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A B S T R A C T   

Deep Neural Networks (DNN) form a powerful deep learning model that can process unprecedented volumes of 
data. The hyperparameters of DNN have a significant influence on its prediction performance. Evolutionary 
algorithms (EAs) form a heuristic-based approach that provides an opportunity to optimize deep learning models 
to obtain good performance. Therefore, we propose an evolutionary deep learning model called IPSO-DNN based 
on DNN for prediction and an improved Particle Swarm Optimization (IPSO) algorithm to optimize the kernel 
hyperparameters of DNN in a self-adaptive evolutionary way. In the IPSO algorithm, a micro population size 
setting is introduced to improve the search efficiency of the algorithm, and the generalized opposition-based 
learning strategy is used to guide the population evolution. In addition, the IPSO algorithm employs a self- 
adaptive update strategy to prevent premature convergence and then improves the exploitation and explora-
tion parameter optimization performance of DNN. In this paper, we show that the IPSO algorithm provides an 
efficient approach for tuning the hyperparameters of DNN with saving valuable computational resources. We 
explore the proposed IPSO-DNN model to predict the effect of social distancing on the spread of COVID-19 based 
on the social distancing metrics. The preliminary experimental results reveal that the proposed IPSO-DNN model 
has the least computation cost and yields better prediction accuracy results when compared to the other models. 
The experiments of the IPSO-DNN model also illustrate that aggressive and extensive social distancing in-
terventions are crucial to help flatten the COVID-19 epidemic curve in the United States.   

1. Introduction 

Deep learning is a sub-field of machine learning based on artificial 
neural networks, which includes processing neurons organized in input, 
hidden, and output layers. As one powerful deep learning model, Deep 
Neural Networks (DNN) are neural networks with multiple hidden 
layers of abstraction, outperforming other basic machine learning 
models in processing unprecedented volumes of data (Han et al., 2016). 
The hyperparameter setting of DNN has a significant influence on its 
prediction performance. The number of hidden layers, the number of 
neurons in each layer, and the activation function in each layer are three 
kernel hyperparameters of DNN, and their values need to be set 
appropriately to achieve high-quality results. However, most traditional 
methods tune these hyperparameters manually, which is quite time- 
consuming, and the solutions are usually not equally distributed in the 
objective space (Malitsky, Mehta, O’Sullivan, & Simonis, 2013). 

Evolutionary Algorithms (EAs) provide an opportunity to find the 
optimal or near-optimal values of the hyperparameters of DNN models 
in an evolutionary way. EAs are the generic population-based meta-
heuristic optimization algorithms that simulate the natural evolution, 
and they have shown to be effective in solving multiple and complicated 
tasks in many fields. EAs exhibit a real potential for large-scale paral-
lelization and distribution in the search space. It is essential for opti-
mizing the hyperparameters of complex DNN architectures. Particle 
Swarm Optimization (PSO) algorithm is one of the most critical evolu-
tionary algorithms first proposed by Kennedy and Eberhart in 1995 
(Kennedy & Eberhart, 1995). PSO is easy to implement and shows rapid 
convergence towards an optimum (Shi, Liu, Cheng, Li, & Zhao, 2019). 
Nevertheless, many researchers have noticed that PSO tends to converge 
prematurely to local optima, especially when dealing with complex 
multimodal functions (Saeedi, Khorsand, Bidgoli, & Ramezanpour, 
2020). This significant weakness has restricted the applications of the 
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PSO to improve the performance of DNN comprehensively. 
To address this challenge, we first develop an improved PSO (IPSO) 

algorithm, which is applied to optimize the hyperparameters of the DNN 
model. For the IPSO algorithm, we employ the generalized opposition- 
based learning strategy to guide the population evolution and intro-
duce the micro population size setting to improve the search efficiency 
of the algorithm. In addition, IPSO explores a self-adaptive strategy to 
prevent premature convergence and thus enhances the algorithm’s 
global exploitation and local exploration ability. Furthermore, deep 
learning models have achieved state-of-the-art performance for various 
application domains over the past few years, such as solving online 
batching problems (Cals, Zhang, Dijkman, & van Dorst, 2021), diag-
nosing and classification of faults in industrial rotation machinery 
(Souza, Nascimento, Miranda, Silva, & Lepikson, 2021), and forecasting 
supply chain demand (Punia, Singh, & Madaan, 2020). 

