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a b s t r a c t

In this work, we investigate the impact of the COVID-19 pandemic on sovereign bond
yields. We consider the temporal changes from financial correlations using network
filtering methods. These methods consider a subset of links within the correlation
matrix, which gives rise to a network structure. We use sovereign bond yield data
from 17 European countries between the 2010 and 2020 period. We find the mean
correlation to decrease across all filtering methods during the COVID-19 period. We also
observe a distinctive trend between filtering methods under multiple network centrality
measures. We then relate the significance of economic and health variables towards
filtered networks within the COVID-19 period. Under an exponential random graph
model, we are able to identify key relations between economic groups across different
filtering methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The novel coronavirus disease 2019 (COVID-19) epidemic caused by SARS-CoV-2 began in China in December 2019 and
apidly spread around the world. The confirmed cases increased in different cities of China, Japan, and South Korea in a
ew days of early January 2020, but spread globally with new cases in Iran, Spain, and Italy within the middle of February.
e focus on sovereign bonds during the COVID-19 period to highlight the extent to which the pandemic has influenced

he financial markets. A sovereign bond is a bond that is issued by sovereign entities or administrative regions. The yield
f these bonds is the interest rate which is paid to the buyer of the bond by the issuer. Each issued sovereign bond has an
ssociated maturity date and is considered risk-free. However, the yields of sovereign bonds can depend highly on factors
uch as the inflation, political stability, and the debt of the issuing country.
In the last few years, bond yields across the Euro-zone were decreasing under a range of European Central Bank (ECB)

nterventions, and overall remained stable compared with the German Bund, a benchmark used for European sovereign
onds. These movements were disrupted during the COVID-19 pandemic, which has affected the future trajectory of bond
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ields from highly impacted countries, e.g., Spain and Italy. However, in the last months, the European central banks
ntervened in financial and monetary markets to consolidate stability through an adequate supply of liquidity countering
he possible margin calls and the risks of different markets and payment systems. These interventions played a specific
ole in sovereign bonds because, on the one side, supported the stability of financial markets and, on the other side,
upported the governments’ financial stability and developed a global reference interest rate scheme. Understanding how
orrelations now differ and similarities observed in previous financial events are important in dealing with the future
conomic effects of COVID-19.
We consider an analysis of sovereign bonds by using network filtering methods, which is part of a growing literature

ithin the area of econophysics [1–5]. The advantage in using filtering methods is the extraction of a network type
tructure from the financial correlations between sovereign bonds. Hence, the correlation-based networks and hierarchical
lustering methodologies allow us to understand the nature of financial markets and some sovereign bond features. It is
ot clear which approach should be used in analyzing sovereign bond yields, and so within this paper, we implement
arious filtering methods to the sovereign bond yield data and compare the resulting structure of different networks.
hrough this analysis, we able to evaluate the impact which the topological structure of filtered networks has on the
conomic and health relations between nodes.
Our results show that the mean correlation peaks in October 2019 and then decreases during the 2020 period, when

OVID-19 is most active in Europe. These dynamics are reflected across all network filtering methods and represent the
ide impact of COVID-19 on the spectrum of correlations, compared to previous financial events. We also find a clustering
f Euro-area countries and a disintegration with non-Euro countries during the COVID-19 period. These network structures
eflect the financial state of sovereign bonds observed within previous financial events but are also related by exogenous
ariables, e.g., death rates of countries, which we can analyze under an exponential random graph model.
Previous studies have used different methods to analyze historic correlations as random matrix theory to identify the

istribution of eigenvalues concerning financial correlations [6–8], the partial transfer entropy to quantify the indirect
nfluence that stock indices have on one another [9], the approaches from information theory in exploring the uncertainty
ithin the financial system [10,11], community structure analysis [12], multilayer network methods [13–18], and filtering
ethods. Several authors have used network filtering methods to explain financial structures [19,20], hierarchy and
etworks in financial markets [21], relations between financial markets and real economy [22], volatility [23], interest
ates [24], stock markets [25–28], future markets [29] or topological dynamics [30] to list a few. Also, the comparison
f filtering methods to market data has been used for financial instruments. Birch, et al. [31] consider a comparison of
iltering methods of the DAX30 stocks. Musmeci, et al. [32] propose a multiplex visual network approach and consider
ata of multiple stock indexes. Kukreti, et al. [33] use the S&P500 market data and incorporate entropy measures with a
ange of network filtering methods. Aste, et al. [34] apply a comparison of network filtering methods on the US equity
arket data and assess the dynamics using network measures, Schwendner, et al. [35] applied a correlation influence
pproach and constructed noise-filtered influence networks to understand the collective yield dynamics of the Euro area
overeign bonds.
To evaluate the European sovereign bonds based on filtering methods, this work is organized as follows. In Section 2,

