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a b s t r a c t

This paper investigates the multidimensional risk spillovers among crude oil, the US and Chinese stock
markets during the COVID-19 epidemic through a GARCHSK-Mixed Copula-CoVaR-Network method.
Firstly, we find that during the COVID-19 period, the oil-stock risk spillovers are obviously stronger than
those during the normal period. And there are significant risk spillovers from the US and Chinese stock
markets to the oil markets. It is also discovered that the oil markets are greatly influenced by the second
board stock markets, also known as the growth enterprise markets, especially during the COVID-19
outbreak. Furthermore, the bidirectional China-oil risk spillovers during the COVID-19 pandemic have
rapidly increased. Besides, it is reported that the relationships across oil futures, main board and second
board stock markets in the US and China are stable under different TSI levels and extreme events. Finally,
the GARCHSK-Mixed Copula-CoVaR-Network outperforms the control groups in terms of marginal dis-
tribution and dependence structure. Our study not only offers new method and insight into the oil-stock
relationship, but also has economic implications for investors and policymakers.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the oil-stock relationship is a critical component
to financial risk management, regulation policy planning, investing
process and so on. Therefore, the oil-equity relationship has been a
hot issue and received ample research attention [1e8]. Since
Wuhan Municipal Health Commission reported a cluster of cases of
pneumonia in Wuhan, Hubei Province, within seven months, the
novel coronavirus (COVID-19) pandemic spread through the entire
world.2 As “economic weatherglass” and “industry blood”, global
stock and oil markets are hit hardest by the pandemic. Chinese and
US stocks have suffered large swings, while Brent oil price slumped
71% dramatically and WTI oil futures price even slumped almost
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300% on April 20, 2020, trading at around negative $37/barrel. As
Adrian & Brunnermeier [9] say, crisis may induce systemic risk
which is regarded as the adverse effects for the entire system. It is
critical to estimate risk spillovers among markets during the crisis
[10]. Therefore, it raises an important question: How do risk spill-
overs among stock markets and international oil owing to COVID-
19 crisis?. Fig.1 demonstrates the number of deaths due to
COVID-19.

The US and China have close relation with crude oil, because
China is the largest crude oil buyer as well as US is the largest crude
oil producer with 19% share of world total and main crude oil
exporter.3 Besides, according to WHO, the first cluster of COVID-19
confirmed cases was reported in China, in the meanwhile, both the
number of COVID-19 confirmed cases and death cumulative total in
US are so far the largest in the world. As the most impressive
economies, these two countries have been shocked by COVID-19,
with Chinese first quarter GDP shrank by 6.8% and US second
quarter GDP shrank by an annualized 32.9%. Furthermore, the US
and China have the largest stock markets in the world, which are
likely uppermost concerned by investors, general public and policy
3 According to EIA: https://www.eia.gov/tools/faqs/faq.php?id¼709&amp;t¼6.
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Fig. 1. Deaths due to COVID-1916.
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makers. Therefore, the stock markets of the US and China are
representative during the COVID-19 pandemic.

Recently, what effects COVID-19 crisis cause on the world has
been the notable focus in academia [11e17]. The COVID-19 crisis is
often compared with subprime crisis of 2008, however, the former
is the product of COVID-19, the latter is the product of US economic
structural issues [12,13]. Thus, Harvey [14] emphasize two crises
differentiation, and Damette & St�ephane [18] report that a series of
policies responses to subprime crisis, are unable to deal with the
COVID-19 crisis and even are likely to backfire. COVID-19 crisis is
also compared with global wars, which demonstrates that it is an
unprecedented epidemic which has more dangerous and conta-
gious [15]. Furthermore, most countries have taken restrictions,
such as lockdowns and quarantines, to cut down the channels of
the COVID-19 disease spread. These containment measures have a
massive impact on global businesses, job securities, and essential
services [16].

Apart from relevant studies, our notable contributions and
innovation are in the following aspects. Firstly, to the best of our
knowledge, the multidimensional risk spillover effects across oil
and stocks during the COVID-19 pandemic have been scarcely re-
ported, but it has practical implications for regulatory decisions and
assets allocation responses to COVID-19 crisis. Thus, based on data
of international oil futures, main board stock and second board
stock markets4 in US and China during the COVID-19 pandemic, the
oil-stock multidimensional risk spillovers are investigated. The
research content includes: (1) the oil-stock risk spillovers (2) dif-
ference among WTI-stock, Brent-stock, as well as SC-stock re-
lationships (3) the relationships between oil and main board
markets and second board markets. The compelling reason why SC
is employed to research the oil-stock spillovers is that since going
public on March 22, 2018, the volume of SC has ranked the third
place worldwide5. Contrary to WTI and Brent, SC is based on a
medium sour crude oil instead of light sweet crude oil, and SC can
be traded in Chinese yuan rather than dollar. It has realistic sig-
nificance to study the difference between the relationships be-
tween stocks and SC as well as between stocks and the other oil
futures. In the meanwhile, main board stock market provides reli-
able financial support for those large industrial enterprises that
either use crude oil as raw materials or produce crude oil products,
while second board stock market provides reliable financial sup-
port for high-growth & high-tech enterprises that have no direct
connection with crude oil [19]. Therefore, the relationships
4 Second board market are also known as growth enterprise market (GEM).
5 According to EIA, https://www.eia.gov/petroleum/weekly/archive/2018/

180425/includes/analysis_print.php.
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between crude oil and main board stock markets as well as crude
oil and second board stock markets are obviously distinct, which is
ignored by relative literature.

Secondly, a GARCHSK-Mixed Copula-CoVaR-Network is pro-
posed by four-phase modeling to measure multidimensional risk
spillovers among financial markets. Based on nonlinear perspec-
tive, the method not only makes full use of both second moment
(variance) and higher moments (skewness and kurtosis) informa-
tion, but also measures both degree and structure of nonlinear and
tail dependence. In the meanwhile, it can describe the dynamic
multidimensional risk spillovers among oil and stock markets in
the panoramic framework. The compelling reason why a General
Autoregressive Conditional Volatility Skewness Kurtosis
(GARCHSK) model is employed to construct the marginal distri-
butions of returns is that based on the assumption that skewness
and kurtosis are constant, GARCH class methods can only measure
conditional variance [20,21], however, changeable financial market
environment result in dynamic higher moments [22,23]. The
modeling results under the GARCH class may be erroneous [24].
Le�on et al. [20] propose a GARCHSK to structure for both condi-
tional skewness and kurtosis. Therefore, we attempt to adopt a
GARCHSK to describe the volatility of oil and stock markets in order
to obtain more risk information. In addition, the potential reason
why the network is used to measure the interconnections of vari-
ables lies in the fact that today's closely connected, global networks
across financial markets have produced highly interdependent
systems that we can be unable to understand and control well
based on traditional methods and perspectives [25]. Therefore,
network is employed to structure the multidimensional risk spill-
overs, between oil and stocks, oil and oil as well as stocks and
stocks.

The specific work can be stated as follows: We begin by
modeling the marginal distribution of the returns through a
GARCHSK to obtain more univariate risk information, including
time-varying variance, skewness and kurtosis. Then, a mixed
Copula is employed to construct the nonlinear dependence struc-
ture between variables. Furthermore, Conditional Value at Risk
(CoVaR) and Delta Conditional Value at Risk (△CoVaR) are ob-
tained to describe risk spillover between each pair of markets.
Finally, based on the results measured by GARCHSK-Mixed Copula-
CoVaR, we construct full-sample and dynamic networks to research
multidimensional risk spillovers among international oil and stock
markets during the COVID-19 pandemic.

The remainder of our work is organized as follows. Relative
literature is briefly reviewed in Section 2. The methods are intro-
duced in Section 3. We make a statistical description of data in
Section 4. Section 5 describes and analyses the empirical results.

https://www.eia.gov/petroleum/weekly/archive/2018/180425/includes/analysis_print.php
https://www.eia.gov/petroleum/weekly/archive/2018/180425/includes/analysis_print.php
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Section 6 and Section 7 discusses and concludes our study,
respectively.

2. Literature review

Crude oil price changes have a massive influence on listed en-
terprises' production, cost and profit, and then cause the changes of
stocks prices [26e29]. In the meanwhile, the listed companies’
achievement can lead to the changes economy. The supply and
demand balance of international crude oil can be broken owing to
changes in global economy, and further causes the fluctuations of
crude oil prices [1,5,7]. Therefore, understanding oil-stock risk
spillover is crucial for risk management and investing process.