Deep learning has also been widely used for COVID-19 pandemics, 
including infection detection. Controlling the spread of COVID-19 has 
been an important and emerging topic around the world today. Before 
COVID-19 vaccines were widely distributed, social distancing is the 
most powerful effort to control the pandemic, such as travel restrictions, 
quarantine, and issuing stay-at-home orders. The University of Maryland 
has developed a social distancing scoreboard, and a map of coronavirus 
confirmed cases to show how social distancing works within commu-
nities to slow the spread of COVID-19 in each state (Zhang et al., 2020). 
However, existing epidemiological contagion theories cannot explicitly 
measure the effect of these political decisions on reducing COVID-19 
cases. Furthermore, few studies related to deep learning explore the 
significant influence of social distancing on the mitigation of COVID-19. 

In this paper, we explore the evolutionary deep learning model, 
called IPSO-DNN, to predict the effect of social distancing on the spread 
of COVID-19 and provide new insights for controlling the COVID-19. 
Social distancing is explicitly considered in the IPSO-DNN model. The 
effect of social distancing interventions on COVID-19 can be measured 
by two indicators, daily growth rate and time to double cumulative cases 
(Tellis, Sood, & Sood, 2020). In order to better describe how COVID-19 
spreads, we propose to define four levels of COVID-19 spread by using 
these two indicators: growth, moderation, control, and containment. 
Our first research objective is to improve the performance of DNN using 
the developed IPSO algorithm, which employs the self-adaptive strategy 
to adjust the evolutionary process to find the optimal values of hyper-
parameters for the DNN model. Second, we apply the hybrid IPSO-DNN 
model to show how social distancing interventions help mitigate the 
COVID-19 spread. 

The significant contributions of this paper are summarized as 
follows:  

(1) An improved PSO algorithm is developed, which employs the 
self-adaptive strategy and generalized opposition-based learning 
ability in a micro-population setting to conquer the weaknesses of 
the basic PSO algorithm. As a result, the proposed IPSO algorithm 
has significantly improved the performance of basic PSO.  

(2) A parameter selection method is proposed for optimizing the 
DNN model using the IPSO algorithm. The proposed hybrid IPSO- 
DNN model optimizes the hyperparameters of DNN without 
degrading the DNN prediction precision. For instance, the num-
ber of hidden layers, the number of nodes in each layer, and the 
activation functions of each layer in the DNN model are properly 
tuned evolutionarily. It is found that the proposed IPSO-DNN 
model outperforms IPSO-SVM (Support Vector Machine), IPSO- 
LR (Logistic Regression), IPSO-DT (Decision Tree), PSO-DNN, 
GS (Grid Search)-DNN, and BO (Bayesian Optimization)-DNN 
models on prediction accuracy and computing time.  

(3) The IPSO-DNN based on the evolutionary deep learning model is 
introduced to predict the effect of social distancing on the spread 
of COVID-19. A challenge of this prediction is how to measure the 
influence of social distancing in response to COVID-19 properly. 

Therefore, we estimate the effect of social distancing in terms of 
mobility metrics and then explore our proposed evolutionary 
deep learning model IPSO-DNN to predict its influence on the 
spread of COVID-19. In experiments, the IPSO-DNN model per-
forms very well to predict the daily new COVID-19 cases and the 
spread of the COVID-19 pandemic in the five selected states. The 
experimental results also explicitly show that aggressive and 
extensive social distancing is significant to help reduce COVID-19 
infections in the United States. 

The rest of this paper is organized as follows. In Section 2, we review 
the relevant literature. In Section 3, we introduce the methodology of 
our proposed model and develop the IPSO-DNN model to predict the 
COVID-19 pandemic based on social distancing influence. Section 4 
describes the social distancing dataset, including social distancing 
metrics and levels of COVID-19 spread. Section 5 analyzes and discusses 
model performances, then explores the effect of social distancing on the 
spread of COVID-19 in the five selected states. Finally, we conclude our 
work and discuss future research directions in Section 6. 

