th UMR-UMP FMR10 0 0_Th UMR-UMP 

LFW Setting EER% FMR100% FMR10 0 0% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR 

UMR-UMP 0.2660 0.2667 0.3333 1.0000 0.2667 0.6333 0.1000 0.3333 0.2167 0.7157 0.0026 33.0630 

UMR-MP 1.0000 0.9667 2.5667 1.0667 0.9667 1.0167 0.0667 2.9333 1.5000 0.5220 0.0019 13.1746 

UMR-MP(T) 1.7000 2.3667 4.4333 0.9667 2.5333 1.7500 0.0333 5.9667 3.0000 0.4115 0.0029 11.0452 

UMR-MP(SRT) 0.8667 0.8667 1.6000 1.2667 0.7667 1.0167 0.1000 1.7333 0.9167 0.5380 0.0024 15.0505 

MR-MP 0.9667 0.9667 2.4333 3.1000 0.7000 1.9000 0.5000 1.2000 0.8500 0.5996 0.0110 14.2278 

MR-MP(T) 1.7333 2.3333 10.1333 19.4667 0.3667 9.9167 6.7667 0.6667 3.7167 0.6290 0.0808 10.8161 

ResNet-100 

MR-MP(SRT) 0.9667 0.9667 2.0667 3.0000 0.6667 1.8333 0.4667 1.5333 1.0000 0.6035 0.0053 14.6018 

UMR-UMP 0.3333 0.3000 0.4000 1.0000 0.3000 0.6500 0.1000 0.4000 0.2500 0.7023 0.0029 26.5107 

UMR-MP 1.4667 1.8333 3.3000 1.0000 1.8333 1.4167 0.1000 3.5667 1.8333 0.5117 0.0014 11.8522 

UMR-MP(T) 2.0000 2.7000 4.9667 0.6333 3.3333 1.9833 0.0667 6.6333 3.3500 0.4278 0.0020 10.5553 

UMR-MP(SRT) 1.1000 1.1333 2.4000 0.9667 1.1333 1.0500 0.2000 2.2000 1.2000 0.5427 0.0016 14.5079 

MR-MP 1.3667 1.7333 4.7333 3.0000 0.8333 1.9167 0.9000 1.9333 1.4167 0.5893 0.0158 12.2339 

MR-MP(T) 2.0333 2.9667 7.2000 10.8667 0.7667 5.8167 4.0333 1.5333 2.7833 0.6256 0.0525 10.2560 

ResNet-50 

MR-MP(SRT) 1.2333 1.4333 2.9667 2.2333 0.9333 1.5833 0.6333 1.5333 1.0833 0.6051 0.0053 13.4416 

UMR-UMP 0.6333 0.6000 1.3000 1.0000 0.6000 0.8000 0.1000 1.3000 0.7000 0.6742 0.0051 18.2460 

UMR-MP 3.2333 5.9333 12.0333 0.7667 6.7333 3.7500 0.0000 18.2667 9.1333 0.4641 -0.0011 7.5840 

UMR-MP(T) 3.6667 7.1333 17.6667 0.6000 8.7667 4.6833 0.0000 27.4333 13.7167 0.4023 0.0013 7.2341 

UMR-MP(SRT) 1.8667 2.4667 8.1333 0.8333 2.8667 1.8500 0.1000 9.3667 4.7333 0.5144 0.0006 10.2266 

MR-MP 3.3333 6.4667 17.9000 5.7667 2.6333 4.2000 0.8333 7.1333 3.9833 0.5688 0.0505 7.7096 

MR-MP(T) 3.0667 5.2000 13.6333 93.9000 0.0000 46.9500 72.1333 0.0667 36.1000 0.7495 0.3970 7.7594 

MobileFaceNet 

MR-MP(SRT) 2.2667 3.5333 11.1000 2.3000 2.2333 2.2667 0.4667 5.9667 3.2167 0.5872 0.0091 9.6183 

Table 4 

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50, and MobileFaceNet models along with EUM trained with triplet loss 

and EUM trained with SRT loss. The result is reported using synthetically generated masked faces of the IJB-C dataset. The FMR100_Th UMR-UMP are equal to 0.1804, 0.2143 

and 0.2546 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The FMR10 0 0_Th UMR-UMP are equal to 0.2557, 0.2990 and 0.3493 for ResNet-100, ResNet-50 and 

MobileFaceNet, respectively. The lowest EER and the lowest average error of FMR100 and FMR10 0 0 at the defined threshold for each of the evaluation cases and each of 

the evaluated models are marked in bold. One can notice the significant improvement in the verification performance induced by our proposed approach (SRT) in most of 

the evaluation cases. 