e describe the network filtering methods and present the data sets with some preliminary empirical analyses. We apply
n Section 3 the filtering methods to sovereign bond yields and analyze the trend of financial correlations over the last
ecade, and consider aspects of the network topology. We construct plots in Section 4 representing the COVID-19 period
nd consider an analysis using the exponential random graph model for each filtering method. In Section 5, we discuss
he results and future directions.

. Materials and methods

We introduce a range of network filtering methods and consider a framework as in [19] for sovereign bond yields.
e define n ∈ N to be the number of sovereign bonds and bond yields Yi(t) of the ith sovereign bond at time-t, where

i ∈ {1, . . . , n}. The correlation coefficients rij(t) ∈ [−1, 1] are defined using Pearson correlation as

rij =
⟨YiYj⟩ − ⟨Yi⟩⟨Yj⟩√(

⟨Y 2
i ⟩ − ⟨Yi⟩

2
) (

⟨Y 2
j ⟩ − ⟨Yj⟩

2
) , (1)

with ⟨·⟩ denoting the average of yield values. The classical approach in using the Pearson correlation is well established,
but it does not take into account the increases in correlation from market volatility. We can account for these changes by
considering the conditional Pearson correlation approach as in [36]. We define an adjustment factor βij(t) ∈ [0, ∞) and
the conditional correlation r∗

ij at time-t as follows:

r∗

ij = rij

√
1 + βij

1 + βijr2ij
, where βij =

σ h
ij

σ l
ij

− 1. (2)

This adjustment factor is represented by the relative difference between two subgroups of high covariance σ h
ij (t) ∈

0, ∞) and low covariance σ l (t) ∈ [0, ∞) of bond yields at time-t. As the relative difference in covariance increases, this
ij

2
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Table 1
List of network filtering methods.
Network filtering methods Number of links (edges) Reference Description

Minimum Spanning Tree
(MST)

n − 1 [41] A connected and undirected network for n nodes
which minimizes the total edge weight.

Maximum Spanning Tree
(MaST)

n − 1 [42] A connected and undirected network for n nodes
which maximizes the total edge weight.

Asset Graph (AG) n − 1 [43] Choose the smallest n − 1 edges from the distance
matrix.

Triangulated Maximal
Filtering Graph (TMFG)

3(n − 2) [44] A planar filtered graph under an assigned objective
function.

increases the adjustment factor βij(t) and the magnitude of the conditional Pearson correlation. This adjustment preserves
the symmetry of correlation values between sovereign bonds i and j, while taking into account market conditions. We
orm both subgroups by equally dividing yield values, where the high variance σ h

ij group consists of the 25% lowest and
highest yield values, with the remaining values allocated within the low variance σ l

ij group. This allocation is applied
individually to each sovereign bond in which the covariance is computed.

Under the conditional Pearson correlation, we establish the notion of distance dij ∈ [0, 2]. We consider the values
of the entries r∗

ij on the conditional correlation matrix R∗
∈ [−1, 1]n×n, with dij =

√
2(1 − r∗

ij ). A distance of dij = 0
epresents perfectly positive correlations and dij = 2 represents bonds with negative correlations. The network filtering
ethods are then applied to the distance matrix D ∈ [0, 2]n×n, where a subset of links (or edges) are chosen under each

iltering method. The set of edges is indicated by {(i, j) ∈ E(t) : nodes i and j are connected} at time-t, defined for each
iltering method. We define the time frames of financial correlations as X for the set of observations, with n different
olumns and T rows. From the set of observations X , we consider windows of length 120, which is equal to six months
f data values. We then displace δ windows by 10 data points, which is equal to two weeks of data values, and discard
revious observations until all data points are used. By displacing the data in this way, we can examine a time series
rend between each window X .