2. Literature review 

2.1. Evolutionary algorithms for deep learning models 

The kernel hyperparameter setting of deep learning models plays a 
significant role in prediction accuracy. But traditional methods of tuning 
hyperparameters, such as the manual trial and error method, cannot 
efficiently find the optimal values of hyperparameters. Some existing 
state-of-the-art hyperparameter optimization methods, such as simple 
grid and random search (Chaves, Gonçalves, & Lorena, 2018), model- 
based approaches (Abbasimehr, Shabani, & Yousefi, 2020), and 
Bayesian optimization based on Gaussian processes (Wang, Ma, Ouyang, 
& Tu, 2020), show that their performances are approximately like 
human experts and in some cases even surpass them. However, there are 
still many challenges in finding the optimal hyperparameters for the 
complex DNN architectures (Lorenzo, Nalepa, Kawulok, Ramos, & 
Pastor, 2017). For example, Grid Search is a common method to tune the 
hyperparameters for deep learning, but it is not efficient in searching a 
high-dimensional hyperparameter space (Xu et al., 2021). 

EAs have been shown to be very efficient in solving a plethora of 
challenging optimization problems, which has the advantages of both 
searching the hyperparameter space in a random fashion and utilizing 
previous results to direct the search. Therefore, the combination of 
evolutionary algorithms and deep learning models has been a trendy 
topic over the past few years since hybrid models perform very well in 
many optimization fields. Most existing studies focus on optimizing the 
hyperparameters of deep learning models in an evolutionary way. For 
instance, Young, Rose, Karnowski, Lim, and Patton (2015) presented the 
multi-node evolutionary neural networks for automating network se-
lection on computational clusters through hyperparameters optimiza-
tion performed via genetic algorithm. It also showed that the PSO 
technique holds great potential to optimize parameter settings and thus 
saves valuable computational resources during the tuning process of 
deep learning models (Qolomany, Maabreh, Al-Fuqaha, Gupta, & Ben-
haddou, 2017). Ye (2017) introduced a new automatic hyperparameter 
selection approach for determining the optimal network configuration 
for DNN using PSO in combination with a steepest gradient descent al-
gorithm. Darwish, Ezzat, and Hassanien (2020) developed the orthog-
onal learning particle swarm optimization algorithm to find optimal 
values for the hyperparameters of convolutional neural networks. 

However, most evolutionary algorithms have high computational 
costs and come with premature convergence, significantly when solving 
highly complex problems in the real world. DNN suffers from a great 
variety of hyperparameters which all have specific architectures. These 
are considered a challenge when evolutionary algorithms are applied to 
identify the optimal or near-optimal hyperparameters for the DNN. 

D. Liu et al.                                                                                                                                                                                                                                      



Computers & Industrial Engineering 166 (2022) 107970

3

Although many studies researched the hyperparameter optimization of 
deep learning using an evolutionary algorithm, there is little research 
exploring improved evolutionary algorithms to enhance the perfor-
mance of deep learning models. In this paper, we propose an improved 
particle swarm optimization algorithm to avoid the disadvantages of the 
PSO algorithm with a self-adaptive strategy to optimize the hyper-
parameters of the DNN model. 

2.2. Particle swarm optimization algorithm 

Particle swarm optimization algorithm is a simple yet powerful 
evolutionary algorithm for global optimization used in many real-world 
research areas, such as logistics and supply chain management and en-
gineering design optimization. It also has received increasing attention 
in optimizing the parameters for machine learning techniques because 
of its fast convergence and easy implementation. However, the PSO al-
gorithm tends to fall into local optima, and its performance is affected by 
the control parameters and velocity updating strategy. Therefore, many 
works have been proposed to improve PSO to avoid the problem of 
premature convergence. 

Accelerating convergence speed and avoiding the local optimal have 
become the two most essential and appealing goals in the PSO research. 
Hence, a few variant PSO algorithms have been developed to achieve 
these two goals (Gang, Wei, & Xiao, 2012). Major strategies include 
control of algorithm parameters and combination with auxiliary search. 
Moreover, some researchers used a self-adaptive method by encoding 
the parameters into the particles and optimizing them with the position 
during run time (Pornsing, Sodhi, & Lamond, 2016). For instance, an 
Adaptive Particle Swarm Optimization (APSO) algorithm with all 
automatically adjusted parameters of inertia weight, cognitive coeffi-
cient and social coefficient was developed to search for better solutions 
in scheduling problems (Hop, Van Hop, & Anh, 2021). Zhang, Li, and 
Wang (2017) proposed an immune particle swarm algorithm based on 
adaptive search, and the algorithm can dynamically adjust the subscale 
size and automatically adjust the search range using the maximum 
particle concentration value. 

