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a b s t r a c t

Background: Lockdowns amid the COVID-19 pandemic have offered a real-world opportunity to better
understand air quality responses to previously unseen anthropogenic emission reductions.
Methods and main objective: This work examines the impact of Vienna’s first lockdown on ground-level
concentrations of nitrogen dioxide (NO2), ozone (O3) and total oxidant (Ox). The analysis runs over
January to September 2020 and considers business as usual scenarios created with machine learning
models to provide a baseline for robustly diagnosing lockdown-related air quality changes. Models were
also developed to normalise the air pollutant time series, enabling facilitated intervention assessment.
Core findings: NO2 concentrations were on average �20.1% [13.7e30.4%] lower during the lockdown.
However, this benefit was offset by amplified O3 pollution of þ8.5% [3.7e11.0%] in the same period. The
consistency in the direction of change indicates that the NO2 reductions and O3 increases were ubiq-
uitous over Vienna. Ox concentrations increased slightly by þ4.3% [1.8e6.4%], suggesting that a signifi-
cant part of the drops in NO2 was compensated by gains in O3. Accordingly, 82% of lockdown days with
lowered NO2 were accompanied by 81% of days with amplified O3. The recovery shapes of the pollutant
concentrations were depicted and discussed. The business as usual-related outcomes were broadly
consistent with the patterns outlined by the normalised time series. These findings allowed to argue
further that the detected changes in air quality were of anthropogenic and not of meteorological reason.
Pollutant changes on the machine learning baseline revealed that the impact of the lockdown on urban
air quality were lower than the raw measurements show. Besides, measured traffic drops in major
Austrian roads were more significant for light-duty than for heavy-duty vehicles. It was also noted that
the use of mobility reports based on cell phone movement as activity data can overestimate the
reduction of emissions for the road transport sector, particularly for heavy-duty vehicles. As heavy-duty
vehicles can make up a large fraction of the fleet emissions of nitrogen oxides, the change in the volume
of these vehicles on the roads may be the main driver to explain the change in NO2 concentrations.
Interpretation and implications: A probable future with emissions of volatile organic compounds (VOCs)
dropping slower than emissions of nitrogen oxides could risk worsened urban O3 pollution under a VOC-
limited photochemical regime. More holistic policies will be needed to achieve improved air quality
levels across different regions and criteria pollutants.

© 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The outbreak of the Coronavirus Disease 2019 (COVID-19)
pandemic created unprecedented societal impacts worldwide. To
lessen the virus spread, governments announced drastic non-
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pharmaceutical measures collectively referred to as lockdowns. In
most European countries, the first series of lockdowns were
imposed in early spring 2020. The restrictions led to an unseen
drop in mobility and economic activities with associated sector-
dependent reductions of anthropogenic air emissions (Evangeliou
et al., 2021; Forster et al., 2020; Guevara et al., 2021; Le Qu�er�e
et al., 2020). For instance, less road traffic in cities will decrease
the emissions of nitrogen oxides (NOx≡NOþ NO2), a by-product of
incomplete combustion of fossil fuels. Given the sources and short
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atmospheric lifetime of NOx (Laughner and Cohen, 2019), their
ambient concentrations are often higher close to busy streets in
populated urban centres. Guidelines and limit values are typically
enforced for nitrogen dioxide (NO2), making it a relevant pollutant
to study the impact of COVID-19 lockdowns on air quality. However,
quantifying the air quality response from emission changes as a
result of particular events such as COVID-19 lockdowns is not trivial
due to the multifaceted nature of the atmosphere, and NO2 is one
regulated air pollutant of many.

Ozone (O3) in the troposphere is a greenhouse gas, a potent
oxidant, and a harmful air pollutant. As a secondary pollutant, O3 is
produced or destructed in complex photochemical reactions of CO,
CH4 and other volatile organic compounds (VOCs) in the presence
of NOx (Archibald et al., 2020; Monks et al., 2015; Sillman, 1999).
These precursors have anthropogenic and natural sources (Lu et al.,
2019). Entrainment of O3 from the stratosphere can also influence
the distribution of surface O3 (Collins et al., 2003). A common
feature of O3 chemistry is the highly non-linear dependence on its
precursors. Because this chemistry has parallels with the input of
NOx and VOCs, it opens prospects to develop emission reduction
policies (Seinfeld and Pandis, 2006). It is generally specified that
under environments where VOC/NOx ratios are high (low NOx), the
regime is NOx-limited. Consequently, more NOx will result in more
O3. This regime is seen more often in rural and suburban areas. For
low VOC/NOx ratios (high NOx), the regime is NOx-saturated or
VOC-limited. This is typically observed in urban areas, where more
NOx does not produce more O3 but the contrary (Kroll et al., 2020).
The phenomenon, termed titration, means that reducing NOx re-
duces the amount of O3 being destructed via reaction with NO, and
this essentially increases O3 (Monks et al., 2015). Titration is a root
cause of the weekend effect (de Foy et al., 2020; Sicard et al.,
2020b), with O3 levels increasing on weekends resulting from less
road traffic and associated NOx emissions. This fundamental
chemistry could thus clarify observed increases in urban O3 during
lockdowns. However, the magnitude and sign of the O3 change are
not that straightforward. Accordingly, previous studies have re-
ported mainly gains in urban areas, but also declines and no
distinguishable change in O3 levels during lockdowns (Adams,
2020; Dantas et al., 2020; Grange et al., 2021; Keller et al., 2021;
Lovri et al., 2021; Luo et al., 2020; Miyazaki et al., 2020; Ord�o~nez
et al., 2020; Sicard et al., 2020a; Siciliano et al., 2020; Singh et al.,
2020; Soni et al., 2021). Besides NOx levels, this conclusion
hinges on additional physical and chemical processes, such as the
origin, ageing, amount and reactivity of the VOCs sources, the in-
fluence of biogenic VOCs, long-range transport of O3, oxidant levels,
on top of local weather conditions (Archibald et al., 2020; Kroll
et al., 2020; Monks et al., 2015; Sillman, 1999; Stohl and Kromp-
Kolb, 1994; Targino et al., 2019).

Meteorological conditions and chemistry play a central role in
dictating air quality levels. These factors can confound the quanti-
fication of pollutant changes during lockdowns. The influence of
confounders has been acknowledged, but relatively fewer studies
have included this issue in the analysis (Grange et al., 2021;
Jephcote et al., 2021; Keller et al., 2021; Lovri et al., 2021; Venter
et al., 2020). More research is needed to increase our knowledge
of the impacts of COVID-19 lockdowns on air quality, particularly by
dealing with confounders critically in this kind of analysis.

Based on an ensemble of methods linking measurements and
modelling, this work demonstrates a thorough analysis of the
impact of the first COVID-19 lockdown on the air quality in Vienna,
Austria. The focus is on ambient NO2 and O3 at ground level. Also,
Ox≡ NO2 þ O3 has been added to the analysis to gain insights into
the atmospheric oxidative capacity during the lockdown. The
analysis shows how air quality responded until the end of
2

September 2020, thereby covering a more extended period than
most previous studies.

This work has four specific objectives. First, changes in road
transportation are explored based on three different datasets to
better understand potential changes in air quality and to provide
insights for mobility-based emission estimations. Second, the
importance of taking meteorology into account for more reliable
lockdown-related air quality changes is shown, particularly for the
present case of an urban boundary layer. Third, to account for the
influence of meteorological variability itself and other time fea-
tures, machine learning models are built to produce business as
usual (BAU) and normalised pollutant time series. Fourth, this work
investigates the potential bias when air quality changes are directly
quantified from the pollutant measurements.