FMR100_Th UMR-UMP FMR10 0 0_Th UMR-UMP 

IJB-C Setting EER% FMR100% FMR10 0 0% FMR% FNMR% Avg.% FMR% FNMT Avg.% G-mean I-mean FDR 

UMR-UMP 1.5340 1.6362 2.4799 1.0000 1.6362 1.3181 0.1000 2.4799 1.2900 0.7460 0.0034 15.7436 

UMR-MP 2.6026 3.3492 5.8751 1.0684 3.3032 2.1858 0.1133 5.6502 2.8817 0.5593 0.0050 9.7516 

UMR-MP(T) 5.0724 8.3500 13.9643 0.6437 9.2857 4.9647 0.0333 17.0374 8.5353 0.3966 0.0004 6.0168 

UMR-MP(SRT) 2.5476 3.2520 5.7575 1.0563 3.2214 2.1388 0.1112 5.5837 2.8474 0.5667 0.0038 9.9005 

MR-MP 2.7356 3.7685 6.9643 4.3300 2.3163 3.3232 0.9488 3.7992 2.3740 0.6751 0.0228 10.2180 

MR-MP(T) 5.2834 14.7415 42.2509 52.8218 0.4909 26.6563 31.5749 1.1403 16.3576 0.7273 0.1981 6.6082 

ResNet-100 

MR-MP(SRT) 2.9197 3.9781 7.3631 3.4202 2.7663 3.0932 0.6837 4.4588 2.5712 0.6604 0.0129 9.4975 

UMR-UMP 1.6881 1.8663 3.0782 1.0000 1.8663 1.4332 0.1000 3.0782 1.5891 0.7370 0.0061 14.6355 

UMR-MP 2.8634 4.2593 7.9971 1.0257 4.2389 2.6323 0.1045 7.9051 4.0048 0.5505 0.0091 9.1274 

UMR-MP(T) 4.9547 8.3602 15.0995 0.5824 9.6436 5.1130 0.0317 19.0878 9.5597 0.4227 0.0005 6.3770 

UMR-MP(SRT) 2.7221 3.8401 7.4142 1.0675 3.7685 2.4180 0.1162 7.1944 3.6553 0.5731 0.0061 9.5896 

MR-MP 3.2418 4.9138 10.0680 5.1556 2.6026 3.8791 1.1855 4.6275 2.9065 0.6698 0.0395 9.2267 

MR-MP(T) 4.8065 10.6202 30.2398 28.2029 1.1556 14.6793 12.5160 2.5055 7.5107 0.7126 0.1396 7.1907 

ResNet-50 

MR-MP(SRT) 3.0833 4.6940 9.4186 3.2926 3.0373 3.1649 0.6722 5.3485 3.0103 0.6585 0.0175 9.0671 

UMR-UMP 2.2396 2.7918 5.0826 1.0000 2.7918 1.8959 0.1000 5.0826 2.5913 0.7150 0.0075 11.6725 

UMR-MP 4.6539 8.5698 17.1908 0.9843 8.6056 4.7949 0.0910 17.6305 8.8608 0.4997 0.0121 6.5141 

UMR-MP(T) 9.1834 21.4297 35.7315 0.2993 29.0229 14.6611 0.0086 51.6950 25.8518 0.3273 -0.0117 3.7926 

UMR-MP(SRT) 4.0548 7.1995 14.5421 0.9831 7.2506 4.1169 0.0974 14.6495 7.3734 0.5295 0.0056 7.2243 

MR-MP 5.0339 9.7305 20.6064 10.1750 3.4003 6.7877 2.6584 6.7137 4.6860 0.6624 0.0939 6.6892 

MR-MP(T) 8.9175 21.9972 39.7454 99.6336 0.0205 49.8270 96.8945 0.0818 48.4881 0.8281 0.5465 3.9353 

MobileFaceNet 

MR-MP(SRT) 4.6837 9.0249 18.8782 4.2937 4.9241 4.6089 0.9800 9.1016 5.0408 0.6353 0.0301 6.9284 
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.3. Impact of our EUM with SRT solution on the collaborative 