Nevertheless, it is seen to be difficult to simultaneously achieve both 
goals of accelerating convergence speed and avoiding the local optimal. 
For example, Liang, Qin, Suganthan, and Baskar (2006) introduced 
comprehensive-learning PSO (CLPSO) focuses on avoiding the local 
optimal but brings in a slower convergence and the higher computa-
tional cost of the algorithm. Therefore, to improve the algorithm per-
formance and reduce the computational cost for DNN, an IPSO 
algorithm with a micro-population size setting is proposed in this paper. 
The self-adaptive strategy with generalized opposition-based learning 
ability is applied in the IPSO algorithm to adjust the population evalu-
ation based on the particle updated rate of population in each iteration. 
This strategy can balance the algorithm’s global exploitation and local 
exploration to prevent premature convergence. Moreover, the IPSO 
alogirthm employs nonparametric statistical tests to choose its best pa-
rameters for optimizing the DNN models. Finally, the proposed opti-
mized evolutionary deep learning model IPSO-DNN is developed to find 
the optimal values for the hyperparameters of the DNN in a self-adaptive 
evolutionary way. 

2.3. Deep learning application for COVID-19 research 

Since COVID-19 first outbroke in mainland China, it has developed 
into a global pandemic, infecting millions of people worldwide. Over the 
past few months, deep learning has shown good performance in the 
application of COVID-19 research. For instance, the multi-objective 
differential evolution algorithm has been applied to tune the initial 
parameters of convolution neural networks in order to identify the 
COVID-19 patients from chest CT images (Singh, Kumar, & Kaur, 2020), 
and deep learning techniques have been introduced to link potential 
patients to suitable clinical trials (Dhayne, Kilany, Haque, & Taher, 

2021). Nevertheless, although many studies have focused on exploring 
the deep learning techniques for the COVID-19 infection detection, there 
is little research to measure the effect of social distancing on the spread 
of COVID-19. Social distancing has been implemented around the world 
as a major community mitigation strategy. Therefore, many researchers 
have studied the relationship between social distancing measures and 
epidemics. 

For instance, the social distancing index has been constructed to 
evaluate people’s mobility pattern changes along with the spread of 
COVID-19 (Pan et al., 2020). In addition, Te Vrugt, Bickmann, and 
Wittkowski (2020) developed an extended model for disease spread 
based on combining a SIR model with a dynamical density functional 
theory where social distancing is explicitly considered. A developed 
method was implemented to monetize the impact of moderate social 
distancing on deaths from COVID-19 (Greenstone & Nigam, 2020). Fong 
et al. (2020) presented the systematic reviews of the evidence base for 
the effectiveness of multiple mitigation measures, which shows that 
more drastic social distancing measures might be reserved for severe 
pandemics. Farboodi, Jarosch, and Shimer (2020) provided a quantita-
tive framework for exploring how individuals trade off the utility benefit 
of social activity against the internal and external health risks that come 
with social interactions during a pandemic. 

While many studies indicated that social distancing is one of the most 
critical measures in response to COVID-19, a big challenge is appropri-
ately measuring the influence of social distancing and what factors will 
be the major ones that determine the impact. This paper estimates the 
effect of social distancing on mobility metrics and then explores the 
proposed evolutionary deep learning model IPSO-DNN to predict the 
influence on COVID-19 spread. 

The literature review table of Section 2 is shown in Table 1. 

3. Proposed approach 

3.1. Improved particle swarm optimization algorithm 

3.1.1. Basic particle swarm optimization algorithm 
PSO is an iterative algorithm that engages several simple entities 

iteratively over the search space of some functions. It uses a simple 
mechanism that mimics swarm behavior in birds flocking to guide the 
particles to search for globally optimal solutions. The population of PSO 
is called a swarm, and its individuals are called particles. The swarm is 
defined as a set of N particles i (i = 1,2, ...,N). A swarm of particles is 
represented as a potential solution, and each particle i is associated with 
two vectors. One is the velocity vector defined as vi = (vi,1, vi,2, ..., vi,D), 
and the other is the position vector defined as xi = (xi,1, xi,2, ..., xi,D), 
where D denotes the dimensionality of the solution space. The velocity 
determines the next direction and distance to move. PSO remembers 
both the global best position located by all particles as well as the his-
torical best position found by each particle during the search process. 
Random vectors initialize the velocity and the position of each particle 
within the corresponding ranges. During the evolutionary process, the 
velocity and position of particle i on dimension d are updated as 