The risk spillover between oil and stock is the focus in academia.
Some scholars use linear methods, including multivariate Gener-
alized Autoregressive Conditional Heteroscedasticity (multivariate
GARCH), Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise-Granger causality (CEEMDAN-Granger causality),
and generalized Forecast Error Variance Decomposition (general-
ized FEVD), to research the oil-stock risk spillover at the aggregate
level or sector level [7,19,30].

Mohamed [19] examines the risk contagion from oil price
volatility to stock markets. The empirical results verify that there is
a great significant risk spillover from oil price to European sector
stock market returns and fluctuations and that oil-stock spillover is
unidirectional. Based on dynamic conditional correlation General-
ized Autoregressive Conditional Heteroscedasticity (DCC-GARCH)
model, Li et al. [6] investigate risk spillovers among oil spot, oil
futures and energy stocks. It is discovered that the risk spillover
between oil spot and futures is bidirectional, in the meanwhile,
spillover between stock and oil futures is unidirectional. Lin et al.
[7] research the risk contagion among oil, gold, as well as China and
European stock markets under the CEEMDAN method and Granger
causality test. It is found that there is bidirectional risk contagion
among the oil, gold and stock markets in extreme events. Ashfaq
et al. [28] report that the correlations between oil exporting
countries' stock markets and petroleum are significantly stronger
than the correlations between oil importing countries’ stock mar-
kets and petroleum. Based on generalized FEVD method, Wang &
Wang [30] observe that the pairwise spillovers between oil futures
and sectoral stocks are heterogeneity and that some sectors, which
oil products are either input or output for, are influenced more by
oil price changes. Yu et al. [31] investigate the relationships be-
tween oil and stocks of US and China through multivariate Vector
Autoregressive-Baba Engle Kraft Kroner-Generalized Autore-
gressive Conditional Heteroscedasticity (VAR-BEKK-GARCH). It is
found that the WTI-US relationship is more volatile than WTI-
China relationship in most cases.

However, the fact that the oil-stock relationship may be
nonlinear has been verified by some scholars [1,3,4]. Thus, with the
advantage of capturing nonlinear, asymmetric and tail dependence
structure, Copula models have beenwidely employed in measuring
the oil-stock relationship [1e4,32e35].

Kayalar et al. [3] evaluate the effects of oil price changes impacts
on the global stocks under Copula methods. The empirical results
verify that crude oil exporter’ stock indices are higher oil price
dependency. Maneejuk et al. [4] discover that the Thai-oil, Malay-
sian-oil and Indonesian-oil relationships are positive, while the
relationships between oil and the other countries' stock markets
are opposite. Furthermore, the relationships are unstable and dy-
namic. Melike & Bildirici [34] use Copula methods to explore the
6 The data is downloaded from Johns Hopkins University's Center: https://
coronavirus.jhu.edu/map.html.
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chaotic comovement between oil and stock returns. The empirical
analysis denotes that oil prices’ fluctuations have a massive influ-
ence on the stock returns. Uddin et al. [35] research risk spillover
between the US stocks and oil through Copula and CoVaR. They
discover oil symmetrical relationship with the US stock market
under normal and extreme market environments. The other
scholars also employ Copula family models to tinker with similar
researches [1,2,32,33,36].

3. Methodology

3.1. GARCHSK

Le�on et al. [20] propose a GARCHSK approach to structure for
both conditional skewness and kurtosis. According to literature
[20,22], AR(1)-GARCHSK is defined as follows:

Mean : rt ¼ ut þ εt ¼ a1rt�1 þ εt

εt ¼ h1=2t zt ; εt

���It�1 � Dð0; ht ; st ; ktÞ

Variance : ht ¼ b0 þ
Xq1
i¼1

b1;iε
2
t�i þ

Xp1

j¼1

b2;jht�j

Skewness : st ¼ g0 þ
Xq2
i¼1

g1;iz
3
t�i þ

Xp2

j¼1

g2;jst�j

Kurtosis : kt ¼ d0 þ
Xq3
i¼1

d1;iz
4
t�i þ

Xp3

j¼1

d2;jkt�j

(1)

whereIt�1is an information set at t� 1; Dð0;ht ; st ; ktÞ is an arbitrary
distribution including conditional variance, skewness, and kurtosis.
In addition, according to literature [20,22], q1 ¼ q2 ¼ q3 ¼ p1 ¼
p2 ¼ p3 ¼ 1. According to literature [22], letztsubjects to Gram-
Charlier expansion (GCE) distribution, which incorporates skew-
ness and kurtosis as parameters into density function and is widely
employed in higher moments methods modeling process [33,37].
Given nonnegativeness of its density function, Le�on et al. [20]
improve GCE function as follows:

GCEðzt jIt�1Þ¼
4ðztÞ

�
1þ st

3!

�
z3t � 3zt

�þ kt�3
4!

�
z4t � 6z2t þ 3

��2

1þ s2t
3! þ

ðkt�3Þ2
4!

(2)

where 4ð �Þ represents the probability density function corre-
sponding to the standard normal distribution. In Eq. (1), conditional

density function of εt ish
�1=2
t GCEðzt jIt�1Þ. Without useless constant,

logarithm likelihood function is described as follows:

lt ¼ �1
2
ln ht �1

2
z2t þ ln

�
j2ðztÞ

�
� ln

 
1þ s2t

3!
þðkt � 3Þ2

4!

!
(3)

The standardized residuals zt obtained by GARCHSK contain not
only variance information, but also higher moments’ information.
Because of its potential advantages, we use the GARCHSK method
to estimate the marginal distributions of each returns.

3.2. Mixed Copula

Because the relationships between financial markets are very
complex tail relation with nonlinear characteristics [38], single
Copula is unable to precisely describe the dependence structure
[39]. Hu [40] propose a mixed Copula through combining several

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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single Copulas to measure the correlations between variables. The
mixed Copula can describe both degree and structure of depen-
dence, by association parameters and weight parameters [40].
Mixed Copula is defined as follows:

MC¼
Xn

ut*Ct (4)

whereCi; i ¼ 1;2; /; nrepresent different single Copulas, corre-
sponding to weights ui � 0; i ¼ 1;2;/;n;

Pn
i¼1ui ¼ 1, respectively.

Elliptical Copula family is unable to capture asymmetric tails,
while Clayton and Gumbel Copulas, the members of Archimedean
copula family, can describe lower and upper tails, respectively
[38,39]. Besides, Frank Copula can describe both positive and
negative dependence and has been proven its reliability [10].
Therefore, according to literature [39], Clayton, Gumbel, Frank
Copulas are employed to construct a mixed Copula, and its cumu-
lative distribution function can be stated as:

MC¼uClaytonCðu; v; qÞ þ uGumbelCðu; v;aÞ þ uFrankCðu; v; lÞ (5)

whereCðu; v; qÞCðu; v;aÞ, Cðu; v; lÞdenote cumulative distribution
function of Clayton, Gumbel, Frank Copulas, separately. Besides, the
association parametersðq; a; lÞdenote the degree of dependence,
and weight parametersðuClayton;uGumbel;uFrankÞ denote structure of
dependence [40]. Elliptical and Archimedean Copula families are
detailed in Ref. [41].

Maximum Likelihood estimation is used to estimate association
parameters and weight parameters of mixed Copula, and its loga-
rithmic likelihood function can be described as follows:

ln Lðx1; x2;gÞ¼
XT
t¼1

ln cM
�
F1
�
x1;t ;g1

�
; F2
�
x2;t ;g2

�
;gc
�

¼
XT
t¼1

ln cMðu; v;gcÞ; t ¼ 1;2;/; T (6)

In Eq. (6), F1ðx1;g1ÞandF2ðx2;g2Þare the marginal distributions
ofx1;tandx2;t respectively, where u ¼ F1ðx1;g1Þv ¼ F2ðx2;g2Þ, gc ¼
ðuClayton;uGumbel;uFrank; q;a; lÞ0, cMðu; v;gcÞ ¼ vMCðu;v;gcÞ

vuvv ,.g ¼
ðg1;g2;gcÞ07

Considering the over-abundant estimated parameters and
complicated procedures, Maximum Likelihood estimation is com-
bined with expectation maximization and L-BFGS-B algorithms to
calculate the logarithmic likelihood function and parameters.
8 It is detailed in literature [10].
9 Some scholars such as Karimalis & Nomikos [10] defineDCoVaRijj

i;t¼ CoVaRijj
b;t �

CoVaRijj;a¼0:5
b;t . In fact, the conclusions of these DCoVaRijj

i;tare consistent. Further-
ijj
3.3. CoVaR

Value-at-Risk (VaR), a well-known risk measure method, has
been widely employed in many fields [10,41,42]. Recall that VaR of
variablext is defined bya-quantile of the conditional distribution
ofxtas follows:

Prðxt �VaRtÞ¼a (7)

According to definition of VaR, VaR under the GARCHSK family is
stated as [42]:

VaRtðaÞ¼mt þ za
ffiffiffiffiffi
ht

p
(8)

wherezadenotes theaquantile for GCE distributionDð0; ht ; st ; ktÞ.
However, VaR is unable to capture the systemic nature of risk
7 means that a row vector transposes a column vector.
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because it only focuses on an individual institution's risk [33,39].
CoVaR is originally proposed by Adrian & Brunnermeier [9].