asked face recognition 

When the considered models are evaluated on the MFR dataset, 

t can be observed that our proposed approach significantly en- 

anced the masked face verification performance, as shown in 

able 1 . The achieved EER by ResNet-100 is 0.8912% on the UMR- 

P case. This error is reduced to 0.7702% using our approach 

UMR-MP(SRT)). The achieved EER by the ResNet-100 is 0.8014% 

n MR-MP experimental setting. The achieved EER using our ap- 

roach on top of the ResNet-100 is 0.8270% (MR-MP(SRT)). How- 
9 
ver, this is the only case that we did not observe improvement 

n EER when the considered models are evaluated on the MFR 

ataset. The achieved EER by ResNet-50 model is 1.2492% based 

n UMR-MP experimental setting. This error rate is decreased to 

.9611% by our proposed approach (UMR-MP(SRT)) indicating a 

lear improvement in the verification performance induced by our 

roposed approach, as shown in Table 1 . A similar enhancement 

n the verification performance is observed by our approach for 

he MR-MP setting. In this case, the EER is decreased from 1.2963% 

MR-MP) to 1.1207% (MR-MP(SRT)). The achieved EER by the Mo- 

ileFaceNet model is 3.4939% (UMR-MP). This error is reduced to 
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.8805% using our proposed approach (UMR-MP(SRT)). Considering 

he MR-MP setting, the EER is decreased from 3.506% (MR-MP) to 

.1866% (MR-MP(SRT)) by our approach. The improvement in the 

asked face recognition verification performance is also notice- 

ble from the improvement in FMR100 and FMR10 0 0 measures. 

hen the considered models are evaluated on masked data (UMR- 

P and MR-MP) based on FMR100_Th 

UMR-MP , the average of FMR 

nd FNMR was significantly reduced by our proposed approach in 

ll evaluation settings (UMR-MP(SRT) and MR-MP(SRT)), as shown 

n Table 1 . When the operation threshold is calculated at FMR10 0 0

FMR10 0 0_Th 

UMR-MP ), a significant reduction in the average of FMR 

nd FNMR with our proposed approach is notable in most evalua- 

ion settings. This result is also supported by ROC curves shown in 

ig. 5 a–c. 

.4. Impact of our EUM with SRT on in-the-wild masked face 

ecognition 

The achieved evaluation results on the MRF2 dataset by ResNet- 

00, ResNet-50, and MobileFaceNet models are presented in 

able 2 . When probes are masked, the ERR achieved by the ResNet- 

00 model is reduced from 4.0515% (UMR-MP) to 3.3757% by our 

roposed approach (UMR-MP(SRT)). A similar improvement in the 

erification performance is achieved by our solution (MR-MP(SRT)) 

n the MR-MP evaluation setting, as shown in Table 2 . 

Using masked probes, the achieved EER by ResNet-50 model is 

.3895% (UMR-MP). Only in this case, the EER did not improve 

y our proposed approach (UMR-MP(SRT)). The achieved EER, in 

his case, by our proposed approach is 4.7274%. Nonetheless, a no- 

able improvement in the FMR10 0 0 and the FDR separability mea- 

ures can be observed from the reported result. The increase in 

DR points out the possibility that given larger and more represen- 

ative evaluation data, the consistent enhancement in verification 

ccuracy will be apparent here as well. A significant improvement 

n the verification performance is achieved by our approach when 

omparing masked probes to masked references. In this case, the 

chieved EER is decreased from 6.8831% (MR-MP) to 6.2578% (MR- 

P(SRT)). A similar conclusion can be made from the improve- 

ents on the other performance verification measures and the FDR 

easure. 

Using masked probes, the achieved verification performance by 

obileFaceNet is significantly enhanced by our proposed approach 

UMR-MP(SRT)). A similar improvement in the verification perfor- 

ance is achieved on MR-MP(SRT) case as shown in Table 2 . For 

xample, the achieved EER by MobileFaceNet is 8.4777% on the 

R-MP case. This error rate is reduced to 7.8232% using our pro- 

osed approach (MR-MP(SRT)). 