vt+1
i = w × vt

i + c1 × r1 ×
(
pt

i − xt
i

)
+ c2 × r2 ×

(
pt

g − xt
i

)
(1)  

xt+1
i = xt

i + vt+1
i (2)  

where w is the inertia weight, c1 and c2 are the acceleration coefficients, 
and r1and r2 are uniformly distributed random numbers independently 
generated within [0,1] for the dth variable. In the Eq. (1), pt

i is the po-
sition with the best fitness found so far for the ith particle, and pt

g is the 
best position in the neighborhood. vt+1

i is the new updated velocity of 
particle I by the end of iteration t. xt+1

i is the new updated position of 
particle i by the end of iteration t and t = 1, 2,… indicates the iteration 
number. 
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As mentioned before, rapid convergence is one of the main advan-
tages of PSO. However, this can also be problematic if an early solution 
is locally optimal. The swarm may stagnate around the local optimal 
without any pressure to continue exploration. Therefore, we develop an 
IPSO algorithm with generalized opposition-based learning and self- 
adaptive update strategy in the micro-population size setting to bal-
ance the global exploitation and local exploration in order to avoid 
premature convergence and enable the swarm to accurately search out 
local optimum with the lowest computational cost. 

3.1.2. Generalized Opposition-Based Learning 
Opposition-Based Learning (OBL) (Tizhoosh, 2005) is a new concept 

in computational intelligence and is normally applied to the current 
population during evolution. OBL is usually hybridized with different 
EAs, such as artificial bee colony algorithm (El-Abd, 2012) and differ-
ential evolution (Wang, Rahnamayan, & Wu, 2013). The main idea 

behind OBL is the simultaneous consideration of a candidate solution x 
and its corresponding opposite solution x*, which will provide another 
chance for finding a candidate solution closer to the global optimum. In 
the evolutionary process, let X = (x1, x2, ..., xD) be an n-dimensional 
space, where xi ∈ [ai, bi] and i = 1, 2, …, n. The opposite vector of X is 
denoted as X* = (x*

1,x*
2, ...,x*

n). The opposite point of x is denoted as x* 
and defined as 

x*
i = ai + bi − xi (3) 

The generalized opposition-based learning (GOBL) strategy is to 
transform candidates in the current search space to a new search space 
(Wang, Wu, & Rahnamayan, 2011). By simultaneously evaluating the 
candidates in the current search space and transformed search space, the 
solution could jump out from the current search domain and avoid any 
information gathered during the search. In the GOBL approach, let Xi =

(xi,1, xi,2, … , xi,D) be a solution for dimension D in the current search 

Table 1 
The literature review table.  

Author Previous Work Research Gap Our Contributions 

Qolomany 
et al., 2017 

Showed that the PSO technique holds great 
potential to optimize parameter settings and thus 
saves valuable computational resources during the 
tuning process of deep learning models. 

Most existing studies focus on optimizing the 
hyperparameters of deep learning evolutionarily. 
However, there is little research exploring 
improved evolutionary algorithms to enhance the 
performance of deep learning models. 

Propose an IPSO-DNN model to optimize the kernel 
hyperparameters of DNN in a self-adaptive 
evolutionary way without degrading the DNN 
prediction precision. 

Young et al., 
2015 

Presented the multi-node evolutionary neural 
networks for automating network selection on 
computational clusters through hyperparameters 
optimization performed via genetic algorithm. 

Darwish et al., 
2020 

Developed the orthogonal learning particle swarm 
optimization algorithm to find optimal values for 
the hyperparameters of convolutional neural 
networks. 

Ye, 2017 Introduced a new automatic hyperparameter 
selection approach for determining the optimal 
network configuration for DNN using PSO in 
combination with a steepest gradient descent 
algorithm. 

Pornsing et al., 
2016 

Used a self-adaptive method by encoding the 
parameters into the particles and optimizing them 
with the position during the run time. 