.1. Network filtering methods

We consider multiple network’s filtering methods to analyze the dynamics from multiple perspectives. We introduce
he commonly used minimum spanning tree (MST) method, which has been used within currency markets [37], stocks
arkets [38,39] and sovereign bond yields [40]. The MST from Table 1 considers the smallest edges and prioritizes
onnections of high correlation to form a connected and undirected tree network. These networks can be constructed
rom a greedy type algorithm e.g. Kruskal’s and Prim’s algorithm and satisfies the properties of subdominant ultrametric
istance e.g. dij ≤ max{dik, dkj} ∀i, j, k ∈ {1, . . . , n}.
This approach is used as it establishes three key properties within a subset of correlations. We argue these properties

re relevant within filtering methods but can also be individually constrained when applied in conjunction (as within the
ST) for topological and economic reasons. By considering four methods, we can analyze the influence of each feature
n the properties of the network:

• Connectivity: Under the MST, all nodes are connected within the network. As there has been a broad impact from
COVID-19, many sovereign bonds have experienced a comovement in yield trends under market conditions. This
criterion in which the network structure is connected also excludes some highly positive links and decreases the
information between positively correlated sovereign bonds. Therefore, we consider the Asset Graph (AG), which
includes all positive correlations of interest while maintaining the network density.

• Sparsity: The key motivation in filtering methods is the decrease in links, in which we can establish network
properties of interest, e.g., network centrality. As observed in the 2012 Euro debt crisis, specific sovereign bonds are
large contributors to the spillover effects observed in other bond yield trends. The fixed number of links within the
MST can be also argued to oversimplify the network and reduce connectivity. Hence, we consider the Triangulated
Maximal Filtering Graph (TMFG), which establishes a planar graph and increases the total number of links compared
with the MST.

• Positivity: From an economic perspective, positive correlations are relevant in identifying the trends in different
financial instruments and periods of high volatility. However, focusing on this subset of correlations may exclude
sovereign bonds that act differently, i.e., although the majority of bond yields increase within the COVID-19 period,
several bond yields like Germany and Switzerland decrease. To account for these dynamics, we consider a Maximum
Spanning Tree (MaST), which prioritizes negative correlations within the network.

We provide further descriptions of the methods described above. An AG considers positive correlations between nodes
f a given threshold. All n − 1 highest correlations are considered in an AG, allowing for the formation of cliques not
3
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Table 2
Summary statistics of the 10Y sovereign bond yield data of 17 European countries from January 2010 to December 2020. AC(1)
represents the first-order autocorrelation of the difference between yield values and AC2(1) represents the first-order autocorrelation
of the squared series.
Country Min Max Mean Variance Skewness Kurtosis AC(1) AC2(1)

Austria −0.47 3.90 1.30 1.45 0.55 2.11 0.05 0.14
Belgium −0.43 5.83 1.58 2.01 0.61 2.13 0.17 0.41
Czech 0.24 4.55 1.88 1.32 0.61 2.33 −0.07 0.11
France −0.44 3.79 1.40 1.37 0.40 1.91 0.06 0.18
Germany −0.85 3.50 0.95 1.13 0.57 2.42 −0.01 0.21
Greece 0.56 39.85 9.16 51.02 1.74 6.31 0.07 0.01
Hungary 1.55 10.73 4.67 4.62 0.55 1.90 0.01 0.22
Iceland 2.19 8.15 5.72 1.73 −0.88 3.14 0.04 0.17
Ireland −0.32 14.45 2.82 9.17 1.23 3.65 −0.36 0.50
Italy 0.48 7.31 2.96 2.40 0.55 2.28 0.07 0.08
Netherlands −0.64 3.78 1.16 1.28 0.50 2.16 0.01 0.20
Poland 1.15 6.40 3.68 1.87 0.34 2.23 0.05 0.16
Portugal −0.05 17.36 4.30 11.94 1.10 3.54 −0.28 0.32
Romania 2.56 10.80 4.91 2.20 0.73 2.60 −0.37 0.30
Spain −0.01 7.56 2.70 3.60 0.52 1.91 0.13 0.14
Switzerland −1.11 2.14 0.33 0.57 0.64 2.42 0.02 0.08
UK 0.07 4.28 1.81 0.91 0.42 2.61 −0.04 0.17

observed within a MST network. The use of AG has been considered in Onnela, et al. [45], which identifies clustering
within stock market data. As the method only considers n− 1 links, some nodes within the AG may not be connected for
the given threshold. Therefore, the connection of unconnected nodes is unknown, relative to connected components.