2. Methods

2.1. Study setting

Cities are at the heart of air quality management. By 2050, about
two-thirds of the world’s population is projected to be living in
urban areas (United Nations, 2019). Vienna, the capital of Austria,
had a population of 1,991,191 as of January 2020. The city is divided
into 23 districts over a total area of 414.9 km2 of which 50% are
green spaces and water bodies, 36% built-up areas and 14% traffic
areas. The highest elevation is Hermannskogel (543 m) and the
lowest Lobau (151 m). The city does not accommodate major in-
dustries, except for an oil refinery in the South-east (SE). The total
length of streets is 2,833 km with 714,960 private motor vehicles
(including 3,853 electric cars). With a length of almost 18 km, the
Viennese SE Tangent (A23 Südosttangente) is the shortest highway
in Austria, but the busiest. The modal split share in Vienna is 38%,
30%, 25% and 7% for public transport, walking, driving and cycling,
respectively. The car ownership rate is 37 cars/100 inhabitants, the
lowest of the Austrian provincial capital cities (Statistics Vienna,
2020).

2.2. Data consideration and key periods under scrutiny

This work was designed based on the immediacy and avail-
ability of data, implying that only publicly available datasets have
been considered. The major attention period of the first COVID-19
lockdown in Austria was from March 16 to April 13, 2020, inclu-
sively (Pollak et al., 2020). Hereafter the lockdown imposed in this
period is referred to as LOCK-2020. The identical period in the past
five years is referred to as HIST-2015-2019.

2.3. Road transport data

Changes in road transport were explored based on three
mobility datasets. First, monthly average daily traffic (MADT)
counts were obtained from the ASFINAG | Autobahnen-und
Schnellstraßen-Finanzierungs-Aktiengesellschaft’s motorway and
expressway network for January to September in 2019 and 2020.
This network includes currently about 270 measuring locations
over Austria based on overhead (ultrasonic and passive infrared
sensors) and inductive-loop detectors (ASFINAG, 2021). MADT data
representing the number of vehicles that travel past (in both di-
rections) a measuring location on all weekdays (MondayeSunday),
including bank holidays, were selected. Percentage changes on
2019 MADT data were calculated for individual months and sum-
marised by vehicle category for the city and national levels. Two
vehicle categories were considered: heavy-duty vehicles (HDV)
whose maximum authorised overall weight is more than 3,500 kg
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and light-duty vehicles (LDV) whose weight is less than or equal to
3,500 kg. The HDV category includes buses, trucks and articulated
vehicles. The LDV category embraces motorcycles, cars and delivery
vans.

Second, Apple’s movement data were retrieved (Apple, 2021).
Apple data originated from navigation requests for directions in
Apple Maps. These data represent daily changes in the volume of
people driving, walking or taking public transit corresponding to a
baseline (January 13, 2020). Apple data did not consider day of the
week influences. Of the three categories, driving was selected for
the analysis.

Third, Google’s movement data were used (Google, 2021).
Google data were provided in six categories of which one was of
interest: transit stations. These data represent how daily visits or
length of stay at different places like public transport hubs for
transit stations change compared to seven baseline days. Google
selected a baseline day as the median value during the five-week
period from January 3 to February 6, 2020 for the corresponding
day of the week.

2.4. Air quality measurements

The analysis was built on validated and up-to-date hourly
measurements of O3 and NO2 from seventeen monitors deployed
across Vienna for the period between 2015 and September 30,
2020. Of these monitors, sixteenmeasure NO2 and five measure O3.
A third pollutant was included as Ox≡ NO2 þ O3. Ox levels were
calculated for four monitors. Detailed information on the individual
monitors and measurement methods can be found elsewhere
(Umweltschutzabteilung der Stadt Wien, 2020). Briefly, chem-
iluminescence and ultraviolet absorption are the methods used for
NO2 and O3 measurements, respectively. Municipal Department 22
(https://www.wien.gv.at/umwelt/luft/index.html) provided air
quality data. Up-to-date air quality data are unvalidated and subject
to revision. As an attempt to assure data quality, the up-to-date data
were screened for issues. These included frequent missing values
(more than 10%), long lengths of gaps (more than 24 data points),
unrealistic high values appearing abruptly (manual inspection of
the time series), negative measurements, and repetitive sequences
of measurements (in chunks of more than 6 data points); however,
no prominent issues have been identified in the up-to-date data
used herein. Figs. S1-S3 breakdown the availability of measure-
ments by pollutant and monitor.

The Viennese air quality network has been designed to capture
different exposure conditions, representing varying degrees of ur-
banisation. It comprises monitors at urban and suburban locations
(area type). These locations are subdivided into background, traffic
and industrial (station type). A combination of area type and station
type (e.g., urban traffic) is hereafter referred to as environment. The
monitors comprise five environments: urban traffic, urban back-
ground, suburban traffic, suburban industrial and suburban
background.

2.5. Meteorological measurements

Initially, seven surfacemeteorological stations from the National
Oceanic and Atmospheric Administration Integrated Surface Data-
base (NOAA/ISD, https://www.ncdc.noaa.gov/isd) were identified.
The NOAA/ISD meteorological data were accessed using the
worldmet R package (Carslaw, 2020). As for the air quality mea-
surements, the period between 2015 and September 30, 2020 was
considered. The temporal resolution of the meteorological data is
hourly. After screen checks, four of those stations were kept. Three
stations (known as Grob-Enzersdorf, Donaufeld and Mariabrunn)
were eliminated because of data gaps over LOCK-2020. For the
3

monitor located at Hermannskogel, co-located meteorological
measurements (data made available by Municipal Department 22)
were considered. This was due to its more isolated position (488 m
high) and the absence of an adjacent station in the NOAA/ISD
database. Finally, five stations were selected. Fig. 1 illustrates the
positions of the five meteorological stations and the seventeen air
quality monitors in Vienna.

A prerequisite for developing this work was to propose an easily
generalisable methodological design. With this in mind, the
following routinely available and directly measured surface vari-
ables were selected: wind speed ws (m s�1), wind direction wd (�),
air temperature Tair (�C), atmospheric pressure Patm (mb) and
relative humidity RH (%). These variables were measured at all five
meteorological stations. Based on representativeness, a meteoro-
logical station was designated for each air quality monitor
(Table S1), and the meteorological and air pollutant datasets were
paired under amutual time frame (Coordinated Universal Timewas
used).

