Skip to main content
. 2021 Dec 1;124:108473. doi: 10.1016/j.patcog.2021.108473

Table 3.

The achieved verification performance of different experimental settings by ResNet-100, ResNet-50, and MobileFaceNet models along with EUM trained with triplet loss and EUM trained with SRT loss. The result is reported using synthetically generated masked faces of the LFW dataset. The FMR100_ThUMR-UMP are equal to 0.1736, 0.2052 and 0.2449 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The FMR1000_ThUMR-UMP are equal to 0.2451, 0.2617 and 0.3450 are for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The lowest EER and the lowest average error of FMR100 and FMR1000 at the defined threshold are marked in bold. It can be noticed the significant improvement in the verification performance induced by our proposed approach (SRT) in most evaluation cases.

FMR100_ThUMR-UMP
FMR1000_ThUMR-UMP
LFW Setting EER% FMR100% FMR1000% FMR% FNMR% Avg.% FMR% FNMR% Avg.% G-mean I-mean FDR
UMR-UMP 0.2660 0.2667 0.3333 1.0000 0.2667 0.6333 0.1000 0.3333 0.2167 0.7157 0.0026 33.0630
UMR-MP 1.0000 0.9667 2.5667 1.0667 0.9667 1.0167 0.0667 2.9333 1.5000 0.5220 0.0019 13.1746
UMR-MP(T) 1.7000 2.3667 4.4333 0.9667 2.5333 1.7500 0.0333 5.9667 3.0000 0.4115 0.0029 11.0452
UMR-MP(SRT) 0.8667 0.8667 1.6000 1.2667 0.7667 1.0167 0.1000 1.7333 0.9167 0.5380 0.0024 15.0505
MR-MP 0.9667 0.9667 2.4333 3.1000 0.7000 1.9000 0.5000 1.2000 0.8500 0.5996 0.0110 14.2278
MR-MP(T) 1.7333 2.3333 10.1333 19.4667 0.3667 9.9167 6.7667 0.6667 3.7167 0.6290 0.0808 10.8161
ResNet-100 MR-MP(SRT) 0.9667 0.9667 2.0667 3.0000 0.6667 1.8333 0.4667 1.5333 1.0000 0.6035 0.0053 14.6018
UMR-UMP 0.3333 0.3000 0.4000 1.0000 0.3000 0.6500 0.1000 0.4000 0.2500 0.7023 0.0029 26.5107
UMR-MP 1.4667 1.8333 3.3000 1.0000 1.8333 1.4167 0.1000 3.5667 1.8333 0.5117 0.0014 11.8522
UMR-MP(T) 2.0000 2.7000 4.9667 0.6333 3.3333 1.9833 0.0667 6.6333 3.3500 0.4278 0.0020 10.5553
UMR-MP(SRT) 1.1000 1.1333 2.4000 0.9667 1.1333 1.0500 0.2000 2.2000 1.2000 0.5427 0.0016 14.5079
MR-MP 1.3667 1.7333 4.7333 3.0000 0.8333 1.9167 0.9000 1.9333 1.4167 0.5893 0.0158 12.2339
MR-MP(T) 2.0333 2.9667 7.2000 10.8667 0.7667 5.8167 4.0333 1.5333 2.7833 0.6256 0.0525 10.2560
ResNet-50 MR-MP(SRT) 1.2333 1.4333 2.9667 2.2333 0.9333 1.5833 0.6333 1.5333 1.0833 0.6051 0.0053 13.4416
UMR-UMP 0.6333 0.6000 1.3000 1.0000 0.6000 0.8000 0.1000 1.3000 0.7000 0.6742 0.0051 18.2460
UMR-MP 3.2333 5.9333 12.0333 0.7667 6.7333 3.7500 0.0000 18.2667 9.1333 0.4641 -0.0011 7.5840
UMR-MP(T) 3.6667 7.1333 17.6667 0.6000 8.7667 4.6833 0.0000 27.4333 13.7167 0.4023 0.0013 7.2341
UMR-MP(SRT) 1.8667 2.4667 8.1333 0.8333 2.8667 1.8500 0.1000 9.3667 4.7333 0.5144 0.0006 10.2266
MR-MP 3.3333 6.4667 17.9000 5.7667 2.6333 4.2000 0.8333 7.1333 3.9833 0.5688 0.0505 7.7096
MR-MP(T) 3.0667 5.2000 13.6333 93.9000 0.0000 46.9500 72.1333 0.0667 36.1000 0.7495 0.3970 7.7594
MobileFaceNet MR-MP(SRT) 2.2667 3.5333 11.1000 2.3000 2.2333 2.2667 0.4667 5.9667 3.2167 0.5872 0.0091 9.6183