The TMFG constructs a network of 3(n − 2) fixed edges for n nodes, similar to the planar maximal filtered graph
PMFG) [46], which has been used to analyze US stock trends [32]. The algorithm initially chooses a clique of 4 nodes,
here edges are then added sequentially, in order to optimize the objective function e.g., the total edge weight of the
etwork, until all nodes are connected. This approach is non-greedy in choosing edges and incorporates the formation of
liques within the network structure. A TMFG is also an approximate solution to the weighted planar maximal graph
roblem, and is computationally faster than the PMFG. The resulting network includes more information about the
orrelation matrix compared with spanning tree approaches.
The MaST constructs a connected and undirected tree network with n− 1 edges in maximizing the total edge weight.

nalyses involving MaST have been used as comparisons to results observed within MST approaches [47,48]. An MaST
pproach is informative for connections of perfectly anti-correlation between nodes, which are not displayed within the
ST.

.2. Sovereign bond data

The European sovereign debt has evolved in the last ten years, with some situations affecting the convergence between
ond yields. After the 2008 crisis, European countries experienced a financial stress situation starting in 2010 that affected
ond yields. Thus, the investors saw an excessive amount of sovereign debt and demanded higher interest rates in
ow economic growth situations and high fiscal deficit levels. During 2010–2012, several European countries suffered
owngrades in their bond ratings to junk status that affected investors’ trust and fears of sovereign risk contagion
esulting, in some cases, a differential of over 1000 basis points in several sovereign bonds. After the introduction of
usterity measures in GIIPS (Greece, Ireland, Italy, Portugal, and Spain) countries, the bond markets returned to normality
n 2015.

The 2012 European debt crisis revealed spillover effects between different sovereign bonds, which have been studied
sing various time series models, e.g., VAR [49,50] and GARCH [51]. The results showed that Portugal, Greece, and Ireland
ave a greater domestic effect, with Italy and Spain contributing to the spillover effects in other European bond markets.
core group of ABFN (Austria, Belgium, France, and the Netherlands) countries had a lower contribution to the spillover
ffects, with some of the least impacted countries residing outside of the Eurozone.
During the sovereign debt crisis, public indebtedness increased after Greece had to correct the public finance falsified

ata, and other countries created schemes to solve their public finance problems, especially, bank bailouts. In consequence,
he average debt-to-GDP ratio across the Euro-zone countries rose from 72% in 2006 to 119.5% in 2014, as well as the
ncrease in sovereign credit risk [52,53].

After the Fiscal Compact Treaty went into effect at the start of 2013, the yield of sovereign bonds started a correction.
his treaty defined that fiscal principles had to be embedded in the national legislation of each country that signed the
reaty. Although some investors and institutions pushed for financial and monetary authorities to introduce an additional
ecision, that permitted them to include sovereign bonds in their portfolios. The rate interest policy of the European
entral Bank helped to consolidate the trust in this kind of asset; the bonds confirmed their adjustment especially

ermany, France, Spain, during the fourth quarter of 2013, while countries like Greece and Italy started in 2014 with

4
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ariations of over 500 basis points during the following months. By 2015, all European bonds increased their yields as a
esult of an adjustment of the market rally of 2014.

We analyze the sovereign bond yield data for the following countries Austria (AUT), Belgium (BEL), Czech Republic
CZE), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Iceland (ISL), Ireland (IRL), Italy (ITA), Netherlands
NLD), Poland (POL), Portugal (PRT), Romania (ROU), Spain (ESP), Switzerland (CHE), and the UK (GBR). We consider
overeign bond yields with a 10 year maturity between January 2010 and Dec 2020. This data is taken from the financial
ews platform Investing [54]. In total, there are 2615 data values for each country with an average of 238 data points
ithin 1 year.
Table 2 provides summary statistics of the 10Y bond yield data. The data shows that the lowest recorded yields for

any countries was within 2020, during the COVID-19 period and highest in 2011, before the 2012 European debt crisis.
he lowest yield values are with Germany and Switzerland, which both record yield values lower than −0.80. In contrast,
reece has the highest yield value of 39.85 and a variance of 51.02. The left skewed yield distributions (except for Iceland)
epresent an average decrease in yield values and are high for GIIPS countries compared with the UK, France, and Germany,
ith flattening yield trends. If we examine the autocorrelation, we find this to be small overall but high for some countries
.g., Belgium, Ireland and Portugal within the squared series.