2.6. Business as usual modelling

Business as usual (BAU) scenarios in the form of pollutant time
series were created using the random forest machine learning al-
gorithm (Breiman, 2001). A total of 25 random forest models were
grown to explain hourly-averaged concentrations per pollutant per
monitor. This was done by feeding into the algorithm the meteo-
rological variables previously described, besides time features
which act as proxies for emissions and seasonality. The latter
comprised Unix date ttrend (the trend term), Julian day tjd, day of
week tweek, and hour of day thour. The models can be written in
terms of their nine common explanatory variables as follows

h
C
i

� ws þwdþ Tair þ Patm þRHþ ttrend þ tjd þ tweek þ thour ;

Eq. 1

where [C] is the hourly-averaged concentration of the air pollutant of
interest. When developing the models, the subsequent hyper-
parameters were kept constant: node splitting with three variables,
minimum node size of five and 300 trees (Grange et al., 2018). A
training-testing splitting proportion of 70:30 was used. Several tun-
ing tests were conducted, but the overall performance was steady
with respect to the hyper-parameters selection and splitting fraction.
Missing values of ws and pollutant concentrations were removed
prior to training. The models were grown from January 1, 2015 to
February 15, 2020. From February 16 to September 30, 2020, the
models predicted air pollutant concentrations forced by the meteo-
rological conditions that were actually measured during this period.
This strategy was implemented to (i) investigate air quality changes
prior to and long after LOCK-2020 and (ii) verify the models’ pre-
dictive skill to reproduce the pollutant measurements from February
16 to February 29, 2020. This second step is referred to as the veri-
fication phase. The duration of the verification phase was devised
considering that the first two COVID-19 cases in Austria had been
confirmed on February 25, 2020 (Pollak et al., 2020). Therefore, it was
assumed no significant perturbations in anthropogenic emissions
during the verification phase. The analysis of the road traffic patterns
has proved valuable to support this assumption. Subsequently, the

model-specific mean bias, MB ¼ 1
n
Pn
i¼1

Pi � Oi , for the verification

phasewas used to calibrate the predictions. In the MB equation, Oi is
the ith observed value and Pi is the ith predicted value for a total of n
data points.

As the models were developed based on historical data prior to
LOCK-2020, they are blind concerning the drastic perturbations in

https://www.wien.gv.at/umwelt/luft/index.html
https://www.ncdc.noaa.gov/isd


Fig. 1. Locations of the air quality monitors and meteorological stations used in this study. Outer line represents the boundary of Vienna and inner lines represent the city’s districts.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article)
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emissions caused by the COVID-19 crisis. As such, this approach
considers that (local) emission sources would have remained
operating normally under the observed meteorology. In other
words, it simulates what would have been expected in the absence
of COVID-19. BAU-related results were expressed as concentration
deltas (D): the difference between the measurements and the
predictions.

The modelling was conducted using the rmweather R package
(Grange et al., 2018; Grange and Carslaw, 2019), which has under-
lying it the ranger R package (Wright and Ziegler, 2017).
2.7. Intervention assessment

The intrinsic variability in air pollutant time series complicates
the detection of interventions and trends. In order to detach the
contribution of influencing factors on measured pollutant con-
centrations, a normalisation technique was used (Grange and
Carslaw, 2019). In addition to work in a predictive mode (for
pollutant concentration forecasting), random forest models can
also be used to diminish the effect of the explanatory variables on
the dependent variable [C]. This is done through sampling and
predicting. To this end, another 25 random forest models were
grown per pollutant per monitor following the previously
described procedure (Sec. 2.6). The only difference was that these
models were developed from 2015 to September 30, 2020 so that
the MB calibration was not applicable here. The explanatory vari-
ables, excluding ttrend, were randomly sampled with replacement
300 times from thewhole dataset for every time step. Amodel then
predicts [C] based on these inputs and returns the 300 predictions
for each time step (hourly basis). The mean of the predictions for
each hour was computed, and this forms the normalised pollutant
4

time series that can be used for further exploration.

2.8. Data analysis

Hourly air pollutant concentrations were used to estimate mean
changes (absolute and relative percentage). Changes in air quality
were calculated for pollutants and monitors individually and by
performing aggregations. A left-centred 7-day moving average was
applied to highlight prevalent trends (longer-term) by smoothing
out potentially large day-to-day fluctuations (shorter-term). The
Mann-Whitney U test, a non-parametric method for equality of
population medians of two independent samples, was used at a
significance level of 0.01. Data analysis was performed in R using
the openair (Carslaw and Ropkins, 2012) and tidyverse (Wickham
et al., 2019) packages.

3. Results and discussion

3.1. Road traffic patterns

The month-by-month analysis of the MADT data indicates that
the maximum reduction in road transport of �43% was reached in
April 2020 in Vienna. Broken down by vehicle category, drops
of �44% in LDV and �21% in HDV counts were found (Fig. 2, left
panel). At the Austrian level, a maximum reduction in MADT of
about �57% was also found in April 2020, with drops of �61% in
LDV and �25% in HDV counts. In February 2020, an increase in
MADT counts of þ1% was observed for Vienna, with a þ2% increase
in LDV and a �2% drop in HDV. For Austria in February 2020, a
decline in MADT counts of �1% was detected, with �0.8% and �3%
drops in LDV and HDV, respectively. Thus, road traffic in Austria and
Vienna until February 2020 did not undergo significant disruptions



Fig. 2. Mobility changes (%) in the road transport sector for Vienna and Austria. Left: monthly-average daily traffic MADT counts for LDV and HDV. Right: 7-day rolling mean on the
Google transit data and Apple driving data. See Methods for details on the baselines from which the percentage changes have been derived. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article)
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onmajor roads. These outcomes support calibrating the predictions
of the BAU models based on the verification phase (February 16 to
February 29, 2020). Furthermore, air traffic in Austrian airports
showed akin trends to those of the road transport sector. An in-
crease in passenger numbers of þ7% was reported for February
2020, followed by drops of �65%, �100% and �99% in March, April
and May 2020, respectively, compared with the same months in
2019 (STATISTIK AUSTRIA, 2020). Over the 9 months in 2020
(JanuaryeSeptember 2020), MADT counts were down by �16% for
Vienna and �21% for Austria relative to the same period in the
previous year. These figures break down to �17% and �22% along
with �5% and �8% drops in LDV and HDV counts for Vienna and
Austria, respectively (Fig. 2, left panel). In view of these results, the
Viennese MADT patterns were equivalent to those at the national
level on major roads, but higher mean reductions in road traffic
were generally observed for the country.

The changes in MADT counts also pinpoint that HDV were much
less affected by the pandemic than LDV. This agrees with a previous
study that has considered the sameMADTmetric for major roads in
England (Jephcote et al., 2021). The difference between the two
vehicles categories can be explained mainly because the HDV
supported the shipment of goods and products during the lock-
down (Guevara et al., 2021). After the peak in road traffic reductions
in April 2020, a recovery in road traffic flows were observed in May
and June 2020 for both vehicle categories. However, normal levels
were not observed by the summer of 2020 compared with previous
years’ baseline. In particular for HDV, the levels were close to
normal in June 2020 and were in fact found to occur first in
September 2020 (Fig. 2, left panel).

Both Google transit and Apple driving data (Fig. 2, right panel)
did not reflect well the HDV’s activity on major Austrian roads over
JanuaryeSeptember 2020 (Fig. 2, left panel). Overall, the Google
transit data appears to reflect the LDV’s activity more closely. A
similar outcome for a shorter period (2 months over
FebruaryeApril 2020) has been found for Spain/Barcelona (Guevara
et al., 2021). Using Google transit data to estimate emission re-
ductions, one assumes that mobility trends in public transport hubs
can be taken as a proxy for trends in road traffic emissions (Guevara
et al., 2021). Taken together, the present results support that this
assumption is more appropriate for lighter vehicles than for heavier
vehicles. Still, for both vehicle categories, the use of both Google
5

transit and Apple driving data can pottentially overestimate the
impact of the COVID-19 restrictions on road traffic emissions when
compared with the changes in MADTcounts. Dedicated studies will
be required to resolve the identified issues to achieve improved
emission estimates based on cell phone movement data. Antici-
pated gaps include differences in methodologies to derive the
changes in mobility based on movement trends (e.g., different
baseline periods) and representativeness of such trends. Here,
Pearson’s correlations (r) between the Apple driving data and
Google transit data were 0.80 (p < 0.01) and 0.79 (p < 0.01) for
Vienna and Austria, respectively. Such high correlations have also
been noted during FebruaryeJune 2020 for worldwide cities
(Forster et al., 2020). However, it is clear from Fig. 2 (right panel)
that there were marked divergences between Apple driving data
with Google transit data over the summer months for both Vienna
and Austria. The reason for this discrepancy is uncertain, but it may
be that the Apple driving data is reflecting the behaviour of a
particular type of travel pattern.

