Skip to main content
. 2021 Dec 1;124:108473. doi: 10.1016/j.patcog.2021.108473

Table 1.

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained with triplet loss and EUM trained with SRT loss. The result is reported on MFR dataset. The FMR100_ThUMR-UMP are equal to 0.2307, 0.2652 and 0.3246 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The FMR1000_ThUMR-UMP are equal to 0.3482, 0.3926 and 0.4476 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The lowest EER and the lowest average error of FMR100 and FMR1000 at the defined threshold for each of the evaluation cases are marked in bold. One can notice the significant improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases.

FMR100_ThUMR-UMP
FMR1000_ThUMR-UMP
MFR Setting EER% FMR100% FMR1000% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR
UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8534 0.0252 70.7159
UMR-MP 0.8914 0.8793 2.3347 0.4829 1.1886 0.8358 0.0082 6.0461 3.0272 0.5271 0.0203 15.0316
UMR-MP(T) 1.0430 1.0794 4.7726 0.3084 2.4257 1.3670 0.0000 17.4773 8.7386 0.4331 0.0188 12.0587
UMR-MP(SRT) 0.7702 0.6610 2.0558 0.4717 0.9460 0.7089 0.0108 4.8029 2.4068 0.5379 0.0221 15.9027
MR-MP 0.8014 0.7695 1.3155 4.3230 0.5971 2.4601 0.4031 0.8685 0.6358 0.7314 0.0560 18.7469
MR-MP(T) 0.9598 0.9471 2.6348 16.0855 0.4513 8.2684 2.4656 0.7660 1.6158 0.7415 0.1185 15.2544
ResNet-100 MR-MP(SRT) 0.8270 0.8015 1.4433 3.6616 0.6482 2.1549 0.3083 0.9994 0.6539 0.7248 0.0486 18.3184
UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8538 0.0349 55.9594
UMR-MP 1.2492 1.4251 3.7780 0.4308 1.9709 1.2008 0.0007 10.6246 5.3126 0.5254 0.0251 12.6189
UMR-MP(T) 1.9789 2.9533 7.9988 0.5626 4.0206 2.2916 0.0000 30.6549 15.3275 0.4401 0.0392 9.4412
UMR-MP(SRT) 0.9611 0.9460 2.5652 0.5595 1.2129 0.8862 0.0030 7.4591 3.7310 0.5447 0.0272 13.4045
MR-MP 1.2963 1.4145 2.6311 3.7683 0.8302 2.2993 0.2222 2.0467 1.1345 0.7232 0.0675 15.1356
MR-MP(T) 1.3091 1.4560 2.8259 96.3681 0.0000 48.1840 62.1757 0.1980 31.1868 0.8269 0.4169 13.0528
ResNet-50 MR-MP(SRT) 1.1207 1.1367 2.4523 3.2837 0.8717 2.0777 0.2227 1.8775 1.0501 0.7189 0.0557 15.1666
UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8432 0.0488 37.3820
UMR-MP 3.4939 6.5070 20.5640 0.2723 12.3833 6.3278 0.0088 40.4063 20.2075 0.4680 0.0307 7.1499
UMR-MP(T) 5.2759 12.7835 28.8175 0.2151 21.7829 10.9990 0.0149 66.7192 33.3671 0.3991 0.0501 5.9623
UMR-MP(SRT) 2.8805 4.6331 13.4384 0.3746 7.3802 3.8774 0.0097 30.1516 15.0807 0.5013 0.0383 8.6322
MR-MP 3.5060 6.8842 17.3479 4.6039 2.8674 3.7357 0.5465 8.6723 4.6094 0.6769 0.1097 7.9614
MR-MP(T) 4.2947 7.9124 16.3772 94.0982 0.0064 47.0523 61.3860 0.6354 31.0107 0.8082 0.4716 6.6455
MobileFaceNet MR-MP(SRT) 3.1866 5.6166 13.5290 3.1906 3.1867 3.1886 0.2658 9.4802 4.8730 0.6636 0.0837 8.0905