. Network measures

We compute the correlation matrix for each window X with a displacement of δ between windows, and consider the
ean and variance for the correlation matrix. We define the mean correlation r(t) given the conditional correlation values

∗

ij for n sovereign bonds

r(t) =
2

n(n − 1)

∑
i<j

r∗

ij (t), (3)

and the variance of correlations u(t) at time-t

u(t) =
2

n(n − 1)

∑
i<j

(r∗

ij (t) − r(t))2. (4)

From Fig. 1, we find that the mean correlation r(t) is highest at 0.99 in Oct 2019. This suggests that a COVID-19
impact was a continuation on the decrease of the mean correlation, and throughout the punitive lock down measures
introduced by the majority of European countries in Feb–Mar 2020. The decreases in mean correlation are observed within
the 2012 period during the European debt crisis, in which several European countries received EU-IMF bailouts to cope
with government debt. Within 2016, there was a combination of political uncertainty which followed from the UK and
the increased debt accumulation by Italian banks. The variance u(t) also follows a trend similar to the mean correlation,
ith the smallest variance of 4.48×10−5 in October 2019. Within 2020, the variance increases between sovereign bonds
nd reflects the differences between the correlations of low and high yield.

.1. Network length

We consider the normalized network length L(t), which is introduced in Onnela, et al. [43] as the normalized tree
length. We define the measure as the normalized network length, as this measure is considered for AG and TMFG non-
tree networks. The network length is a measure of the mean link weights on the subset of links E(t), which are present
within the filtered network on the distance matrix at time-t

L(t) =
1

#{(i, j) ∈ E(t)}

∑
(i,j)∈E(t)

dij(t), (5)

with the variance V (t) defined on network links

V (t) =
1

#{(i, j) ∈ E(t)}

∑
(i,j)∈E(t)

(dij(t) − L(t))2. (6)

The plots in Fig. 2 represent the mean and variance of the network length. As each filtering method considers a subset of
weighted links, the normalized length L(t) is monotonic between all methods and decreases with the increased proportion
of positively correlated links within the network. We highlight movements in the normalized network length during the
COVID-19 period, which is reflected across all filtering methods. This movement is also observed within 2016, but only
towards a subset of correlations within the MaST and TMFG compared with the MST and AG. The relative difference
between the normalized network lengths is least evident in periods of low variance; this is observed in the 2019–2020
period, where the difference between all methods decreases.

We find the variance is highest within the TMFG and lowest with the AG approach. Compared with the mean and
variance of the correlation values in Fig. 1, the difference between values within the equivalent network measures is
5
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v

Fig. 1. The plots represent the mean and variance of the conditional Pearson correlation matrix. The length of windows is 120 with a displacement
alue of δ = 10 days.

Fig. 2. The plots represent the normalized and variance of the network length for MST, TMFG, MaST, and AG networks, with windows of length
120 and δ = 10 days.
6
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Fig. 3. The plots represent the degree centrality and mean occupation layer for MST, TMFG, MaST and AG networks, with windows of length 120
and δ = 10 days.

overall higher, particularly within the MaST. There appears to be an overall reciprocal relation between the variance
trends of spanning-tree approaches, where both values are small for some periods. When we consider the variance of the
AG, the concentration of links, and the adjustment in the conditional correlation results in a flattened trend.

3.2. Network centrality

We define the degree centrality for the node of maximum degree C(t) at time-t . This measure considers the number
of direct links

C(t) = max
i∈{1,...,n}

n∑
j∈E(t)

1(dij > 0). (7)

The mean occupation layer η(t) (MOL) introduced in Onnela, et al. [43] is a measure of the centrality of the network,
relative to the central node υ(t). We define levi(t) as the level of the node, which is the distance of the node relative to
υ(t), where the central node and nodes unconnected relative to the central node have a level value of 0,

η(t) =
1
n

n∑
i=1

levi(υ(t)). (8)

We use the betweenness centrality to define the central node υ(t) for the MOL. Introduced in Freeman [55], the
betweenness B(t) considers the number of shortest paths sij(k) between i and j which pass through the node k, relative
to the total number of shortest paths sij between i and j, where i ̸= j ̸= k

Bk(t) =

∑
i̸=k

∑
j̸=k,j̸=i

sij(k)
sij

. (9)

Within the MST, the majority of degree centrality ranges between 3 to 5, but can be as high as 9 for some periods.
The trend within the MST remains stable, where the central node under degree centrality is associated with multiple
sovereign bonds, e.g., Netherlands 11%, Portugal 10%, and Italy 10% across all periods. The MaST has the highest variation,
with a centralized network structure in some periods, e.g., C(t) of 16, forming a star-shaped network structure. This is
7
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Fig. 4. The plots represent the minimum spanning tree (left) and maximum spanning tree (right) for the Jan 2020–Dec 2020 period.