Considering the FMR100_Th 

UMR-UMP and the 

MR10 0 0_Th 

UMR-UMP , the achieved FMR and FNMR improved 

s by our proposed solution (UMR-MP(SRT) and MR-MP(SRT)) in 

ost evaluation cases, especially when the considered operation 

hreshold is FMR100_Th 

UMR-UMP . This result is also supported by 

OC curves shown in Fig. 5 d–f. 

.5. Impact of our EUM with SRT on simulated masked face 

ecognition 

In addition to the evaluation of the real masked face dataset 

resented in Sections 5.3 and 5.4 , we evaluated our proposed so- 

ution on two large synthetically generated masked faces datasets: 

FW and IJB-C. The achieved verification performance on the syn- 

hetically generated masked face of LFW is presented in Table 3 . 

he improvement in verification performance induced by our pro- 

osed solution on the synthetic masked face of LFW is observable 

or all evaluation cases. 
10 
Table 4 presents the achieved verification performance by the 

onsidered models on the synthetically generated masked face of 

JB-C. When the reference and the probes are synthetically masked, 

he achieved EER by ResNet-100 is 2.7356% (MR-MP). Only in 

his case for synthetically masked face dataset, the EER did not 

mprove by our proposed approach, where the EER achieved by 

ur approach is 2.9197% (MR-MP(SRT)). However, when the op- 

ration threshold is set to FMR100_Th 

UMR-UMP , a notable reduc- 

ion in the average of FMR and FNMR can be observed for all 

valuation cases. These reported results on synthetically generated 

asked face datasets support our achievement on real masked face 

atasets. Also, it points out the competence of our proposed solu- 

ion in improving the masked face verification performance. A sim- 

lar observation can be noticed in the ROC curves in Fig. 5 g–l. 

.6. Ablation study on self-restrained triplet loss 

In this subsection, we experimentally prove and theoretically 

iscuss the advantage of our proposed SRT solution over the com- 

on naive triplet loss. We explore first the validity of training the 

UM model with triplet loss using masked face datasets. It is no- 

iceable that training EUM with naive triplet is inefficient for learn- 

ng from masked face embedding as presented in Tables 1–4 . For 

xample, when the probe is masked, the achieved EER by EUM 

ith triplet loss on top of ResNet-50 is 1.9789% (UMR-MP(T)), in 

omparison to 0.9611% EER achieved by EUM with our SRT (UMR- 

P(SRT)), as shown in Table 1 . It is crucial for learning with triplet 

oss that the input triplet violate the condition d( f (x a 
i 
) , f (x n 

i 
)) >

( f (x a 
i 
) , f (x 

p 
i 
)) + m . Thus, the model can learn to minimize the

istance between the genuine pairs and maximize the distance be- 

ween the imposter pairs. When the previous condition is not vi- 

lated, the loss value will be close to zero and the model will not 

e able to further optimize the distances of the genuine pairs and 

mposter pairs. This motivated our SRT solution. 

Given that our proposed EUM solution is built on top of a pre- 

rained face recognition model, the feature embeddings of the gen- 

ine pairs are similar (to a large degree), and the ones of im- 

oster pairs are dissimilar. However, this similarity is affected (to 

ome degree) when the faces are masked. The learning objec- 

ive of our approach is to reduce this effect. This statement can 

e observed from the achieved results presented in Tables 1–4 . 

or example, using the MFR dataset, the achieved G-mean and I- 

ean by ResNet-50 is 0.8538 and 0.0349 (UMR-UMP), respectively. 

hen the probe is masked (UMR-MP), the achieved G-mean and I- 

ean shift to 0.5254 and 0.0251, respectively, as shown in Table 1 . 

he shifting in the G-mean points out that the similarity between 

he genuine pairs is reduced (to some degree) when the probe is 

asked. Training EUM with naive triplet loss requires selecting a 

riplet of embeddings that violated the triplet condition. As we dis- 

ussed earlier, the masked anchor is similar (to some degree) to 

he positive (unmasked embedding), and it is dissimilar (to some 

egree) from the negative. Therefore, finding triplets that violate 

he triplet condition is not trivia. Also, it could not be possible for 

any triplets in the training dataset. This explains the poor result 

chieved when the EUM model is trained with triplet loss, as there 

re only a few triplets violating the triplet loss condition. One can 

ssume that using a larger margin value allows the EUM model 

o further optimize the distance between genuine pairs and im- 

oster pairs, as the triplet condition can be violated by increas- 

ng the margin value. However, by increasing the margin value, 

e increase the upper bound of the loss function. Thus, we ig- 

ore the fact that the distance between imposter pairs is suffi- 

ient with respect to the distance between genuine pairs in the 

mbedding space. For example, using unmasked data, the mean 

f the imposter scores achieved by ResNet-50 on the MFR dataset 

s 0.0349. When the probe is masked, the mean value of the im- 
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Fig. 5. The achieved log-scale ROC curves by different experimental settings The ROC curves achieved by EUM trained with SRT in all plots are in red. The ROC curves 

