Skip to main content
. 2021 Dec 1;124:108473. doi: 10.1016/j.patcog.2021.108473

Table 2.

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained with triplet loss and EUM trained with SRT loss. The result is reported using MRF2 dataset. The FMR100_ThUMR-UMP are equal to 0.1711, 0.2038 and 0.2351 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The FMR1000_ThUMR-UMP are equal to 0.2316, 0.2639 and 0.3041 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The lowest EER and the lowest average error of FMR100 and FMR1000 at the defined threshold for each of the evaluation cases and each of the evaluated models are marked in bold. One can notice the significant improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases.

FMR100_ThUMR-UMP
FMR1000_ThUMR-UMP
MRF2 Setting EER% FMR100% FMR1000% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR
UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7605 0.0019 46.4218
UMR-MP 4.0515 6.7568 7.0946 0.9079 6.7568 3.8323 0.1127 7.0946 3.6036 0.4454 -0.0000 9.3458
UMR-MP(T) 4.0515 6.7568 9.4595 0.7820 6.7568 3.7694 0.0530 11.1486 5.6008 0.3677 -0.0012 8.3377
UMR-MP(SRT) 3.3757 5.4054 7.0946 0.9145 5.7432 3.3289 0.1127 7.0946 3.6036 0.4587 -0.0003 9.8264
MR-MP 3.7522 3.7559 8.4507 4.3648 3.4429 3.9039 1.0079 3.7559 2.3819 0.6757 0.0183 6.4714
MR-MP(T) 4.3817 9.0767 21.5962 20.6247 2.5039 11.5643 9.3461 3.1299 6.2380 0.6947 0.0834 5.8089
ResNet-100 MR-MP(SRT) 3.4416 4.3818 8.4507 3.8651 3.1299 3.4975 0.8247 4.3818 2.6033 0.6738 0.0099 6.4496
UMR-UMP 0.0000 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7477 0.0038 37.9345
UMR-MP 4.3895 6.7568 10.4730 0.7025 8.4459 4.5742 0.0795 10.8108 5.4452 0.4263 0.0005 8.2432
UMR-MP(T) 6.4169 7.7703 12.1622 0.4241 8.7838 4.6040 0.0000 17.9054 8.9527 0.3567 -0.0066 6.8853
UMR-MP(SRT) 4.7274 7.4324 9.4595 0.8748 7.4324 4.1536 0.1193 9.1216 4.6205 0.4553 0.0014 8.4507
MR-MP 6.8831 10.0156 13.7715 4.2316 7.8247 6.0281 1.1662 9.7027 5.4344 0.6496 0.0301 4.7924
MR-MP(T) 6.8831 9.7027 14.0845 97.8759 0.0000 48.9379 90.7622 0.0000 45.3811 0.7759 0.3663 4.8791
ResNet-50 MR-MP(SRT) 6.2578 9.0767 11.8936 2.9738 8.1377 5.5557 0.8413 9.3897 5.1155 0.6488 0.0144 4.9381
UMR-UMP 0.0106 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.7318 0.0078 26.4276
UMR-MP 6.4169 16.8919 24.3243 0.9874 16.8919 8.9397 0.0663 27.3649 13.7156 0.3803 -0.0019 4.6457
UMR-MP(T) 7.7685 15.8784 34.4595 0.6759 18.9189 9.7974 0.0596 37.1622 18.6109 0.3304 -0.0027 4.2067
UMR-MP(SRT) 6.079 12.5000 21.9595 0.9675 13.1757 7.0716 0.0928 22.2973 11.1950 0.4157 -0.0018 5.2918
MR-MP 8.4777 18.1534 28.7950 6.5056 10.3286 8.4171 1.9908 14.0845 8.0377 0.6087 0.0509 3.2505
MR-MP(T) 8.7634 17.5274 26.2911 95.9683 0.0000 47.9842 84.9896 0.0000 42.4948 0.7638 0.3966 3.5408
MobileFaceNet MR-MP(SRT) 7.8232 15.0235 22.5352 3.9733 9.0767 6.525 1.1745 14.3975 7.7860 0.6087 0.0241 3.5815