usually associated with Greece 27%, Iceland 25%, and Romania 18%, which are identified as the central node 70% of the
time. The degree centrality on average is naturally highest with the TMFG, under a higher network density, where the
central nodes are identified as Iceland and Romania, similar to the MaST. The AG identifies the Netherlands and France
within the degree centrality, under a higher proportion of 30% and 13% compared with the MST. Within Fig. 3, the MOL
on average is smallest for the AG, because of the 0 level values from unconnected nodes, in which an unconnected node
is present within all considered windows. We find that all nodes within the TMFG have a maximum path length of 3
between any two nodes, across all periods. Between the MST and MaST, the MOL is higher within the MaST, where the
degree centrality of nodes within the network is higher.

4. COVID-19 networks

We analyze the temporal changes of sovereign bond yields between Jan 2020 and Dec 2020. This interval establishes
a period in which COVID-19 was highly active across multiple European countries. We first construct networks under
each of the filtering methods and relate the network topology to economic trends. Then, we implement an exponential
random graph model (ERGM) to verify the significance of these explanatory variables within each constructed network.
We consider analysis as in [56], in which they use an ERGM to analyze the interconnectedness of financial institutions
across Europe under different node variables.

4.1. Network plots

Under the MST for the COVID-19 period, we find France has the highest degree centrality of 3. The network also
exhibits clusters between a subset of southern European countries, as observed within the connected component of Italy,
Portugal and Spain. Within the network, there is a connection between all ABFN countries, but countries within this
group also facilitate the connecting component within GIIPS countries, where Belgium is connected with Greek sovereign
bonds. The UK and Eastern European countries remain on the periphery, with ABFN countries occupying the core of the
network structure. For the MaST in Fig. 4, there exists a high degree centrality for Icelandic bond yields. This contrasts
to the observed regional hub structure within the MST, where the degree centrality is similar between all nodes. The
UK remains within the periphery of the MaST structure when considering anti-correlations, and shows UK bond yields
fluctuate less with movements of other European bonds, compared with previous years. This is also observed for sovereign
bonds for other countries with non-Euro currencies e.g., Czech Republic and Hungary.

We find nodes within the TMFG to have the highest degree in Iceland at 13 and Czech Republic at 11. This resembles
the links within the MaST, where 75% of links are present within both networks. There is also the associated degree
centrality of the MaST, which is observed within the TMFG connected nodes. Under the TMFG, nodes have a higher degree
connectivity when considering an increased number of links. This is the case for the UK, which has a degree value of 10
compared with other filtered networks (see Fig. 5). We find the AG exhibits one large component which consists of ABFN
and GIIPS countries, where the majority of remaining nodes are non-Euro countries and are unconnected within the
network. By solely considering the most positive correlations, we include the formation of cliques between countries,
which is prevalent within the western European group of 6 nodes. This level of disintegration which is observed during
COVID-19 is supported by previous studies of the 2012 Euro zone debt crisis [57].

Under various constraints, there is a commonality between sovereign bonds across network filtering methods. We

find for positive correlations, that Euro-zone countries have a high degree centrality, with non-Euro countries are

8
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Fig. 5. The plots represent the triangulated filtering maximal graph (left) and asset graph (right) for the Jan 2020–Dec 2020 period.

redominately located within the periphery of the network. This is distinctive within the AG, where cliques are only
ormed between GIIPS and ABFN countries. The anti-correlations within the MaST inform the trends between non-Euro
ountries and the remaining Euro-area countries. This structure is supported within the TMFG, with the planar graph
resenting similarities with the MaST on the degree centrality of nodes i.e., particularly for Iceland.

.2. Exponential random graph model for COVID-19 networks

We analyze the filtered networks as in Section 4 under an ERGM. In this approach, we consider a family of random
nweighted networks W on the observed network w. We define the function of network statistics z(w) and can

computationally use the Maximum Likelihood Estimator (MLE) to consider this space of networks. We define the general
model for p number of parameters with coefficient values θ as follows:

P(W = w) =
exp

{
θ T z(w)

}
κ(θ )