Then considering more severe distress events, Girardi & Erguen
[43] modify the original CoVaR. CoVaR attempts to compute risk
spillovers between financial institutions and has been attracted a
great attention [10,32,43,44]. Assume that there are xi;tandxj;twith
the same lengthN, wheret ¼ 1;2;/;N. Formally, the original CoVaR
and modified CoVaR are defined as the b-quantiles of the following
conditional distributions, separately:

Pr
�
xi;t �CoVaRijj

b;t

���xj;t ¼VaRj
a;t

�
¼b (9)

Pr
�
xi;t �CoVaRijj

b;t

���xj;t �VaRj
a;t

�
¼b (10)

The modified CoVaR proposed by Girardi & Erguen [43], has
been approved its validity [10,32,33], therefore, the Eq. (10) is used
to compute CoVaR.

Referring to literature [27,33], CoVaRijj
b;t under Copula is stated

as8:

C
�
F1;t
�
CoVaRa

i;t

�
; F2;t

�
VaRb

j;t

��
� ba ¼ 0 (11)

whereF1;tand F2;tdenote the marginal distributions ofxi;tandxj;t
separately.

The contribution of risk spillover fromx2;ttox1;t is further iden-
tified by introducing the measure of △CoVaR [43], which is the
percentage difference between the VaR forxi;tconditional on an
extreme comovement ofxj;tand the VaR forx1;tconditional on a
median state of xj;t(xi;tsxj;t). Therefore, referring to literature

[27,33,43], we gain DCoVaRijj
i;t under the following formula9:

DCoVaRijj
i;t ¼100�

�
CoVaRijj

b;t �CoVaRijj;a¼0:5
b;t

�
=CoVaRijj;a¼0:5

b;t

(12)

All in all, DCoVaR1j2
1;t measure the dynamic systemic risk contri-

bution of xj;tto Refs. xi;t[44,49,50].
3.4. Network representation of CoVaR

In the previous relative researches, shcolars employ CoVaR to
measure the each part of the system to the others [1,3,4,7,32],
however, it ignores how many various parts are exposed to the
whole system in the case of systemic risk [45]. Therefore, referring
to Dastkhan [45,46], the network theory is applied to measure the
interconnections of variables, based on absolute values of DCoVaR
that are computed for pairwise of variables. ArrayAtdenotes the

△CoVaR with n markets in a specific period t, where Sijjt represents

DCoVaRijj
i;t:
more, the value range of DCoVaRi;tðisjÞ according to Eq (12) is not limited, which
can exceed 100% under some extreme situations [32,33,69]. Besides, the
CoVaRijj

i;tand DCoVaRijj
i;tbased on Copula are time varying without rolling window

[41,44,49].
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At ¼

8>>>>>>>>>><
>>>>>>>>>>:

0S1j2t S1j3t /S1jnt

S2j1t 0S2j3t /S2jnt

S3j1t S3j2t 0/S3jnt

«««««

Snj1t Snj2t Snj3t /0

9>>>>>>>>>>=
>>>>>>>>>>;

(13)

ArrayAt is considered as an adjacency matrix of financial
network in period t. In Eq. (13), the rows denote that each market
receives risk spillovers from the other markets, as well as the col-
umns denote that each market emits risk spillovers to the other
markets. In other words, the rows and columns of At represent
values of Exposure-CoVaR and Contribution-CoVaR, separately. In
addition, in order to classify the risk spillovers, Total spillovers in-
dex (TSI), Vulnerability index (VI) and Systemic importance index
(SII) are used as main indices of network.

TSI is defined as the contribution of risk spillovers of all markets,
in other words, it measures all spillovers inAt . The TSI in period t
can be stated as Eq. (14). The stronger contagion among markets,
the higher value of TSI10.

TSIt ¼
Xn

i¼1;j¼1

Sijjt ðis jÞ (14)

VI is defined as the receiving total risk spillovers of market i
from the other markets, showing howmuch market i is affected by
the others. The VI of market i in period t can be stated as Eq. (15).
The more sensitive to the changes in the other markets, the higher
value of VIi;t .

VIi;t ¼
Xn
j¼1

Sijjt ðis jÞ (15)

SII is defined as the emitting total risk spillovers frommarket i to
the other markets, showing how much the other markets are
affected by market i. The SII of market i in period t can be stated as
Eq. (16). The higher value of SIIi;t , the more risk spillovers from
market i to the other markets.

SIIi;t ¼
Xn
j¼1

Sjjit ðis jÞ (16)
3.5. GARCHSK-Mixed Copula-CoVaR-network

Diebold & Yilmaz [47,48] propose some linear spillover index
methods to measure the spillovers among assets, which have been
10 The unit ofDCoVaRijj
i;tðisjÞis percentage, so the unit of TSL is percentage.

Distinguished from spillover index methods of Diebold & Yilmaz [47,48],
DCoVaRijj

i;tðisjÞ, which is obtained by the Eq (12), can exceed 100% under some
extreme situations [32,33,69]. In other words, the value range of DCoVaRijj

i;tðisjÞis
not limited. Therefore, it is common that TSI values which are the sum of
DCoVaRijj

i;tðisjÞare much higher than 100%. Although DCoVaRijj
i;tðisjÞ which is

represented by Sijjt and spillover index methods of Diebold & Yilmaz [47,48] are the
traditional methods to measure risk spillover between assets, the concepts of these
methods are significantly different. In fact, some scholars based on LASSO-CoVaR
such as Xu et al. [45] also employ our formula to construct TSL. Furthermore, the
TSL can directly, intuitively and clearly show the difference between risk spillovers
during the COVID-19 and pre-COVID-19 periods. In order to avoid the misread that
values of total spillover indices should be between 0 and 100%, according to the
literature [45], the symbol of % is not shown in the empirical results.
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widely employed in many fields. However, nonlinear and asym-
metric tail comovements between markets have been reported in
various researches [1e4,10,39,40] so these linear methods are hard
to accurately describe the relationships among assets [57].
GARCHSK-Mixed Copula-CoVaR-Network is distinguished from
spillover index methods of Diebold & Yilmaz [47,48] in the
following aspects. It not onlymakes full use of both secondmoment
and higher moments information, but also measures nonlinear and
tail dependence. In the meanwhile, it can describe the dynamic
multidimensional risk spillovers among oil and stock markets in
the panoramic framework without rolling window. The detailed
algorithm of GARCHSK-Mixed Copula-CoVaR-Network is described
as follows11:

Phase 1. GARCHSK modeling. A GARCHSK is employed to each
returns to obtain standardized residuals. Then, the marginal
distributions are obtained by using the empirical cumulative
distribution function (ECDF) to the residualsztmeasured by
GARCHSK.
Phase 2. Mixed Copula modeling. Based on results obtained by
GARCHSK, a mixed Copula composed of Clayton, Gumbel, Frank
Copulas is used to measure the dependence structure between
variables.
Phase 3. CoVaR modeling. Employing the results of GARCHSK-
Mixed Copula above, we compute VaR, CoVaR, △CoVaR at the
95% confidence level. CoVaR and △CoVaR can denote the risk
spillover between each pair of markets.
Phase 4. Network modeling. Based on the results measured by
GARCHSK-Mixed Copula-CoVaR, we construct full-sample and
dynamic networks to research the multidimensional risk spill-
overs across international oil and stock markets.12

4. Data and descriptive statistics

With price discovery and hedging functions, the crude oil fu-
tures market provides risk warnings and pricing guidance for spot
market, which plays a critical role in crude oil pricing [51].
Furthermore, crude oil futures such as WTI and Brent are generally
regarded as global oil benchmarks for the reason that the volume of
trade in crude oil futures markets is estimated to account for more
than half of world's total oil trade [52]. Many researches such as
Kayalar et al. [3], Maneejuk et al. [4], Li et al. [5], Wang&Wang [30],
An et al. [51], Zhu et al. [53] also adopt crude oil futures instead of
spot as the representative of oil market to investigate the oil-stock
risk spillovers. Therefore, we use oil futures rather than spot prices
to investigate oil-stock spillovers.13