Most pervious works have been proposed to avoid 
premature convergence to improve the 
performance of PSO. However, it is very challenge 
to simultaneously achieve both goals of 
accelerating convergence speed and avoiding the 
local optimal in evolutionary algorithms. 

Develop an IPSO algorithm which employs the self- 
adaptive strategy and generalized opposition-based 
learning ability in a micro-population setting, to 
balance global exploitation and local exploration 
for improving the performance of the PSO 
algorithm. 

Hop et al., 
2021 

Proposed an Adaptive Particle Swarm Optimization 
(APSO) algorithm with all automatically adjusted 
parameters of inertia weight, cognitive coefficient 
and social coefficient was developed to search for 
better solutions in scheduling problems. 

Zhang et al., 
2017 

Presented an immune particle swarm algorithm 
based on adaptive search, and the algorithm can 
dynamically adjust the subscale size and 
automatically adjust the search range using the 
maximum particle concentration value. 

Liang et al., 
2006 

Introduced comprehensive-learning PSO (CLPSO) 
focuses on avoiding the local optimal but brings in a 
slower convergence and the higher computational 
cost of the algorithm. 

Singh et al., 
2020 

Apply the multi-objective differential evolution 
algorithm to tune the initial parameters of 
convolution neural networks in order to identify 
the COVID-19 patients from chest CT images. 

Although many studies have focused on exploring 
the deep learning techniques for the COVID-19 
infection detection, there is little research to 
measure the effect of social distancing on COVID- 
19 spread. 

Estimate the effect of social distancing in terms of 
mobility metrics and then explore the proposed 
IPSO-DNN hybrid model to predict the effect of 
social distancing on the spread of COVID-19. 

Dhayne et al., 
2021 

Introduced deep learning techniques to link 
potential patients to suitable clinical trials. 

Te Vrugt et al., 
2020 

Developed an extended model for disease spread 
based on combining an SIR model with a dynamical 
density functional theory where social distancing is 
explicitly considered. 

Greenstone & 
Nigam, 2020 

A developed method was implemented to monetize 
the impact of moderate social distancing on deaths 
from COVID-19. 

Fong et al., 
2020 

Presented the systematic reviews of the evidence 
base for the effectiveness of multiple mitigation 
measures, which shows that more drastic social 
distancing measures might be reserved for severe 
pandemics.  
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space S, xij ∈ [aj, bj]. The new solution xGO
ij in the transformed space S* is 

defined as 

xGO
ij = k

(
aj + bj

)
− xij, xij ∈

[
aj, bj

]
, j = 1, 2, ...D (4)  

where k is a random number coming from a uniform distribution in 
[0,1], which can help obtain a good solution performance in the search 
space. xGO

ij ∈ [k(aj + bj) − bj, k(aj + bj) − aj] is the generalized opposite 
candidate solution in the state space. The GOBL strategy has been shown 
that it can effectively help evolutionary algorithms to jump out of the 
local optimal and improve the algorithm performance (Chen, Yu, Du, 
Zhao, & Liu, 2016). 

3.1.3. Self-adaptive strategy 
The performance of the PSO algorithm highly depends on the control 

of parameters and velocity update strategy. In order to control the PSO 
objectively and optimally, a self-adaptive updated strategy is integrated 
into the GOBL approach for the real-time monitoring algorithm evolu-
tion process based on the actual evolution rate of particles in the swarm. 
During an IPSO process, a population updated rate z in each iteration is 
defined by the ratio of the actual updated number of particles in the 
swarm for each iteration, as in 

z =
s
N

(5)  

where s is the number of updated particles in each iteration and N is the 
number of particles in the population. 

If z is higher than a selected probability p, the global best position pt
g 

is used to update the velocity and position. Suppose the updated rate z is 
less than or equal to a selected probability p which means there is a 
larger probability that PSO would jump into the local optimal. In that 
case, the candidate particle xGO

ij instead of pt
g in the velocity updated 

strategy is employed to guide the population evolution. To be more 
specific, 

vt+1
i = w × vt

i + c1 × r1 ×
(
pt

i − xt
i

)
+ c2 × r2 ×

(
pt

GO − xt
i

)
(6)  

where pt
GO is the generalized opposition-based point of pt

g in the search 
domain. 

The basic steps of the proposed IPSO algorithm include: 
Step 1: Initialization. Establish the initial values of micro-population 

size, two acceleration coefficients (c1 and c2), the maximum number of 
iterations, selected probability p, and updated rate z; calculate the 
fitness value for each particle; and set the personal best (pi) and global 
best (pg) for the population. 