For the road traffic sector, emission reduction factors have been
derived by using bottom-up approaches based on activity in-
dicators such as cell phone movement data (Guevara et al., 2021;
Menut et al., 2020). The problem of quantifying primary emissions
as a result of COVID-19 lockdowns has serious implications for at-
mospheric modelling. The here-obtained insights by comparing
mobility changes in road traffic using three distinct datasets have
the potential to contribute to making progress in this regard.
3.2. Meteorological situation

Considering the meteorological situation is crucial to better
understand air quality changes due to COVID-19 lockdowns.
Accordingly, wind roses were produced for the LOCK-2020 and
HIST-2015-2019 periods, besides the remaining data outside these
periods from 2015 to September 30, 2020 (Fig. 3). Exposed are plots
for the five selected meteorological stations, covering a good
geographical area across Vienna. Wind roses were also produced
for complete years in the 2015e2019 period (Fig. S4). First, there are
some differences between the wind roses, which are due to the
location of the stations. Vienna is mostly flat from South (S) to East
(E) areas. However, the city is circumscribed from South-west (SW)
to North-west (NW) by the moderate slopes of the Alpine foothills



Fig. 3. Wind roses for the five selected meteorological stations and different periods (see text for the definition of the periods). The annotations in green show mean wind speeds
and calm wind frequencies of each period. Calm winds were defined as having hourly speeds <0.5 m s�1. The radial scale denotes the frequency of counts by wind direction sector.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article)
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(Wienerwald). Hence, the terrain becomes hilly at these parts,
influencing the wind field. The longer-term wind roses demon-
strate the city’s typical airflow patterns. These are manifested by
two dominant directions which are accompanied by higher speeds
(Fig. 3, right panels and Fig. S4). The prevailing winds blow from
West (W) to NWand from SE. The former has on average higher ws
than the latter. SE winds are more recurrently observed with fair
weather (anticyclonic conditions). Contrary, W and NW winds are
more connected to cloudy or rainy periods (Brancher et al., 2019a;
2019b). Moreover, SE winds on hilltops have a higher frequency
than elsewhere, and there the highest ws are observed. In the city
centre, the ws is reduced because of enhanced drag caused by a
higher surface roughness length of the urban canopy layer. Also, not
only Tair is increased (urban heat island), but RH (urban dry island)
is typically reduced in the city centre.

Second, lower ws were experienced for all five stations during
LOCK-2020 relative to their preceding 5-year means for the same
period, i.e. HIST-2015-2019. Alterations in wd can be seen as well,
such as more frequent flows from the North-northwest (NNW) and
North (N) sectors (Fig. 3, central panels). The Austrian Weather
Service (ZAMG) has reported a mild, sunny and mostly dry March
2020 in Austria. The reported Tair, precipitation and sunshine
duration anomalies (1981e2010 climatology) were
respectivelyþ1.5 �C, �53% andþ39% for Vienna. However, only the
first two thirds of March 2020 were warmer than average. The
LOCK-2020 period fits within the last third, and this was slightly
colder due to the advance of polar cold air (ZAMG, 2020a).
Furthermore, ZAMG has reported a truly warm, dry and sunny April
2020. The Tair, precipitation and sunshine duration anomalies were
respectively þ1.7 �C, �83% and þ61% for Vienna. However, the cold
front persisted until the first days of April 2020. The above-average
Tair began from around April 5, 2020 (ZAMG, 2020b). When
comparing LOCK-2020 against HIST-2015-2019 for the five selected
stations, average differences of �0.7 �C, �0.7 m s�1 and þ16% for
Tair, ws and RH were detected, respectively. This shows that
whereas the LOCK-2020 period shares common features with
March and April 2020, it had its own meteorological conditions.

Thus, care is called for when comparing identical lockdown
periods. Even after reducing the variability by averaging over five
previous years, themeteorological conditions between them can be
dissimilar. It should be now straightforward to picture that mete-
orology is an exponentially growing issue for COVID-19 studies that
have estimated air quality changes based on different lockdown
periods.

3.3. Business as usual scenarios

3.3.1. Predictive performance
The random forest models’ skill was evaluated for hourly data

during the training/development phase (January 1, 2015eFebruary
15, 2020) and verification phase (February 16dFebruary 29, 2020).
Tables S2dS4 dissects the performance summaries. The models
were found to explain an adequate amount of the variation in the
pollutant concentrations. For example, during the training/devel-
opment phase, the models had r ranging from 0.82 to 0.91 for NO2,
from 0.93 to 0.95 for O3, and from 0.95 to 0.96 for Ox. During the
verification phase, there was a general reduction in performance,
with the models showing r from 0.68e0.87 for NO2, 0.54e0.82 for
O3, and 0.56e0.81 for Ox. Overall, the models’ performance can be
considered very satisfactory for hourly predictions, similar to up-
to-date works (Font et al., 2020; Grange and Carslaw, 2019; Vu
et al., 2019; Wang et al., 2020). Compared with deterministic,
process-driven atmospheric chemistry models, the random forest
models showed equivalent performance for the present application
at a relatively lower computational cost (Menut et al., 2020).
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It should be noted that the models struggled to reproduce the
tails of the distributions. This is not a concern because herein mean
air quality changes were examined, and the mean is known to be
more robust than high or lower percentiles. Furthermore, the
modelling workflow entails meteorological data. This work
implemented a simple procedure to achieve models with adequate
performance without the need for more sophisticated predictors.
As such, the models are a good compromise between simplicity and
predictive power. Instead of a long list of predictors, we paid more
attention to selecting meteorological data with the potential to
better describe smaller-scale air pollution variations in the urban
area. Many studies select a ’regional’ meteorological dataset (usu-
ally taken from a nearby airport station) to match air quality
monitors in cities. The selection of representative surface meteo-
rological stations is anticipated to be even more influential for
complex terrain applications, as recently shown for a case in the
Italian Alps (Falocchi et al., 2021).