As benchmarks for international oil pricing, WTI oil futures and
Brent oil futures are widely employed in relative studies [2e4,7]. In
the meanwhile, SC has become the third largest trading volume
crude oil futures.14 Therefore, WTI, Brent and SC are adopted in the
current paper, where the WTI prices are collected from the Energy
11 MATLAB 2016a and R 4.0.2 software is employed in our work.
12 CoVaR1j2

1;t and DCoVaR1j2
1;t can describe the dynamic risk spillovers between

assets according to Eq. (11) and Eq. (12) [44,49,50]. Therefore, based on dynamic
risk spillovers between assets, dynamic networks and TSI are constructed according
to Eq. (13)and Eq. (14) without rolling window. Then, we average dynamic △CoVaR
(Sijjt ) series to construct the full-sample (whole) risk spillovers network.
13 In order to verify the validity of our work, oil spot prices are also used to
investigate the oil-stock relationships during the COVID-19 outbreak. We find that
the spot markets are more volatile than futures markets in most cases. Further-
more, it is reported that the main conclusions from oil spot markets are in coin-
cidence with those from oil futures markets. These results are showed in robustness
analysis section.
14 According to EIA, https://www.eia.gov/petroleum/weekly/archive/2018/
180425/includes/analysis_print.php.

https://www.eia.gov/petroleum/weekly/archive/2018/180425/includes/analysis_print.php
https://www.eia.gov/petroleum/weekly/archive/2018/180425/includes/analysis_print.php


Table 1
Summary descriptive statistics for returns.

Mean Median Std.dev Skewness Kurtosis JB ADF PP KPSS

WTI 0.000 0.003 0.111 �5.453 86.394 76335.210*** �16.070*** �26.778*** 0.067
Brent 0.000 0.002 0.042 �1.844 17.893 2540.593*** �15.598*** �15.594*** 0.088
SC 0.000 0.000 0.031 �0.087 4.084 13.007*** �14.336*** �14.425*** 0.043
DJIA 0.000 0.002 0.023 �0.852 12.337 972.102*** �10.496*** �20.902*** 0.058
NASDAQ 0.002 0.004 0.022 �1.029 10.674 681.227*** �11.057*** �21.732*** 0.059
CSI300 0.002 0.002 0.016 �0.664 10.006 548.655*** �15.094*** �15.140*** 0.043
ChiNext 0.003 0.004 0.021 �0.661 4.432 41.012*** �16.049*** �16.063*** 0.048

Note: *, **, ***mean the significance level of 10%, 5%, 1%, separately. J-B stands for the Jarque-Bera test of normality. ADF and PP represent the Dickey& Fuller [54] and Phillips-
Perron [55] unit root test and KPSS represents the Kwiatkowski et al. [56] stationarity test.
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Information Administration (EIA) (https://www.eia.gov/), while
Brent and SC prices are collected from Wind database (https://
www.wind.com.cn/). In addition, considering the fact that WTI
and Brent are traded in dollars, we convert the Chinese yuan price
of SC to dollar price.15

As traditional industrial “economic weatherglass”, Dow Jones
Industrial Average (DJIA) is one of the most-watched and most-
influential stock indices in the world. As role model of global
Growth EnterpriseMarket (GEM), National Association of Securities
Dealers Automated Quotations (NASDAQ) is famous for high-tech
stocks. China Securities Index 300 (CSI300) is the most represen-
tative index in China, tracking the top 300 mainland listed firms in
the Shanghai Stock Exchange and Shenzhen Stock Exchange, as well
as the Growth EnterpriseMarket in China (ChiNext) has promoted a
large number of Chinese small and medium enterprises growth
healthily and steadily. Therefore, we respectively employ DJIA and
CSI300 to represent the main board stock markets in the US and
China, and respectively use NASDAQ and ChiNext to represent the
second board stock markets in the US and China, where all data can
be downloaded from Wind database (https://www.wind.com.cn/
).16

A cluster of cases of novel pneumonia were reported by Wuhan
Municipal Health Commission on December 31, 2019, and it is
eventually identified as Coronavirus disease 2019 (COVID-19) by
WHO. Therefore, the daily data fromDecember 31, 2019 to February
9, 2021 is employed as the COVID-19 epidemic period, totaling 260
trading days, after eliminating the non-matching missing data.17

The returns of all variables are computed using the logarithmic
difference, and Table 1 demonstrates that each series has significant
summit and fat tailed skewed characters that skewness is not equal
to zero and kurtosis exceeds three. All returns are rejected
following a normal distribution verified by JarqueeBera statistics.
The results of ADF and PP uniformly show that all returns have no
unit root. The results of KPSS indicate that all markets are
stationary.
5. Empirical analysis

5.1. GARCHSK-Mixed Copula-CoVaR estimation

We fit a GARCHSKmodel for each returns while the GARCH class
models, including GARCH, TGARCH and EGARCH, are employed as
control groups. Those estimation results are compared with
15 Our research is investigated from the perspective of an international investor
who is trading/investing in U.S. dollars.
16 CSI300 and ChiNext indices are dollar-denominated.
17 The period from December 31, 2019 to July 22, 2020 is also defined as the
COVID-19 epidemic period to research the oil-stock relationships, and the results
are in line with those in the current paper. These empirical results can be made
available under request addressed to the authors.
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GARCHSK in term of Log Likelihood, AIC and BIC, in order to choose
an optimum method. In order to verify the validity of GARCHSK,
referring to literature [32,66], the ARCH and Ljung-Box Q tests are
used to examwhether these standardized residuals from GARCHSK
satisfy the model assumptions. Furthermore, Copula is a multivar-
iate distribution functionwhose marginal distributions are uniform
distributions on the interval (0, 1) [57]. Therefore, according to
literature [53], we obtain the marginal distributions of each market
by using the empirical cumulative distribution function (ECDF) to
the standardized residuals measured by GARCHSK, and then, Kol-
mogorov - Smirnov (KeS) test is used to exam whether the mar-
ginal distributions are useful for Copula modeling. Table 2
demonstrates the modeling results of GARCHSK.

Table 2 denotes that, for every variable, some higher moments
parameters of GARCHSK are statistically significant, demonstrating
that dynamic skewness and kurtosis exist in returns of oil and
stocks. Fig. 2 shows the dynamic variance, skewness and kurtosis of
three oil futures, where the results of the other variables are in
coincidencewith oil futures and not presented to conserve space. In
addition, it is also found in Table 2 that GARCHSK outperforms
GARCH class methods in terms of log likelihood, AIC and BIC.18

Therefore, GARCHSK is the optimum method for measuring the
volatility of oil and stocks. Furthermore, the results of ARCH and
Ljung-Box Q tests do not reject the hypotheses of no conditional
heteroscedasticity and not autocorrelated so it is clear that the
residuals satisfy the model assumptions. Besides, the results of KeS
test also show that these marginal distributions satisfy the Copula
condition. Therefore, it is confirmed that the GARCHSK models are
correctly specified.

Based on the above results, Clayton Copula, Gumbel Copula,
Frank Copula are adopted to construct a mixed Copula. In the
meanwhile, Archimedean Copulas are employed as control groups,
those estimation results will be compared with mixed Copula in
term of Log Likelihood, in order to choose an appropriate method
for modeling the dependence.