, (10)

log
(
exp{θ T z(w)}

)
= θ1z1(w) + θ2z2(w) + · · · + θpzp(w) (11)

nd κ(θ ) as the normalizing constant. Although these computations can be expensive for a large number of nodes n, we
an address these issues by using Markov Chain Monte Carlo (MCMC) methods. We analyze the local interactions between
odes and generate 10,000 random networks for each filtering method.
For the ERGM, we define the ‘‘intercept’’ of the model as the number of links observed within each filtered network. We

hen consider node level variables under a discrete classification for different economic groups. If the node is within the
conomic group, we assign a value of ‘‘1’’, otherwise the node has a ‘‘0’’ value. We also incorporate continuous variables
hich is represented by economic and health data for all nodes. The data is provided by the International Monetary Fund
IMF) [58] and the European Centre for Disease Prevention and Control (ECDC) [59] within the 2020 year. As we consider
he coefficient values for different parameters, we further discuss the global model adequacy and fit under the ERGM. We
onsider the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for the model adequacy, which
re measures of the goodness of fit compared with the number of parameters used. We then use the log-likelihood value
L(θ ), and consider the relative difference between the log-likelihood of the ERGM and null model as a measure of the
odel fit.
Within Table 3, we define two economic groups of GIIPS and ABFN countries. All of these countries have adopted the

uro and represent the core of connected nodes within the different filtering methods. We use the country debt relative
o the GDP, inflation rate, and account balance for 2020 as known economic indicators within the ERGM. As a health
ndicator of COVID-19, we consider the total number of COVID-19 deaths relative to the size of the country population
ecorded within the 2020 year. If we compare the relative number of COVID-19 deaths with the debt of countries within
able 3, we find several countries have both high levels of COVID-19 deaths and debt to GDP, e.g., Belgium, Italy, and the
K. For other economic indicators, we find an overall negative relationship between inflation and debt, however, some
ountries, i.e., both Switzerland and Ireland have low inflation and debt value. The account balance of countries is highest
ith the Netherlands and Switzerland, with Greece and Romania having the most negative values.
We find the AG to have the highest model fit under the ERGM and the MST with the lowest fit (see Table 4). We observe

hat the GIIPS and ABFN coefficient values are high within the AG, which mainly describe the large component of Euro
ountries. Under the MST, nodes within the Euro establish links with other Euro countries because of positive correlations
9
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Table 3
The following table represents health and economic attributes for countries within the ERGM. The debt is defined as the gross amount
relative to the GDP, the inflation rate is recorded for the average consumer prices and the current account balance is the volume of
recorded transactions relative to the countries GDP within 2020. We consider the total number of COVID-19 deaths which occurred
in 2020 relative to the population size of each country.
Country GIIPS ABFN Euro COVID-19

deaths (%)
Debt to
GDP

Inflation
rate

Account
balance

Austria
√ √

0.07 84.30 1.80 2.50
Belgium

√ √
0.17 117.10 1.20 −0.80

Czech 0.11 41.40 2.40 −0.50
France

√ √
0.10 118.60 0.60 −1.80

Germany
√

0.04 72.20 1.10 6.80
Greece

√ √
0.05 200.50 0.70 −4.50

Hungary 0.10 75.90 3.40 −0.90
Iceland 0.01 52.50 2.80 0.20
Ireland

√ √
0.05 61.30 0.60 5.50

Italy
√ √

0.12 158.30 0.60 3.00
Netherlands

√ √
0.07 61.10 1.50 9.00

Poland 0.08 60.20 2.30 1.80
Portugal

√ √
0.07 130.00 1.10 −3.50

Romania 0.08 49.60 2.50 −4.50
Spain

√ √
0.11 121.30 0.80 0.90

Switzerland 0.08 48.50 0.00 9.00
UK 0.11 111.50 1.20 −3.80

Table 4
The table represents filtered networks under the ERGM. The goodness of fit is defined under the AIC and BIC, a smaller value represents
a higher model adequacy. We define the model fit as 100 ×

[
1 −

(
LLM (θ )/LL0(θ )

)]
, where LLM (θ ) is the log-likelihood of ERGM and

LL0(θ ) is the log-likelihood of the null model. The LLM (θ ) includes the link and node level parameters, where the null model LL0(θ )
only includes the link parameter.
Panel A Parameters MST TMFG MaST AG

Edges −2.36 0.82 0.43 −36.14
GIIPS 0.60 −0.23 1.22 20.59
ABFN 0.70 −0.19 1.76 22.17
Euro −0.27 −1.75∗

−3.50∗
−0.62

COVID-19 Deaths 1.77 −4.93 −39.20∗∗∗
−6.95

Debt to GDP −0.00 0.01 0.02 −0.01
Inflation 0.01 0.12 0.71 −1.14
Account Balance −0.04 0.02 0.11 0.00