The most important explanatory variables to predict hourly
concentrations of NO2, O3 and Ox in Vienna were monitor depen-
dent. On average, the importance for the NO2 models was given in
the following ascending order: ws, wd, thour, tjd, Tair, RH, tweek, ttrend
and Patm; for the O3 models as: RH, Tair, tjd, ws, ttrend, wd, thour, Patm
and tweek; and for the Ox models in this manner: RH, Tair, tjd, ttrend,
ws, wd, thour, Patm and tweek. The variables’ importance agrees well
with the chemical and physical processes expected to drive the
dynamics of these pollutants (Jacob and Winner, 2009), thereby
demonstrating the random forest models’ interpretability nature. It
is a universal observational feature that elevated O3 concentrations
are strongly correlated with Tair in polluted regions (Jacob and
Winner, 2009). This is expected to be the case here too; however,
the O3 models suggest that RH is, on average, more important than
Tair. Gaining insights into the processes that drive pollutant con-
centrations is crucial, particularly under a changing climate with
regional differences (Von Schneidemesser et al., 2015). Conse-
quently, these results on their own could be valuable to help better
understand the sensitivity of O3 pollution to meteorology in future
studies.
3.3.2. Mean air quality changes
The NO2 observations were consistently lower than the BAU

predictions (Fig. 4). A mean decrease in NO2 concentrations
of �4.9 mg m�3 during the 29 days of LOCK-2020 was found at the
city level. This equated to a mean percentage change of �20.1%.
Keller et al. (2021) estimated monthly mean NO2 changes for
worldwide cities using machine learning (gradient boosting)
coupled with the GEOS-CF model and mentioned some results for
Vienna. They have reported drops in NO2 concentrations in March
and April 2020 of �20.6% and �26.2%, respectively. These monthly
figures are not based on the specific lockdown period considered
herein (LOCK-2020), but they align well with the present results.

NO2 concentrations were reduced at all monitors, ranging
from�1.4 to�12.7 mg m�3 or from�13.7 to 30.4%. The urban traffic
Hietzinger Kai monitor showed the largest mean decrease
(�12.7 mg m�3 or �30.4%) followed by other two urban traffic
monitors, Gaudenzdorf (�7.2 mg m�3 or �22.8%) and A23-
Wehlistraße (�7.0 mg m�3 or �21.8%). Across the network, the
lowest NO2 concentrations typically occur at Hermannskogel, a
suburban background monitor located on the hilltop of a wooded
area (Wienerwald). The mean reduction in NO2 concentrations
was �1.8 mg m�3 or �21.4% at Hermannskogel. This result shows
that the drops in NOx emissions from local sources in the urban core
was strong enough to influence NO2 concentrations at this monitor.
Regarding NO2 aggregations by environment, the influence of land
use characteristics on the local spatial variations in NO2



Fig. 4. Daily mean of NO2 concentration deltas D. The study period runs between February 16 and September 30, 2020. The deltas represent the differences between the measured
pollutant concentrations and the business as usual predictions. Solid grey lines are 7-day rolling means of the concentration deltas. Dashed vertical lines indicate the LOCK-2020
period.
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concentrations has been detected. For instance, higher reductions
in NO2 concentrations were seen at urban traffic (�6.4 mg m�3

or�21.1%, n¼ 8) than at urban background (�4.1 mgm�3 or�18.5%,
n ¼ 3) and suburban background monitors (�1.7 mg m�3 or �15.9%,
n ¼ 3). These results were expected because of two main factors
related to NO2 pollution. First, NO2 is a locally sensitive gas as it has
a short atmospheric lifetime (Laughner and Cohen, 2019), meaning
that it is not transported to regions far downwind of the emission
sources. Second, NOx emissions mainly come from fossil fuel
combustion, especially in urban areas. Thus, NO2 concentrations
responded to declines in local NOx emissions promptly as road
transportation is the major emission source. By providing a quan-
titative assessment of the magnitude of this response, this work
demonstrates how sensitive NO2 pollution can be to future policy
changes. To contextualise this point further, we can refer to the
work of Grange et al. (2021). This work reported mean trends of
NO2 between 2010 and 2019 for major European urban areas
of �1.44 mg m�3 y�1 at urban traffic and �0.72 mg m�3 y�1 at urban
background environments. Assuming these concentration trends as
a reference point for Vienna, the here-reported mean reductions
due to the LOCK-2020 restrictions would indicate 4.4 and 5.7 years
of sustained efforts to reduce NO2 concentrations at those envi-
ronments, respectively. For Hietzinger Kai, the mean reduction in
NO2 found during the lockdownwould be equivalent to 8.8 years of
continuous decline in ambient concentrations.

Negative daily NO2 concentration D were found for 82% of the
lockdown days. Two of the monitors (Hietzinger Kai and Gau-
denzdorf) had only one day with positive daily NO2 concentration
D, stressing the clear signature of the COVID-19 pandemic on the
NO2 concentrations. The AKH monitor showed the lowest occur-
rence frequency of negative daily concentration D (69%) and one of
the lowest reductions (�14.2%) in NO2. This monitor is located
nearby one of the largest hospitals in Europe, so it is reasonable to
assume fewer reductions in road traffic around this hospital during
LOCK-2020.

The largest departures of the NO2 observed concentrations from
the BAU forecasts generally occurred in early April 2020 (the
exception was Hietzinger Kai, see Fig. 4). The return to normality
(RTN) shapes of the NO2 concentrations were more site-specific
with some monitors recovering to BAU levels immediately after
the lockdown (e.g., Hermannskogel, Lobau), in early May (e.g.,
Belgradplatz, Gaudenzdorf, Stephansplatz) or in late September
2020 (e.g., Hietzinger Kai, Hohe Warte). Altogether, the NO2 RTN
shapes, in particular at urban traffic environments, have strong
similarities with the road transportation patterns shown in Fig. 2. In
addition, decreases in NO2 concentrations were found since early
March 2020. This result indicates alterations in emissions effec-
tively before LOCK-2020, which is again supported by the road
traffic patterns for this period (Sec. 3.1). This is of significance for
determining emission reduction factors in future studies. In follow-
up research, it could also justify the definition of lockdown periods
based on a statistical framework (Ropkins and Tate, 2021), contrary
to static periods defined by official lockdown dates.

For O3, the opposite behaviour to NO2 has been found. There
were clear increases in O3 concentrations during LOCK-2020, as
indicated by the observations being mostly greater than the
counterfactual predictions during this period (Fig. 5). At the city
level, O3 concentrations increased by þ5.2 mg m�3 or þ8.5% on
average. This relative change is greater than the monthly mean
changes in March and April 2020 of respectively þ5.6% and þ3.9%
given for Vienna (Keller et al., 2021). However, estimates of O3
changes are very sensitive to the lockdown window (see Fig. 5).

O3 pollution was amplified at all monitors, with gains ranging
from þ2.1e7.6 mg m�3 or þ3.7e11.0%. In absolute terms, both the
Hohe Warte and Hermannskogel monitors showed the largest
9

increase of þ7.6 mg m�3. In relative terms, the largest increase
of þ11.0% occurred at Hohe Warte. The lowest increase occurred at
Lobau, both in absolute and relative terms (þ2.1 mg m�3 or þ3.6%).
The mean change in O3 concentrations during LOCK-2020 was
slightly greater at urban background monitors (þ5.5 mg m�3

or þ8.3%, n ¼ 3) than at suburban background monitors
(þ5.3 mg m�3 or þ7.7%, n ¼ 2). During the lockdown in the United
Kingdom (UK) for instance, mean O3 increases of þ7.2 mg m�3 or
11% across the UK’s urban background network have been reported
(Lee et al., 2020).