It is discovered in Table 3 that mixed Copula is the best, which
outperforms the other Copulas in term of log likelihood in most
cases.19 Table 3 also demonstrates that dependence patterns be-
tween markets are completely different in terms of degree and
structure. These results verify the Maneejuk et al. [4]’opinion that
with multiple movements features, the dependence structure
across financial markets is volatile, so that it is hard to be accurately
measured by single Copula. Besides, it is found that Clayton Copula
takes the largest proportion in most dependence patterns. Many
scholars consider that the negative effects of COVID-19 on the
world are worse than world wars, financial crises and so on [11,12].
In such a complicated market environment, significant dependence
18 The estimation results of GARCH class can be made available under request
addressed to authors.
19 The results of single Copulas are not shown, because of space limitations.

https://www.eia.gov/
https://www.wind.com.cn/
https://www.wind.com.cn/
https://www.wind.com.cn/


Table 2
Modelling results of GARCHSK.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext

�0.4223*** �0.108** 0.162*** �0.166*** �0.117** 0.134** �0.089*
0.000*** 0.000*** 0.000*** 0.000*** 0.000** 0.000** 0.000
0.196*** 0.777*** 0.417*** 0.229*** 0.189*** 0.128*** 0.026
0.776*** 0.128*** 0.181*** 0.492*** 0.770*** 0.678*** 0.901***
�0.261*** �0.287** �0.011*** �0.269** �0.672*** �0.149 0.002
�0.421*** �0.006 �0.044*** 0.032*** 0.002 0.000 �0.002
0.039*** �0.681** 0.999*** �0.764*** �0.649 �0.230 0.999***
3.823*** 3.737*** 2.931 3.537*** 0.994 3.317*** 0.938*
0.048*** 0.196*** 0.000 0.015** 0.000 0.031* 0.036
0.025*** 0.004 0.002 0.048 0.702*** 0.038 0.683***

LL 689.873# 761.782# 653.278# 952.988# 948.041# 967.031# 875.525#
AIC �1359.746# �1503.564# �1286.556# �1885.975# �1876.082# �1914.061# �1731.051#
BIC �1324.178# �1467.996# �1250.987# �1850.407# �1840.514# �1878.493# �1695.483#
ARCH(8) 7.418 3.802 10.309 5.555 2.022 5.933 8.331

8.432 11.074 9.702 11.538 9.277 6.456 6.777
7.485 3.977 11.823 6.255 2.157 5.881 8.339

KeS 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Note：*, **, *** mean the significance level of 10%, 5%, 1%, separately. LL denotes Log-Likelihood. The hypotheses of ARCH test and Ljung-Box Q test are that residuals are no
conditional heteroscedasticity and no autocorrelated, respectively, where Q and Q2 denote the Ljung-Box statistics for returns and squared returns, respectively. The hy-
pothesis of KeS test is that the marginal distributions come from a uniform distribution on the interval (0, 1) [67,68]. # means GARCHSK outperform all control groups at a
variable.

Fig. 2. Dynamic variance, Dynamic skewness, Dynamic kurtosis.

Table 3
Mixed Copula modeling results.

u1 u2 u3 q a l LL

WTI-Brent 0.478(0.002) 0.290(0.001) 0.231(0.001) 2.540(0.016) 3.157(0.006) 11.767(0.03) 155.104a

WTI-SC 0.623(0.001) 0.317(0.000) 0.060(0.001) 0.685(0.005) 1.700(0.003) 3.924(0.014) 33.600a

WTI-DJIA 0.978(0.005) 0.003(0.003) 0.020(0.001) 0.663(0.011) 1(0.007) 26.646(0.344) 28.250a

WTI-NASDAQ 0.997(0.008) 0.001(0.005) 0.002(0.002) 0.515(0.016) 1(0.010) �5.035(0.204) 18.911
WTI-CSI300 0.997(0.006) 0.001(0.002) 0.001(0.002) 0.434(0.010) 1.048(0.006) 0.909(0.036) 14.249
WTI- ChiNext 0.996 (0.005) 0.002(0.003) 0.002(0.002) 0.342(0.007) 1(0.004) 0.387(0.025) 9.557
Brent-SC 0.700(0.002) 0.289(0.001) 0.011(0.002) 0.532(0.005) 1.513(0.003) 2.285(0.016) 21.999a

Brent-DJIA 0.628(0.006) 0.308(0.002) 0.064(0.004) 0.793(0.027) 1.510(0.047) 74.492(2.505) 42.687a

Brent-NASDAQ 0.880(0.005) 0.108(0.002) 0.012(0.002) 0.616(0.011) 2.265(0.017) �3.79(0.120) 27.198a

Brent-CSI300 0.757(0.002) 0.223(0.001) 0.021(0.001) 0.499(0.004) 1.134(0.002) 1.018(0.012) 12.776a

Brent-ChiNext 0.989(0.004) 0.006(0.002) 0.005(0.001) 0.308(0.004) 1(0.002) 0.339(0.011) 7.751
SC-DJIA 0.574(0.001) 0.141(0.002) 0.284(0.000) 0.240(0.003) 1.185(0.002) 5.622(0.007) 15.131a

SC-NASDAQ 0.891(0.003) 0.007(0.003) 0.101(0.001) 0.218(0.004) 1.004(0.003) 15.575(0.043) 9.170a

SC-CSI300 0.845(0.003) 0.016(0.002) 0.139(0.001) 0.513(0.005) 1.225(0.003) 8.102(0.156) 24.159a

SC-ChiNext 0.717(0.003) 0.279(0.001) 0.004(0.002) 0.485(0.009) 1.195(0.005) 0.493(0.032) 13.600a

DJIA-NASDAQ 0.684(0.000) 0.301(0.000) 0.014(0.000) 2.365(0.000) 2.145(0.001) 33.853(0.039) 116.195a

DJIA-CSI300 0.451(0.000) 0.543(0.001) 0.006(0.002) 0.521(0.007) 1.338(0.004) 2.451(0.021) 19.859a

DJIA-ChiNext 0.413(0.000) 0.575(0.001) 0.012(0.002) 0.468(0.005) 1.212(0.003) 1.667(0.014) 11.825a

NASDAQ-CSI300 0.215(0.001) 0.779(0.003) 0.006(0.002) 0.451(0.008) 1.364(0.004) 2.691(0.022) 22.495a

NASDAQ-ChiNext 0.528(0.001) 0.459(0.000) 0.013(0.001) 0.217(0.003) 1.463(0.002) �0.363(0.013) 14.244a

CSI300-ChiNext 0.648(0.003) 0.351(0.001) 0.001(0.004) 3.147(0.011) 2.605(0.008) 9.816(0.035) 153.793a

Note.
a denotes that mixed Copula is superior to the other Copulas in term of LL.
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Fig. 3. VaR, CoVaR, △CoVaR for WTI
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in the lower tails between financial markets is more likely to be
discovered.

Employing the results of GARCHSK-Mixed Copula above, we
compute VaR and CoVaR at the 95% confidence level (a ¼ b ¼ 5%).
The left subgraphs of Figs.3e9 demonstrate time-varying VaR and
CoVaR, and the right subgraphs of Figs.3e9 demonstrate time-
varying △CoVaR. Left subgraphs show that CoVaR is obviously
smaller than VaR. It is definite that CoVaR of variables estimates are
higher in absolute risk value than VaR and that risk values are
underestimatedwithout considering the conditional on an extreme
comovement of the other variables. The conclusion is in line with
prior studies [27,33,43,44,49,50].

In right subgraphs of Figs.3e9, it is reported that all △CoVaR
series are not zero means that there are two-way risk spillover
effects between variables, which verify the prior studies’ finding
that regulators supervise risk of markets individually based on VaR,
might not be the best policy for reducing systemic risk [9,43]. The
subgraphs furthermore show that risk spillovers across markets are
markedly different. The phenomenon may be accounted for the
diverse nature of different markets.

5.2. Risk spillovers analysis

In order to analyze the multidimensional relationships among
markets in the panoramic framework, we construct networks to
research the full-sample and dynamic risk spillovers across oil and
stock markets, based on the results measured by GARCHSK-Mixed
Copula-CoVaR.

5.2.1. Full-sample (whole) risk spillover analysis20

The average dynamic △CoVaR (Sijjt ) series are calculated to
display the full-sample (whole) risk spillover fromxi;tto xj;t (is j),
respectively. Then these averages form an array, which is regarded
20 The way that we calculate TSI, VI and SII is in line with previous relative re-
searches [1e5,9,10,32,33,42e46,49,50] that assume that all spillovers have the
same weight. These studies calculate spillover indexes without considering the size
of each market. In fact, the sizes of crude oil futures are difficult to compare with
those of stock markets because crude oil futures markets are limited in crude oil
while stock markets contain various industrial companies. In the meanwhile,
different stock indexes contain different numbers of listed companies. For example,
DJIA is a price-weighted index of 30 blue-chip U.S. companies, while NASDAQ
contains more than 5000 listed companies. Another example, CSI300 is the most
representative index in China, tracking the top 300 mainland listed firms, while
ChiNext contains more than 800 listed companies. Therefore, the researches about
the oil-stock relationships employ the way without considering the size of each
market to study risk spillovers [1e5,9,10,32,33,42e46,49,50]. However, for further
study, we also calculate TSI, VI and SII with considering the size of each market. The
main conclusions of results are in coincidence with the current paper and can be
made available under request addressed to the authors.
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as an adjacency matrix of full-sample network. The matrix is listed
in Table 4. In Table 4, the off-diagonal column sums (labeled To) and
row sums (labeled From) denote SII and VI, respectively. Besides,
the TSI, sum of grand off-diagonal column sum (row sum), reveals
in the lower right corner in Table 4. This table can provide an
‘‘inputeoutput’’ matrix to denote the macro overview and whole
network characteristics of multidimensional risk spillovers among
markets during the COVID-19 epidemic. In the meanwhile, in order
to make this study more in-depth concrete, the data from
December 6, 2018 to December 30, 2019, totaling 250 trading days
is chosen as the normal period, and the matrix is listed in Table 5.