achieved by EUM trained with the naive triplet in all plots are in blue. The ROC curves of the considered models without EUM are in green color. In each plot, the curves of 

UMR-MP, UMR-MP(T), and UMR-MP(SRT) cases are marked with a dashed line. The curves of MR-MP, MR-MP(T), and MR-MP(SRT) cases are marked with a dotted line. For 

each ROC curve, the area under the curve (AUC) is listed inside the plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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oster scores is 0.0251, as shown in Table 1 . Therefore, any further 

ptimization on the distance between the imposter pairs will af- 

ect the discriminative features learned by the base face recogni- 

ion model. Also, there is no restriction in the learning process en- 

ured that the model will maintain the distance between the im- 

oster pairs. Alternatively, training the EUM model with our SRT 

oss achieved significant improvement in minimizing the distance 

etween the genuine pairs. Simultaneously, it maintains the dis- 

ance between the imposter pairs to be closer to the one learned 

y the base face recognition model. It is noticeable from the re- 

orted result that the I-mean achieved by our SRT is closer to 
he I-mean achieved when the model is evaluated on unmasked o

11 
ata, in comparison to the one achieved by naive triplet loss, as 

hown in Tables 1–4 . The achieved result points out the efficiency 

f our proposed EUM trained with SRT in improving the masked 

ace recognition, in comparison to the considered face recondition 

odels. Also, it supported our theoretical motivation behind SRT 

here training the EUM with SRT significantly outperformed the 

UM trained with naive triplet loss. 

The proposed solution is designed and trained to manipulate 

asked face embedding and not to manipulate unmasked one. 

ased on this workflow, our EUM solution will not be used on un- 

asked faces. This is based on the assumption that the existence 

f the mask is known, e.g., by the automatic detection of wearing 
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 face mask that can be relatively easily detected where most of 

ask face detection methods proposed in the literature achieved 

ery high accuracy in detecting masked face (more than 99% [18] ). 

espite the fact that our workflow does not assume processing un- 

asked faces, and for the sake of experiment completeness, we ap- 

ly our solution on UMR-UMP cases. The achieved results showed 

light degradation in face verification performance in a number 

f the experimental settings. However, this result was expected 

s the proposed solution is designed and trained to operate on 

asked face embedding rather than processing an unmasked face 

mbedding. In the following, we present the achieved results by 

ur proposed approach when it is applied to the UMR-UMP case. 

hen ResNet-100 and ResNet-50 are evaluated on the MFR and 

RF2 datasets, and the unmasked face embeddings (UMR-UMP) 

re processed by EUM with the SRT solution, the achieved EER 

nd FMR100 are 0.0% and 0.0%, respectively. When MobileFaceNet 

s evaluated on the MFR or MRF2 datasets and the unmasked face 

mbedding (UMR-UMP) are processed by EUM with the SRT so- 

ution, the verification performances are slightly degraded. In this 

ase, the EER increases from 0.0% to 0.0112% EER, when Mobile- 

aceNet is evaluated on the MFR dataset. When MobileFaceNet 

s evaluated on the MRF2 dataset, the EER value increases from 

.0106% to 0.2124%. The achieved FMR100, in this case, is 0.0%. 