The maximum occurrence frequency with daily O3 concentra-
tions above BAU levels was calculated for Hohe Warte (90% of the
LOCK-2020 days). On average, positive daily O3 concentration D
were estimated for 81% of the days during the lockdown. By
matching the monitors (n ¼ 4) with concomitant NO2 and O3 ob-
servations, the occurrence frequency of negative and positive daily
concentration D for NO2 and O3 were respectively 77% and 83%
during the lockdown. In addition, whilst the NO2 RTN shapes re-
flected the road traffic patterns (Fig. 2), the O3 RTN shapes, in
particular over the LOCK-2020 period, mirrored the NO2 RTN
shapes (direct comparisons can be made for Figs. 4 and 5 between
the monitors where NO2 and O3 are measured concurrently).

Fig. 6 shows the Ox concentration D. It can be already grasped by
visual inspection that the levels of Ox follow similar temporal
patterns to those of O3 (discussed further later). Ox concentrations
increased byþ3.8 mgm�3 at the city level during LOCK-2020, which
equates to þ4.3%. The changes in Ox concentrations at urban
background (þ4.3 mg m�3 or þ5.2%, n ¼ 2) were slightly greater
than at suburban background monitors (þ3.4 mg m�3 or þ4.1%,
n ¼ 2). Comparatively, the highest increase in Ox was seen at Hohe
Warte (þ5.4 mg m�3 or þ6.4%) and the smallest at Lobau
(þ1.1 mg m�3 or þ1.8%). All in all, lower NOx and higher O3 went
side by side so that Ox levels increased only slightly.

After applying the Mann-Whitney U test, only two cases did not
show statistically significant differences between the observations
and BAU predictions. These were for O3 and Ox at the Lobau
monitor. All other pair of cases showed statistically significant
differences (p < 0.01). Figs. S5eS7 depict the observations and BAU
predictions themselves.

3.3.3. Further interpretation of the changes
To go further with the interpretation of the changes in air

quality, Fig. 7 abridges the previously shown results by pollutant.
The general impact of LOCK-2020 on the evaluated pollutants is
depicted, besides their general RTN shapes over the study period. It
is of interest first to contrast the mean NO2 RTN shapes (Fig. 7, top
panel) against Vienna’s traffic patterns (Fig. 2, left panel). Mean NO2
concentrations reached BAU levels during May 2020 for the first
time. However, MADT counts for LDV were lower during the whole
study period. MADT counts for HDV, which make up a smaller
proportion of the vehicle fleet, did not fall so expressively, and
almost normal levels were observed in June 2020 relative to the
samemonth in 2019. This suggests the potential role played by HDV
emissions to the surface NO2 concentrations. Additional research
will be required to understand this qualitative insight further;
nevertheless, the present results are clear in noting the implica-
tions for air quality management. In this regard, a COVID-19-related
study has emphasised that urban NOx emissions are dominated by
road traffic. However, this dominance could be much greater than
currently reported in emission inventories (Lamprecht et al., 2021).
Previous works also show that HDV dominate vehicular NOx
emissions (Ghaffarpasand et al., 2020; Song et al., 2018). Based on
emission factors calculated from real-world observations of low-
cost sensors, it has been shown that high emitters contribute
disproportionately to fleet emissions of not only NOx but also CO



Fig. 5. Same as Fig. 4 but for O3.
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and PM2.5 (Liu and Zimmerman, 2021). Similarly, by developing a
city-level high-resolution vehicular emission inventory, Maes et al.
(2019) reported that most NOx emissions come from HDV. Hence,
an important point to note here is that the changes in HDV counts
could be the main driver of the changes in surface NO2 concen-
trations during lockdowns. If so, control measures could be tar-
geted at HDV with the potential to reduce total pollutant emissions
from road traffic significantly and more effectively. It is recom-
mended that such measures be integrated in the broader context of
other emission sources and air pollutants. As the Viennese LOCK-
2020 experience has shown for urban O3, a key aspect of air qual-
ity management is to achieve a balanced strategy of emission
reductions.

Moreover, the response of surface NO2 to a change in NOx
emissions was estimated to have a mean sensitivity of 0.8 (Keller
et al., 2021). This means that, on average, NO2 concentrations at
ground level reduce by roughly 80% of the fractional cut in
anthropogenic NOx emissions. A diminished effect was stated to
occur for emission reductions larger than 50% because of atmo-
spheric chemistry and background NO2 influences (Keller et al.,
2021).

Fig. 7 also illustrates the chemical coupling between O3 and NO2
and, in turn, Ox. During the whole study period (2015 to September
30, 2020), hourly Ox concentrations are driven mainly by O3
(r ¼ 0.90, p < 0.01). This positive correlation has not changed its
strength during LOCK-2020.

It is essential to understand if the elevated concentrations of
10
secondary pollutants like O3 seen during strict lockdowns are due
to chemistry (e.g., weakened titration, photochemical production
and heterogeneous chemistry owing to decreased PM2.5) or mete-
orological effects. As shown, the frequency of days with amplified
O3 concentrations was equivalent to the frequency of days with
reduced NO2 during the LOCK-2020 period in Vienna. After con-
trolling for confounders, declines in NO2 and gains in O3 went hand
in hand, so that Ox levels increased only slightly. This reflects a
propensity of photochemical repartitioning of NO2 to O3, which is
consistent with previous findings for European urban areas, and is
not restricted to Vienna (Grange et al., 2021; Lee et al., 2020;Wyche
et al., 2021). The present results therefore suggest the lower O3
titration by NO as the dominant cause for explaining the O3 in-
creases in Vienna. In other words, the lockdown measures resulted
in less ozone being depleted locally by NO due to the unprece-
dented reduction in NOx emissions mainly from the road transport
sector. Importantly, the outcome of gains in O3 levels agrees with
previous works for urban areas (Dantas et al., 2020; Grange et al.,
2021; Le et al., 2020; Lee et al., 2020; Sicard et al., 2020a; Wyche
et al., 2021).

The RO2 (organic peroxy), OH (hydroxyl) and HO2 (hydro-
peroxyl) radical species are central to tropospheric photochemistry
(Levy, 1971; Monks et al., 2015; Seinfeld and Pandis, 2006; Sillman,
1999). The principal sources of these radicals in urban areas are the
ultraviolet photolysis of O3 itself, nitrous acid, and some carbonyls
such as formaldehyde (Li et al., 2021 and references therein). The
role of chlorine atoms as relevant tropospheric oxidants has been



Fig. 6. Same as Fig. 4 but for Ox.
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increasingly acknowledged too (Sommariva et al., 2021). The OH
radical is particularly important because it initiates the removal of
primary emissions, forming peroxy radicals (HO2 and RO2). Then,
peroxy radicals form, in the presence of NO, secondary pollutants
such as NO2, O3 and particulates (Whalley et al., 2021). If Ox remains
preserved, the reduction of fresh NO emissions will increase O3
concentrations because a lesser amount of Ox consists of NO2
(Clapp and Jenkin, 2001). In this sense, changes in Ox can be un-
derstood as changes in the abundance of oxidants (Lee et al., 2020).
As a consequence, the slight mean Ox increase during LOCK-2020
points to net photochemical production, which means that some
part of the increase in O3 is not solely attributable to weakened
titration. It is premature to remark on the change in radical species
without measurements or model calculations. However, as Ox is
frequently used as an indicator of the atmospheric oxidative ca-
pacity (Chen et al., 2020; Grange et al., 2021), its small positive
mean change is also suggesting some increase in overall reactivity
of the urban boundary layer during LOCK-2020. With validated
emission inventories, this premise can be tested with atmospheric
chemistry models. For example, for China/Yangtze River Delta, a
model study has reasoned that the dramatic reductions in NOx
11
during the lockdownwere responsible for gains of the OH, HO2 and
NO3 reactive radical species (Wang et al., 2021). Similarly, model
simulations for the South East of the UK suggested increased radical
levels, and indicated that the dominance of radical cycling over
termination routes increased as a result of the lockdown (Wyche
et al., 2021).