Based on these matrices, we use network graphs for visualizing
the multidimensional risk spillovers across markets.21 Node sizes
indicate assets’ SII, which measure howmuch risk spillovers from a
variable to the others; line (edge) sizes indicate the directional
spillover of every pair. The higher value of risk spillover, the thicker
line; arrow sizes indicate pairwise directional connectedness “to”
and “from”, where the higher value of unidirectional risk spillover,
the bigger arrow size. Fig. 10 and Fig. 11 present the full-sample
networks during the COVID-19 period and the normal period,
respectively.

Tables 4 and 5 and Fig.10 and 11 demonstrate that the TSI and
every market's SII during the epidemic period are obviously
stronger than those during the normal period. COVID-19 pandemic,
the gravest global crisis after the cold war, has already a huge in-
fluence on the international economy and development. According
to a research report “The Pandemic and the Changing World”
released by Boao Forum for Asia (BFA),22 the pandemic may result
in graver global economic recession than subprime crisis in 2008.
The global stock and oil markets have also been hit hardest by the
epidemic, through the global industrial and supply chains. There-
fore, the TSI and every market's SII during the epidemic are
stronger. The finding is in line with Sugimoto et al. [37]'s viewpoint
that the contagion across financial markets becomes higher in the
extreme events or crises.

Furthermore, in Tables 4 and 5 and Fig.10 and 11, it is discovered
that distinguished from oil-stock relationships during the normal
period, the risk spillovers from stocks to oil (total 802.603) are
much stronger than those from oil to stocks (total 703.450) during
the COVID-19 period. COVID-19 has severely damaged global
economy [15,16], particularly oil importing coutries’ economy,
resulting into decline in oil demand. Although OPEC and their allies
have struck a deal on a record cut in oil production and supply, the
21 We use Pajek software (http://mrvar.fdv.uni-lj.si/pajek/) to display large
networks.
22 This report is available on the link: http://english.boaoforum.org/u/cms/www2/
202006/04165947ac6q.pdf.

http://mrvar.fdv.uni-lj.si/pajek/
http://english.boaoforum.org/u/cms/www2/202006/04165947ac6q.pdf
http://english.boaoforum.org/u/cms/www2/202006/04165947ac6q.pdf


Fig. 4. VaR, CoVaR, △CoVaR for Brent.

Fig. 5. VaR, CoVaR, △CoVaR for SC.

Fig. 6. VaR, CoVaR, △CoVaR for DJIA
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oil prices reported severe contractions. Oil demand rely on global
economic development [58]. As “economic weatherglass”, stock
markets are more sensitive than oil response to the prosperity and
recession of global economy [59], so that the investors in oil mar-
kets have to change investment actions according to the changes of
stock markets.

In the meanwhile, in Tables 4 and 5 and Fig.10 and 11, it is found
that oil futures receive high risk spillovers from second board stock
markets, especially during the COVID-19 outbreak. It can be
explained by the reason that soaring crude oil prices always occur
during the boom years with bristling confidence of investors and
consumers, thus, petroleum prices are positive relevant to the
boom and recession of world economy [19]. With the outbreak of
9

the information technology, high-growth & high-tech enterprises,
listing in GEM, become a driver of the global economy and can be
attributed to pro-cyclical sectors which synchronize with global
economy [53]. Therefore, although most enterprises listed on the
second markets do not directly need any input or output of related
oil products, oil prices are greatly influenced by these second board
markets.

In addition, tables and network graphs also demonstrate that
the bidirectional China-oil risk spillovers during the COVID-19
pandemic have rapidly increased. On the one hand, as the largest
crude oil buyer and emerging developing country, the changes of
Chinese demand to the petroleum have a massive influence on the
stability in the production and consumption of crude oil [28,30].



Fig. 7. VaR, CoVaR, △CoVaR for NASDAQ

Fig. 8. VaR, CoVaR, △CoVaR for CSI300.

Fig. 9. VaR, CoVaR, △CoVaR for ChiNext. Note: VaR1~ VaR7 represent VaR of WTI, Brent, SC, DJIA, NASDAQ, CSI300, ChiNext, respectively. CoVaR1~ CoVaR7 represent the VaR for a
variable conditional on an extreme comovement of WTI, Brent, SC, DJIA, NASDAQ, CSI300, ChiNext, respectively. △CoVaR1~△CoVaR7 represent the systemic risk contribution of
WTI, Brent, SC, DJIA, NASDAQ, CSI300, ChiNext to a variable.

Table 4
The average of △CoVaR (Sijjt ) during the COVID-19 period.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 95.640 88.787 111.225 101.761 97.014 99.941 594.368
Brent 52.008 0 73.606 77.7924 82.105 74.118 73.238 432.868
SC 24.785 24.781 0 13.388 21.712 25.328 24.981 134.974
DJIA 82.766 76.421 42.940 0 81.892 57.732 49.650 391.401
NASDAQ 83.304 79.197 64.601 77.2448 0 56.554 59.000 419.901
CSI300 49.669 55.000 44.097 55.416 48.740 0 65.677 318.595
ChiNext 41.420 43.895 40.140 43.700 36.098 49.120 0 254.372
To (SII) 333.952 374.928 354.171 378.766 372.307 359.866 372.487 TSL: 2546.477
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Table 5
The average of △CoVaR (Sijjt ) during the normal period.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 86.137 52.506 66.740 45.766 64.807 8.849 324.805
Brent 16.916 0 34.243 29.317 29.619 31.958 9.019 151.072
SC 32.935 38.702 0 32.932 31.375 35.059 35.820 206.823
DJIA 37.284 43.918 25.226 0 64.957 29.410 29.241 230.037
NASDAQ 33.527 50.812 32.122 62.868 0 34.627 35.096 249.053
CSI300 61.923 49.650 40.220 20.924 34.653 0 66.208 273.577
ChiNext 14.203 13.387 39.157 35.013 35.824 37.075 0 174.659
To (SII) 196.788 282.607 223.474 247.795 242.195 232.936 184.233 TSL: 1610.027

Fig. 10. Network during the COVID-19 period.

Fig. 11. Network during the normal period.
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Besides, Chinese economy is hit by COVID-19 earliest, but Chinese
economy begin to restore earliest with its GDP returns to growth
with 3.2% in second quarter. On the other hand, sharp movement of
oil prices affects entreprises’ manufacture, social consumption,
investors expection and government policy in China [19,60]. Thus,
crude oil markets also have bigger risk spillovers to Chinese stocks
than those in the normal period.

Further investigation of Tables 4 and 5 and Fig.10 and 11 in-
dicates that SII of SC during the COVID-19 period is sharply
increasing. With the quickening development of trading volume
and internationalization, SC is increasingly playing an important
role in the process of oil pricing. Then, SC is more representative of
oil requirements in China than WTI and Brent, so that SC is
vulnerable to the changes of Chinese economy and stocks. The
phenomenon that VI of WTI is highest in Table 4 is also discovered.
As the largest trading volume and highest internationalization
crude oil futures, WTI is more vulnerable to the health of global
economy as well as the supply and demand of petroleum than the
other oil futures. The global economy recession and rapid decline in
demand for crude oil worldwide are reported as a result of the
COVID-19 outbreak, as well as OPEC and their allies failed to reach
the valid agreement to trim supply before April. These negative
information has the biggest impacted on WTI through the other
financial markets.

5.2.2. Dynamic risk spillover analysis
Furthermore, time-varying risk spillovers during the COVID-19

pandemic are researched.23 We begin the work by computing
TSIt . Fig. 12 denotes that the values of TSIt during the COVID-19
period maintain at high levels, even the its lowest TSI (2315.460)
is obviously stronger than full-sample TSI (1605.900) during the
normal period. Besides, in Fig. 12, it is also found that the TSI series
fluctuates within a high level rather than significant upward or
downward trend. The phenomenon vertifies that the effects of
COVID-19 on financial markets are long-lasting.