hen the considered models are evaluated on the LFW and the 

nmasked face embeddings (UMR-UMP) are processed by EUM 

ith the SRT solution, the verification performances obtained by 

he considered models slightly deteriorate. In this case, the EER 

nd the FMR100 by the ResNet-100 model decrease from 0.2660% 

nd 0.2667% to 0.3% and 0.2667%, respectively. When the consid- 

red model is ResNet-50, the achieved EER and FMR100 are de- 

raded from 0.3333% and 0.30 0 0% to 0.5333% and 0.50 0 0%, respec-

ively. For the MobileFaceNet model, the achieved EER and FMR100 

re degraded from 0.6333% and 0.60 0 0% to 1.1667% and 1.20 0 0%, 

espectively. By applying our approach on UMR-UMP cases of the 

JB-C dataset, the achieved verification performance is degraded 

rom 1.5340% to 1.5595% EER and from 1.6362% to 1.7027% FMR 

n top of the ResNet-100 model. For the ResNet-50 model, the 

chieved EER and FMR100 are degraded from 1.6881% to 2.0709% 

ER and from 1.8663% to 2.4857% FMR. For the MobileFaceNet 

odel, the achieved EER and FMR are degraded from 2.396% to 

.8379% EER and from 2.7918% to 4.1417%. This performance trend 

n the UMR-UMP setting is expected as processing unmasked face 

mbedding by EUM with SRT is not the aim of our proposed solu- 

ion and do not match its operational concept, where unmasked 

aces will not be processed by the EUM. The conducted experi- 

ents are thus only included for the sake of experiment complete- 

ess. 

.7. Discussion 

In summary, the reported results in this paper illustrate how 

he verification performance of current face recognition models 

roposed in the literature is affected by wearing a face mask and 

ow this can be improved by learning to process the masked face 

mbedding to behave more similarly to an embedding from an un- 

asked face. This has been demonstrated through extensive ex- 

erimental evaluations of three face recognition models and four 

asked face datasets. The evaluation datasets include two real 

asked datasets captured under different scenarios: in the wild 

MRF2) and collaborative (MFR), and two synthetically generated 

asked faces of large-scale datasets: LFW and IJB-C. We have also 

heoretically and experimentally demonstrated the competence of 

ur proposed EUM together with SRT in reducing the negative in- 

uence of the masked face on the face recognition performance. 

he competence of our solution in improving the masked face 

erification performance has been demonstrated on real masked 
12 
atasets captured under different scenarios (in the wild and collab- 

rative) and on synthetically generated masked faces of large-scale 

atasets. 

From research to industry perspective, the developers of com- 

ercial face recognition solutions could use our proposed concept 

o improve the performance of their algorithms when processing 

asked face images. Many commercial face recognition solutions 

roduce face templates to enable template storage instead of im- 

ges in large-scale datasets. The advantages of storing face tem- 

lates are to enable faster identification searches and matching, 

y avoiding the re-generation of embeddings in every search. As 

ur solution operates on embedding space, the commercial mod- 

ls can benefit from our solution to improve the performance of 

heir algorithms when facing a masked face image. Examples of 

uch commercial solutions are Neurotechnology [32] and Cognitec 

33] (achieved high accuracies in NIST Ongoing Face Recognition 

endor Test (FRVT) [34] ). Such solutions produce face templates 

o populate the biometric datasets to enable efficient biometric 

earches. 

. Conclusion 

In this paper, we presented and evaluated a novel solution to 

educe the negative impact of wearing a protective face mask on 

ace recognition performance. This work was motivated by the re- 

ent evaluation effort s on the effect of masked faces on face recog- 

ition performance. The presented solution is designed to oper- 

te on top of existing face recognition models, thus avoiding the 

eed for retraining existing face recognition solutions used for un- 

asked faces. This goal has been accomplished by proposing the 

UM operated on the embedding space. The learning objective of 

ur EUM is to increase the similarity between genuine unmasked- 

asked pairs and decrease the similarity between imposter pairs. 

e achieved this learning objective by proposing a novel loss func- 

ion, the SRT which, unlike triplet loss, dynamically self-adjust its 

earning objective by concentrating on optimizing the distance be- 

ween the genuine pairs only when the distance between the im- 

oster pairs is deemed to be sufficient. Through ablation study and 

xperiments on four masked face datasets and three face recogni- 

ion models, we demonstrated that our proposed EUM with SRT 

ignificantly improved the masked face verification performance in 

ost experimental settings. As a concluding remark, this work is 

ne of the first effort s proposing a solution for masked face recog- 

ition without the need for retraining existing face recognition 

odels. Several interesting directions of work can be investigated 

n the future. This includes, but is not limited to studying the de- 

ographic effects of masked images on face recognition verifica- 

ion performance and investigating the possibility of dynamically 

enerating realistic masked faces with a variety of mask textures. 
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