Regarding heterogeneous pathways, it has been suggested based
on model simulations that the PM2.5 decrease in the North China
Plain since 2013 is themain driver for the O3 increase due to reduced
scavenging of HO2 radicals to aerosol surfaces (Li et al., 2019). There
is though continued debated from field studies on the general val-
idity of the proposed mechanism (Tan et al., 2020). In order to make
a simple comparison for Vienna, additional measurements were also
taken for fine inhalable particles (PM2.5). Directly from the obser-
vations, PM2.5 decreased by �10.0% or �1.7 mg m�3 on average
during LOCK-2020 compared with the same period in 2019. How-
ever, the finding by Li et al. is largely restricted to summer when
PM2.5 and O3 had an overall positive correlation (Li et al., 2019, 2021).
Observational data also showed that daily PM2.5 and O3 were
negative correlated (r ¼ �0.34, p < 0.01) during the LOCK-2020
period in Vienna. Thus, it is conjectured that this heterogenous



Fig. 7. Seven-day rolling mean of concentration deltas D for each pollutant between February 16 and September 30, 2020. Shaded areas are the standard deviation of the means.
Dashed vertical lines indicate the LOCK-2020 period.
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chemical pathway cannot explain the increases in O3 during the
lockdown. Despite such apparent mean decrease in PM2.5 mass
concentrations, a resultant oxidising environment may have facili-
tated secondary formation processes so that certain secondary
aerosol components could show no changes or even increases (Sun
et al., 2020).

Atmospheric chemistry models can separate local factors and
regional transport to elucidate locally observed O3 levels. It is
acknowledged that the methods used here cannot rule out a po-
tential contribution of regional transport of O3. By assuming PM2.5 a
marker for transported pollution, we can make an educated guess
of the potential influence of regional O3 at the site location (Wyche
et al., 2021). By comparing the daily mean concentrations of O3
with PM2.5 (not shown), correlated peaks in daily O3 with respect to
PM2.5 were not detected during LOCK-2020 at two of the monitors
12
with concomitant measurements of these pollutants (Lobau and
Laaer Berg). As seen, a negative correlation between daily O3 and
PM2.5 was calculated during the lockdown. This suggests that the
increases in O3 concentrations cannot merely be explained by
transported pollution. Furthermore, according to Wyche et al.
(2021), the existence of isolated peaks in the time series of daily
O3 concentration D indicates substantial contributions to local O3
concentrations due to lockdown-induced perturbations in the
O3eNOxeVOC boundary layer chemistry.
3.4. Normalised pollutant time series

Assessing the impact of interventions on air quality can be
difficult for several reasons. The most problematic of these is
perhaps meteorology. Meteorological effects can hide or even
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accentuate the underlying changes in pollutant concentrations
actually coming from perturbations in chemistry and emissions.
Controlling for meteorology and other effects such as seasonality is
thus essential when examining interventions on the basis of
changes in air pollutant concentrations over time. Doing so allows
intervention assessment and trend analysis to be explored robustly
(Falocchi et al., 2021; Font et al., 2020; Grange et al., 2018; Grange
and Carslaw, 2019; Ma et al., 2021; Vu et al., 2019). Here the nor-
malisation technique was applied for intervention assessment by
considering LOCK-2020 as the intervention, so its timing is known.
The technique’s main idea is to use statistical models to reduce
variability in the air quality time series.

Fig. 8 shows the normalised pollutant concentration time series
derived from themonitor-specific random forest models developed
specifically for this purpose (Sec. 2.7). The predictive skill of these
Fig. 8. Seven-day rolling mean of the normalised pollutant time series between
January 1 and September 30, 2020. Dashed vertical lines indicate the LOCK-2020
period. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article)
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models was highly consistent with the performance of the models
grown for the BAU scenarios during the model training and
development phase (Tables S2dS4). The main intention of this
quantitative analysis was to substantiate the previous results
qualitatively. The overall NO2 trend is a more gradual decline in
concentrations going into the LOCK-2020 period. The normalised
NO2 time series did not show localised changeability during LOCK-
2020 as they have broadly similar patterns. In addition, the nor-
malised time series captured the recovery of the NO2 concentra-
tions following LOCK-2020. This again indicates widespread
changes in the city rather than isolated changes, which is related to
the intervention’s spatial scale. However, the magnitude of the
decline in NO2 concentrations depends on the monitors’ environ-
ment, as expected. We see again that the most noticeable drops in
NO2 concentrations occurred at the urban traffic monitors (e.g.,
Hietzinger Kai, A23-Wehlistraße). In this sense, even with a sig-
nificant intervention, this analysis also shows the challenge of
clearly distinguishing changes when air pollutant concentrations
are around background levels. The normalised O3 time series were
able to depict the increases in concentrations of this pollutant
during LOCK-2020. The increases in O3 concentrations were
apparent at the urban background monitors after the lockdown
began (Laaer Berg, Hohe Warte, Stephansplatz), while more subtle
at the suburban backgroundmonitors (Hermannskogel and Lobau).
Regarding Ox, the normalised time series remained practically
constant throughout LOCK-2020, indicating that the Ox abundance
was not altered expressively. Besides the environment of an air
quality monitor, Fig. 8 demonstrates that the efficacy of the inter-
vention assessment depends strongly on the air pollutant under
scrutiny.

Collectively the results shown in Fig. 8 agree well with the BAU-
related outcomes, adding a converging layer of evidence of how the
first COVID-19 lockdown has impacted NO2 and O3 air pollution in
Vienna. Besides, the normalised time series indicate further that
the detected changes, or lack thereof, in the pollutant concentra-
tions are of anthropogenic and not meteorological origin.

More generally, the suitability of the normalisation technique
based on the random forest algorithmwas shown for assessing the
impact of a significant but relatively short-term intervention
(Vienna’s first COVID-19 lockdown) at the site location for different
pollutants. This was achieved using existing, routine air quality
monitoring and meteorological measurements. In light of contex-
tual information, the normalisation technique facilitated explaining
lockdown-associated characteristics in the pollutant time series to
a great extent. These characteristics are not always evident in the
raw data. It is also clear-cut from Fig. 8 that interventions taking
place in a short period of time and on a small spatial scale could be
very challenging to detect and quantify, or even go unnoticed, by
using statistical approaches such as the normalisation technique
applied in this work. This limitation should be considered for
assessing the effectiveness of small spatio-temporal scale in-
terventions. It could frustrate even those measurement programs
carefully designed to collect data to feed the methods. Examples of
policy interventions intentionally implemented to improve air
pollution more locally include low emission zones, expansions of
public transport service, fuel changes, traffic bans and modifica-
tions of bus routes.
3.5. The importance of accounting for confounders

A wide range of approaches has been applied to assess the
impact of COVID-19 lockdowns on air quality (Grange et al., 2021;
H€ormann et al., 2021; Krecl et al., 2020; Le et al., 2020; Ord�o~nez
et al., 2020; Petetin et al., 2020; Ropkins and Tate, 2021; Sharma
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et al., 2020; Tobías et al., 2020). This work contrasts a statistical
approach (machine learning-based counterfactual predictions)
against the ’historical approach’. The latter directly assesses air
quality changes by comparing pollutant measurements during
lockdowns with the same period in previous years. Due to its
simplicity, it has been one of the most commonly used approaches.
Here, the historical approach is based on the mean of the past five
years (HIST-2015-2019) during the same period as the LOCK-2020.