The results in Fig. 12 also show that the highest and lowest
values of TSI are onMarch 20, 2020 and April 22, 2020, respectively.
Therefore, we furthermore employ these days’ data to form adja-
cency matrices and construct networks, in order to study the dy-
namic multidimensional risk spillovers. Table 6 and Fig. 13(a and b)
denote the values of VI and SII as well as the networks onMarch 20,
2020 (corresponds to the lowest TSI) and April 22, 2020 (corre-
sponds to the highest TSI), respectively. In Table 6 and Fig. 13(a and
b), it is found that the main conclusions of risk spillovers charac-
teristics and network structure both at highest and lowest spillover
levels are in line with those in the full sample (see Table 4), which
demonstrates that the relationships among oil futures, main board
23 CoVaR1j2
1;t andDCoVaR

1j2
1;t can describe the dynamic risk spillovers between assets

according to Eq. (11) and Eq. (12) [44,49,50]. Therefore, based on dynamic risk
spillovers which can be detailed in Figss. 3e9, dynamic networks are constructed
according to Eq. (13)and Eq. (14) without rolling window.



Fig. 12. TSIt during the COVID-19 period.

Table 6
The values of VI and SII.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext

2020/3/20 VI 433.588 411.434 124.680 384.128 412.913 289.943 258.774
SII 323.368 342.134 321.494 338.725 333.183 325.867 330.689

2020/4/22 VI 1385.240 457.697 123.014 431.126 458.971 295.592 261.513
SII 347.603 488.692 482.544 526.357 518.666 513.757 535.536

Fig. 13. a)The lowest TSI (TSL ¼ 2315.460).(b) The highest TSI (TSL ¼ 3413.154).
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and second board markets in US and China are stable under both
high and low TSI levels during the COVID-19 outbreak.

In order to further investigate time-varying risk spillovers
among markets during the COVID-19 period, some time points
corresponding to extreme events in Chinese stocks, US stocks and
oil futures are also used to domore extensive studies. Chinese stock
markets suffered one-day big drop on February 28, 2020 as a result
of COVID-19 pandemic. Owing to rapidly increasing confirmed
cases of COVID-19, US stocks tumbled and halted on March 9, 2020,
described as “the worst one-day point decline ever for the Dow”.
WTI oil futures price slumped almost 300% on April 20, 2020,
trading at around negative $37/barrel, which is unprecedented
price.24 We construct matrices and networks corresponding to
these events.

Table 7 and Fig.14e16 show the values of VI and SII as well as the
24 According to EIA: https://www.eia.gov/dnav/pet/hist/RCLC1D.htm.
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networks on February 28, 2020, March 9, 2020, and April 20, 2020,
respectively. These tables and graphs demonstrate that these ef-
fects of extreme events from different markets on TSI are various,
where extreme event from US has the biggest influence on TSI,
followed by extreme event from China, but the extreme event from
oil futures has little influence on it. The phenomenon also verify our
opinion that the stock markets lead the oil-stock risk spillovers
during the COVID-19 period. Further investigation indicates that
the main conclusions of risk spillovers characteristics and network
structure under the extreme circumstances are in line with those in
the full sample (see Table 4). Therefore, during the COVID-19
outbreak, the conclusions that risk spillovers characteristics and
network structure among markets are stable under the extreme
situations as well as extrme events have only impacted on the
values of TSI can be obtained.

https://www.eia.gov/dnav/pet/hist/RCLC1D.htm


Table 7
The values of VI and SII.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext

2020/2/28 VI 728.544 452.953 127.606 443.846 467.461 323.121 251.010
SII 354.805 411.994 391.548 414.439 409.089 398.833 413.834

2020/3/9 VI 982.418 457.2616 124.027 405.804 439.768 297.430 258.344
SII 338.574 430.508 418.177 452.601 442.772 434.580 447.842

2020/4/20 VI 755.977 411.077 128.449 352.640 409.198 333.130 251.514
SII 322.236 390.010 369.635 404.038 389.062 374.363 392.642

Fig. 14. Network on February 28, 2020 (TSI ¼ 2794.542).

Fig. 15. Network on March 9, 2020 (TSI ¼ 2965.053).

Fig. 16. Network on April 20, 2020 (TSI ¼ 2641.986).
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5.3. Robustness analysis

The robustness of risk spillovers among oil futures, main board
and second boardmarkets of the US and China during the COVID-19
period, is furthermore tested. Firstly, as the representative of crude
oil, oil spot markets are employed to investigate the risk spillovers
among markets. Besides, we reselect data process way to verify our
empirical validity. Then, we also exam the risk spillovers weighted
by the sizes of the markets. Because of space limitations, only full-
sample risk spillovers results are shown.

We employ WTI spot, Brent spot, Daqing25 spot prices as the
representative of oil markets to investigate the oil-stock risk spill-
overs. Tables 8 and 9 and Fig.17 and 1826 denote the full-sample risk
spillovers results during the COVID-19 and normal periods.
Compared with the results from oil futures, the TSL from oil spot
markets is slightly stronger during the COVID-19 and normal pe-
riods. Then, the VI of Brent spot market is the strongest while the VI
of WTI futures in section 5 is the strongest. It may be explained by
the reason that WTI is the largest trading volume and highest
internationalization crude oil futures while Brent spot market has
25 SC has only futures without spot, while Daqing is often employed as the
representative of Chinese crude oil spot market [51,70]. Therefore, we employ
Daqing as Chinese spot market.
26 There are some non-matching missing data between oil spot and oil futures, so
that the phenomenon of same time frame but different amount of data is occurred.



Table 8
The average of △CoVaR during the COVID-19 period (oil spot prices).

WTI Brent Daqing DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 48.4818 51.332 57.336 56.30541 52.05787 43.44185 308.9543
Brent 119.178 0 116.523 119.788 117.892 115.030 116.811 705.223
Daqing 70.503 80.172 0 78.012 74.353 84.261 54.685 441.985
DJIA 59.223 60.987 56.866 0 64.799 37.418 29.170 308.464
NASDAQ 66.007 62.776 62.5441 61.790 0 56.797 60.105 370.019
CSI300 64.091 64.050 65.238 68.201 55.591 0 65.611 382.782
ChiNext 32.614 29.741 32.997 16.410 19.359 47.451 0 178.573
To (SII) 411.617 346.208 385.501 401.537 388.299 393.015 369.824 TSL: 2696.000

Table 9
The average of △CoVaR during the normal period (oil spot prices).

WTI Brent Daqing DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 82.947 67.024 63.572 48.358 53.451 14.139 329.492
Brent 28.335 0 26.956 19.835 26.669 16.088 10.971 128.855
Daqing 40.277 32.665 0 45.415 37.343 34.152 16.748 206.599
DJIA 55.065 46.715 54.749 0 63.042 52.084 47.394 319.049
NASDAQ 34.884 44.714 38.207 59.861 0 38.2883 37.739 253.693
CSI300 35.372 14.698 21.736 40.132 36.769 0 76.290 224.998
ChiNext 13.781 8.512 27.676 31.641 32.897 42.326 0 156.833
To (SII) 207.715 230.251 236.345 260.455 245.079 236.389 203.281 TSL: 1619.518

Fig. 17. Network during the COVID-19 period.
Fig. 18. Network during the normal period.
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the largest trading volume in the crude oil spot trading. In fact, the
Brent oil futures is as important as WTI oil futures in crude oil
pricing [1,2,28,32]. Furthermore, the main conclusions Tables 8 and
9 and Fig.17 and 18 are in coincidence with section 5, which verify
that empirical results in section 5 are reliable and robust.

Furthermore, owing to the difference of time zones and trans-
action rules, it is likely that markets in Asia are going to lead
markets in the US, while lagged prices from the US are going to lead
prices in Asia. In order to study influence from the “temporal
proximity effect” which broadly states that part of the intercon-
nectedness arises just because of non-synchronized trading hours
14
[71,72] on the empirical results, we synchronize data based on the
way from Výrost et al.[72].27 The empirical results based on data
synchronization are detailed in Tables 10 and 11 and Fig.19 and 20.
It is no doubt that it significantly influences the results. However,
the main conclusions are in coincidence with section 5, which
verifies that empirical results are reliable and robust.

Besides, we also test the robustness of risk spillovers by
changing a quantiles and COVID-19 period range, respectively.
Fig.21 and 22 show the full-sample risk spillovers results during the
Specific procedure can be detailed in literature [72].



Table 10
The average of △CoVaR in the COVID-19 period.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 91.248 94.926 95.512 95.630 11.759 17.912 406.986
Brent 52.008 0 74.132 88.721 95.482 104.649 101.168 516.161
SC 24.785 24.781 0 25.673 25.983 25.328 24.981 151.531
DJIA 82.766 76.421 42.940 0 81.892 57.732 49.650 391.401
NASDAQ 83.304 79.197 64.601 77.245 0 56.554 59.000 419.901
CSI300 49.669 54.995 44.097 106.012 99.802 0 65.677 420.253
ChiNext 41.420 43.895 40.140 49.984 60.755 49.120 0 285.312
To (SII) 333.952 370.536 360.836 443.147 459.544 305.141 318.388 TSL: 2591.544

Table 11
The average of △CoVaR in the COVID-19 period.