Panel B Diagnostics

Goodness of Fit Test: AIC 112.92 155.20 69.38 58.41
Goodness of Fit Test: BIC 136.22 178.50 92.69 81.71
Log Likelihood (LLM (θ )) −48.46 −69.60 −26.69 −21.21
Log Likelihood (LL0(θ )) −49.26 −86.33 −49.26 −49.26
Model Fit 1.62% 19.38% 45.82% 56.94%

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

and non-Euro countries to satisfy the topological constraints. As the interpreted co-movement is concentrated within Euro
countries, the MST removes the representative cliques between nodes, which decreases the coefficient values of GIIPS and
ABFN.

The coefficient of COVID-19 deaths is highly significant within the MaST. Because of the centralized structure around
Iceland in which COVID-19 deaths for Iceland are low compared with all other nodes (the death rate of the next lowest
value is four times higher than Iceland). As there is a centralized structure when considering negative correlations, we
find compatibility of the topological requirement with the ERGM, which is not observed under positives correlations.
When the density of the network increases within the TMFG, the network structure decreases the model fit and the
model adequacy of the ERGM. We still observe a coefficient value where there is a formation of links between non-Euro
countries, i.e., Czech Republic and Iceland with Euro area countries.

If we consider economic indicators, there is a smaller coefficient value across all parameters compared with COVID-19
deaths. The inflation rate under the MaST is positive between two nodes and represents the links with other countries
with high inflation rates. This contrasts with the coefficient value within the AG, which has a negative coefficient between
locally connected nodes. Overall, we find altering any one of the conditions within the MST increases the model fitness to
the ERGM. This also results in a decrease of the model adequacy in some networks compared with the MST. For negative
correlations, we find higher compatibility between the topological structure and model fit under the MaST compared with
the MST for positive correlations. Through these approaches, we can capture the core interactions observed between Euro
10
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ountries and their links with non-Euro countries. We can also factor in economic and health node variables, in which
e find COVID-19 deaths to be highly significant.

. Conclusion

As a response to the COVID-19 pandemic, most countries implemented various socio-economic policies and business
estrictions almost simultaneously. An immediate consequence was an increase in yield rates for these nations. The
esulting upward co-movement and upward movements in other yield rates explain the decrease in the mean correlation
n bond dynamics, coinciding with the pandemic outbreak. Thus, understanding the dynamics of financial instruments in
he Euro area is relevant to assess the increased economic strain from events seen in the last decade.

In this paper, we consider the movements of European sovereign bond yields for network filtering methods, where we
ocus on the COVID-19 period. We find that the impact of COVID-19 decreased the mean correlation, which was reflected
ithin the normalized network length of all filtering methods. The network topology remained consistent with previous
ears, in which the trends between approaches were distinctive. The degree centrality was highest for GIIPS and ABFN
ountries when considering positive correlations and non-Euro countries within negatively correlated type networks. We
dentified the network structures of filtering methods within the COVID-19 period, which showed one large component
onsisting of GIIPS and ABFN countries for positive correlations. We were able to verify several of these relationships
nder an ERGM, in which we find COVID-19 deaths to be significant within negatively correlated networks.
However, depending on the terms of each bond, the European bond market reacted positively after central banks

e.g., Bank of England, European Central Bank, Swiss National Bank) increased their financial programs directed to
lleviating the financial pressure on markets and to providing financial liquidity to issuers. Namely, the bond purchase
rograms had aimed to consolidated market recovery and help to displacing investors towards other financial assets. As
result, prices recovered and remain close to the high levels of the 2020 s quarter, but not at the same level before
arch’s stress situation, especially in 10Y bonds. Additionally, if liquidity provided by central banks starts to drop off, the
arket dynamics could adjust to economic performance and not its financial performance. In other words, the resulting
ynamics could explain an increase in mean correlation in bond dynamics coinciding with the economic dynamics after
he pandemic and the increment in yield rates.

Although we consider the sovereign bond yields with a 10Y maturity as a benchmark, this research can be extended to
overeign bonds with different maturities (e.g., short term 1Y, 2Y or 5Y, and long term 20Y or 30Y) because these bonds
ould reveal interesting effects and confirm that sovereign bonds are a good indicator to identify the economic impact
f COVID-19. As each sovereign bond has the different yield and volatility trends, we considered using the zero-coupon
urve to evaluate the full extent of COVID-19 on sovereign bonds.
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