The NO2, O3, and Ox changes on the random forest baseline
reveal that the impact of Vienna’s first COVID-19 lockdown on air
quality was not as large as the raw pollutant measurements indi-
cate (Fig. 9). Note that at the time of writing, a study also found that
changes in pollutant concentrations due to lockdowns were more
limited than previously reported (Shi et al., 2021). Bigger differ-
ences (up to a factor of ~2.3) between the two approaches were
detected at the monitor scale compared with city-level aggrega-
tions. The present analysis further shows that the amount of bias
differs not only by environment but also by pollutant. The bias is
higher for O3 and urbanmonitors. As shown in Sec. 3.2, a significant
cause for the differences in the magnitude of changes stems from
variations inmeteorological conditions. Quantification of air quality
changes relative to multi-year baseline values partially controls for
the problem, but it cannot fully solve it (Venter et al., 2020).
Moreover, meteorological conditions influence air pollutants
differently. This goes back to the random forest models for NO2

returning wind data as the most important explanatory variables.
Similarly, the highest importance of the RH and Tair variables was
given by the models developed for O3 and Ox. Besides, potential
pre-existing air pollutant trends due to reductions in primary
emissions over the years also play a role in the historical approach.
Hence, analyses of changes in air quality directly based on
Fig. 9. Percentage changes in NO2, O3 and Ox from the machine learning-derived business
pretation of the references to colour in this figure legend, the reader is referred to the Web
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measured data resonate such confounding issues.
The direction of change was largely consistent between the two

approaches, which holds for the LOCK-2020 duration (29 days).
However, if shorter periods are considered, a previous study has
shown that the historical approach can further exaggerate air
quality changes (Petetin et al., 2020). This adds to the present re-
sults to conclude that the bias of the historical approach can in-
crease at shorter temporal and finer spatial scales. In short,
estimated changes in air quality from the historical approach
should be interpreted with care for diurnal cycles at the site
location.
3.6. Implications

Extensive epidemiological evidence shows the adverse health
effects of exposure to air pollution (Cohen et al., 2017). Despite the
dynamic interchange of NO2 and O3, relatively few studies have
assessed the associations between health endpoints and exposure
to these pollutants jointly. However, evidence is growing to indicate
that the health effects of the simple sum of the two, Ox≡ NO2 þ O3,
is greater than for either NO2 or O3 alone (Hvidtfeldt et al., 2019;
Williams et al., 2014; Yang et al., 2016). This knowledge could lead
to a growing interest in investigating and controlling Ox concen-
trations. Thus, the photochemical repartitioning of NO2 to O3 sug-
gested by the first COVID-19 lockdown experience in Vienna may
have consequences for public health and health impact
assessments.

Successful management of O3 pollution is challenging
(Archibald et al., 2020; Monks et al., 2015). A central aspect of
science-based policies is the O3 formation regime (Wang et al.,
2017). Conclusively stating the Viennese O3 regime is hampered
as usual (BAU) scenarios against the historical approach (HIST-2015-2019). (For inter-
version of this article)
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because of the lack of routine VOC measurements concurrently
with other pollutants. However, the present results indicate that
the regime across Vienna is VOC-limited, which is typically seen for
urban areas. Assuming that during the LOCK-2020 period, the
supply of NOx emissions reduced equivalently more than VOCs, this
scenario would lead to higher VOC/NOx ratios, resulting in an in-
crease in O3 pollution. This premise has been uncovered for
example for Brazil/Rio de Janeiro: levels of O3 increased more
during the lockdownwhen air masses arrived at the monitors from
industrial areas. This was due to the highest VOC/NOx ratios and
also the likely increase in reactivity of VOC mixtures rich in aro-
matic compounds (Siciliano et al., 2020). Fig. S8 shows the total
anthropogenic NOx and non-methane VOC emissions (NMVOC)
from Austria’s most recent inventory (Anderl et al., 2021) as well as
the latest available projections to date in a scenario with existing
measures (Anderl et al., 2019). If confirmed, projected total NMVOC
emissions will exceed total NOx emissions in the near future in
Austria. The emission scenario associatedwith the first lockdown in
Vienna gave us a clue of this probable future, signalling the risk of
an increase in urban O3. Therefore, to avoid potentially higher O3
concentrations under these future projections, a control strategy
should consider an equilibrium between the emission reductions of
the different pollutants, especially focusing on heavier cuts in VOC
emissions.

4. Conclusions

The present study focused on how NO2 and O3 air pollution
responded to the strict government measures enforced in early
spring 2020 to slow the spread of the SARS-CoV-2 virus in Vienna,
Austria. Through an in-depth analysis of Vienna’s first COVID-19
lockdown, this work shows that for a secondary pollutant like O3,
its mitigation will remain complex and challenging. A projected
future with VOC emissions falling slower than NOx emissions could
risk an increase in urban ozone pollution under the VOC-limited
conditions. Potential solutions include tailor-made, multi-
pollutant strategies seeking to balance the emission reductions of
O3 precursors. In that sense, a recommendation is, in addition to
reducing NOx emissions, to instigate more aggresive cuts in VOC
emissions. A deeper understanding of the effects posed by meteo-
rology and chemistry when approached by scientific questions can
be valuable so as to develop more efficacious policy responses.

We saw on the machine learning-based business as usual (BAU)
baseline an improvement in air quality for NO2 but not for O3
during the LOCK-2020 period. The BAU scenarios showed that NO2
concentrations reduced on average by �20.1% [13.7e30.4%] at the
city level. However, O3 concentrations increased by þ8.5%
[3.7e11.0%] across the city. Ox levels increased byþ4.3% [1.8e6.4%],
which is important in the context of repartitioning of NO2 to O3 and
from a human health perspective. The slight increases in Ox levels
also suggest an augmented oxidative capacity of the urban
boundary layer owing to the imbalance in the reductions of primary
anthropogenic emissions during LOCK-2020. The dominant cause
of the increase in ambient O3 during the lockdown was likely the
lower O3 titration by NO due to the large reductions in NOx emis-
sions. Accordingly, this works found that 82% of lockdown days
with reduced ambient NO2 concentrations were accompanied by
81% of days with increased O3 pollution.

The recent access to global mobility data from big data providers
offers a unique prospect for examining mobility changes from
different standpoints. However, the use of Google transit data and
Apple driving data can overestimate actual traffic reductions and
associated emissions, especially for heavy-duty vehicles. Larger
drops in road traffic volumes were observed for light-duty vehicles,
while heavy-duty vehicles were much less affected by the COVID-
15
19 pandemic. As heavy-duty vehicles are high NOx emitters, the
change in the volume of these vehicles on the roads may be the
main driver behind the NO2 reductions.

The impact of the lockdown on air quality was complex and
significant, and its quantification is non-trivial. Nevertheless, this
work suggests that air quality changes were probably not as large as
previously reported. The present analysis demonstrated that ac-
counting for confounders is crucial to appreciating air quality
changes more robustly.
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