WTI Brent SC DJIA NASDAQ CSI300 ChiNext From (VI)

WTI 0 53.595 8.3808 96.057 95.781 7.1424 2.100 263.056
Brent 16.916 0 19.529 38.835 30.638 22.789 10.930 139.638
SC 32.935 38.702 0 32.632 32.190 35.820 35.059 207.338
DJIA 37.284 43.918 25.226 0 64.957 29.241 29.410 230.037
NASDAQ 33.527 50.812 32.122 62.868 0 35.096 34.627 249.053
CSI300 14.203 13.387 39.157 10.556 12.592 0 37.075 126.970
ChiNext 61.923 49.650 40.220 26.633 62.236 66.208 0 306.869
To (SII) 196.788 250.064 164.635 267.581 298.395 196.296 149.201 TSL: 1522.960

Fig. 19. Network during the COVID-19 period.
Fig. 20. Network during the normal period.
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COVID-19 period whenaare 1% and 10%, respectively. Then, the
WHO declared the first confirmed case of COVID-19 outside of
China in Thailand, on January 13, 2020. Therefore, the daily data
from January 13, 2020 to February 9, 2021 is employed as the data
of COVID-19 period, these empirical results are shown in Fig. 23.
These robustness results verify that the main conclusions are not
affected by the changes aquantiles of CoVaR and COVID-19 period
range.
15
6. Discussion

We propose a GARCHSK-Mixed Copula-CoVaR-Network to
construct full-sample and dynamic networks for researching the
multidimensional oil-stock risk spillovers during the COVID-19
pandemic. Around the research topic of oil-stock risk spillovers,
we study not only the difference among WTI-stock, Brent-stock,
and SC-stock relationships, but also the relationships between oil
and main board markets and second board markets.

Based on full-sample risk spillover analysis, the result that risk
spillovers amongmarkets in the crisis period are obviously stronger
than those in the normal period is in line with [17,61e63]. The



Fig. 21. Network(a ¼ 1%) (TSI ¼ 4232.076).

Fig. 22. Network (a ¼ 10%) (TSI ¼ 1976.052).

Fig. 23. Network (TSL ¼ 2536.215).
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disease has also created the pandemic which is altering around the
global financial markets. As Sugimoto et al. [37] say, the contagion
across financial markets becomes higher in the extreme events or
crises. However, unlike Mohamed [19] andWang&Wang [30] who
report that there is a greater significant risk spillover from oil price
to stock markets, our conclusion is opposite. COVID-19 has severely
damaged global economy [15,16]. It is explained that oil demand
relies on global economic development [58], while stock markets
are more sensitive than oil response to the prosperity and recession
16
of global economy [59]. Therefore, there are significant risk spill-
overs from the US and Chinese stock markets to the oil markets
during the COVID-19 pandemic.

In addition, Yu et al. [31], Zhu et al. [53], Berna & Omid [64]
discover the weak relationships between oil and Chinese stock
markets, while we find that bidirectional risk spillovers between
Chinese stock markets and international oil futures have rapidly
increased. The phenomenon can be partly interpreted by Ashfaq
et al. [28] who report that as the largest crude oil buyer, petroleum
demand of China has a massive influence on the stability in the
production and consumption of crude oil. Furthermore, the Chinese
economy is the first to be hit by COVID-19 and also the first to
restore. Therefore, there are strong risk spillovers from Chinese
stocks to oil markets. The strong bidirectional risk spillovers be-
tween Chinese stocks oil can be also explained by Mohamed [19]
who finds that sharp movement of oil prices affects list entreprises’
efficiency in China. Oil markets suffered large swings owing to
pandemic, resulting in a bigger risk spillover from oil to Chinese
stocks. Distinguishing from relative literature
[1e4,6,7,28,30,31,34,35], we also investigate the relationships be-
tween oil and GEM and discover that oil markets receive high risk
spillovers from second board stock markets, especially during the
COVID-19 outbreak. Besides, the conclusion that DJIA which emits
strongest risk spillovers to the others is in line with [2,6,36].

Based on dynamic risk spillover analysis, the conclusion that the
multidimensional relationships among oil futures, main board and
second board markets in the US and China are stable under both
high and low TSI levels and extreme situations can be in line with
prior studies' finding that the effects of COVID-19 on financial
markets are long-lasting [14,18,65]. Furthermore, it is reported in
the current paper that extreme event from US has the biggest in-
fluence on TSI, followed by extreme event from China, but the
extreme event from oil futures has little influence on it. The finding
can be supported by Uddin et al. [35] who report that the US has the
largest stock markets where 5000 companies are listed and influ-
ence the prices of the other countries’ stocks and commodities.
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7. Conclusions

We propose a GARCHSK-Mixed Copula-CoVaR-Network to
construct full-sample and dynamic networks for researching the
multidimensional risk spillovers among international oil futures,
main board and second board markets in the US and China during
the COVID-19 pandemic. The conclusions are as follows:

A GARCHSK-Mixed Copula-CoVaR-Network is proposed by four-
phase modeling to measure multidimensional risk spillovers. The
empirical results are as following: Firstly, for every variable,
GARCHSK outperforms GARCH class methods while mixed Copula
outperforms the other Copulas in most cases. In the meanwhile,
Clayton Copula takes the largest proportion in most dependence
patterns. Then, the △CoVaR under GARCHSK-Mixed Copula show
that there are two-way risk spillover effects between assets.

Based on full-sample risk spillover analysis, these conclusions
are summarized as follows: Firstly, TSI and every market's SII in the
COVID-19 period are obviously stronger than those in the normal
period. Besides, there are significant risk spillovers from the US and
Chinese stock markets to the oil markets, during the COVID-19
outbreak. In addition, oil futures receive high risk spillovers from
second board markets, especially during the COVID-19 outbreak.
Moreover, bidirectional risk spillovers between Chinese stock
markets and international oil futures have rapidly increased. Then,
SII of SC in the COVID-19 period is sharply increasing.

Based on dynamic risk spillover analysis during the COVID-19
outbreak, these conclusions are obtained as follows: Firstly, the
relationships among oil futures, main board and second board of
stock markets in the US and China are stable under both high and
low TSI levels. Secondly, these effects of extreme events from
different markets on TSI are various, where extreme event from US
has the biggest influence on TSI, followed by extreme event from
China, but the extreme event in oil futures has little influence on it.
In addition, risk spillovers characteristics and network structure
across markets are stable under the extreme situations.

Our study not only offers new method and insight into the oil-
stock relationship, but also has economic implications for policy-
makers and investors. For policymakers, it is necessary to consider
financial markets as a whole because global networks across
financial markets have highly produced interdependent systems.
Furthermore, it is essential to introduce stricter and differentiating
regulatory and institutional rules to control cross-market risk
contagion during the COVID-19 pandemic, where stocks instead of
oil should be received more attention. In addition, second board
stock markets are supposed to be brought into the scope of regu-
lation by regulators when confront with COVID-19 crisis. With the
rapid development of information revolution, high-growth & high-
tech enterprises have become a driver of the global economy, thus
the effects of GEM on oil are highly-regarded.

For investors, risk spillovers in our workmight be contributed to
constructing effective portfolio schemes and improving investment
efficiency. It is essential to reduce the weights of three oil futures
and increase the weights of stocks in the portfolio. As the vulner-
able markets which are greatly influenced by the stocks during the
COVID-19 period, oil futures may bring more uncertainty to port-
folio andworsen the portfolio performance of return and risk. Then,
the second board markets have strong influence on the others so
that the weights of NASDAQ and ChiNext should be increased more
than main board stock markets in order to improve diversification
benefits in the wake of COVID-19 crisis. Furthermore, it is unwise to
only employ oil-stock portfolio for offsetting adverse price risk
during the COVID-19 pandemic because of the result that the risk
spillovers during the COVID-19 period are stronger than those
during the pre-COVID-19 period. In order to improve the portfolio
performance, it is essential to introduce other commodities such as
17
gold into the oil-stock portfolio.
However, there are some limitations in our work, which should

be admitted to add context to our conclusions and provide evidence
for further research. Firstly, the study is limited in a single
perspective that we use stock indices for research at the aggregate
level without considering the heterogeneity of the risk spillovers
between distinct stock sectors and crude oil. Another limitation of
our work is that COVID-19 crisis is far from end so that the financial
markets would be notorious changeable. Further follow-up studies
are needed to confirm our conclusions.
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