Step 2: Employ a self-adaptive strategy. Calculate the new update 
probability z based on Eq. (5); and generate the opposition-based 
learning particle (pGO) as in Eq. (4). 

Step 3: Update the position and velocity of particles. If z ≤ p, then the 
new velocity is updated according to Eq. (5); otherwise, the new velocity 
is updated by Eq. (1). After we get the new velocity, the new position is 
updated based on Eq. (2). 

Step 4: Update pi and pg. Calculate the fitness value for each particle. 
If the fitness value of the new location is better than the fitness value of 
pi, the new location is updated to be the pi. Then, if the currently best 
particle in the population is better than pg, the best particle replaces the 
recorded global best. 

Step 5: Stop and output. Repeat Steps 2–4 until the maximum 
number of iterations has been reached or the global best solution does 
not change anymore to save the computing time of algorithms. Then, we 
finally return the global best solution. 

3.2. The proposed hybrid IPSO-DNN model 

3.2.1. Deep neural networks 
Deep learning (Goodfellow, Bengio, Courville, & Bengio, 2016) 

involves algorithms that endow machines with intelligence without 
explicit programming. DNN models have multiple hidden layers located 
in-between the input and output layers. The units in the hidden layer are 
fully connected to the input layer, and the output layer is fully connected 
to the hidden layer. Moreover, the activation function (Wang, Gianna-
kis, & Chen, 2019) is between the input feeding the current neuron and 
its output going to the next layer. Activation functions are mathematical 
equations that determine the outcome of a neural network. The function 
is attached to each neuron in the network and determines whether it 
should be activated or not, based on whether each neuron’s input is 
relevant for predicting models. There are many types of activation 
functions in DNN models, such as Sigmoid, Tanh, and Softmax functions. 

Let L be the number of hidden layers, Ni be the number of neurons in 
layer i and N = {N1, N2, …, NL}, Ai is the activation function in layer i 
and A ={A1, A2, …, AL}. Parameters L, N, and A are vital and have major 
influences on the performance of DNN models. Therefore, we propose 
the IPSO algorithm to optimize the hyperparameters of DNN models 
with self-adaptive strategy and then explore the evolutionary deep 
learning hybrid model, IPSO-DNN, to predict the effect of social 
distancing on the spread of the COVID-19. The DNN model is shown in 
Fig. 1. 

3.2.2. Hybrid IPSO with DNN 
In order to better establish a parameter optimization system for the 

DNN model, the IPSO algorithm is explored to find the optimal hyper-
parameters for the DNN model. The flowchart of the hybrid model IPSO- 
DNN is illustrated in Fig. 2. It consists of three major stages. 

Stage I. Prerequisites: data scaling and splitting. One advantage 
of scaling is avoiding features in large numeric ranges dominating those 
located in smaller numeric ranges. Another trait is to avoid numerical 
difficulties during the calculation. Using the standardization of scaling 
technique, we center the features at mean 0 with a standard deviation 1. 
The features take the form of a normal distribution, which makes the 
DNN model easier to learn a mapping from input variables to an output 
variable. 

Moreover, the COVID-19 social distancing dataset (which will be 
discussed later in Section 4) is divided into two parts, which are training 
and testing datasets. The training dataset is employed to train the DNN 
model so that the optimized parameters will be obtained. The testing 
dataset is applied to the optimized model and outputs the resultant ac-
curacies. In this paper, the ratios of the training and testing dataset are 
0.7 and 0.3, respectively. 

Stage II. IPSO for parameter optimization of DNN model. In this 
step, the input is the COVID-19 social distancing training dataset. The 
output is the optimal configuration in terms of the number of hidden 
layers, the number of neurons in each layer, and the activation function 
combinations of hidden layers of the DNN model. 

The minimized fitness function of IPSO is defined as the mean 

Fig. 1. A DNN model with N hidden layers.  
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squared error (MSE), which is computed as 

MSE =
1
n

∑n

i=1
(yi
∧
− yi)

2 (7)  

where n is the number of training datasets, yi
∧

is the prediction value by 
the IPSO-DNN model and yi is the true target metric value of the 
observation in the social distancing training dataset. When the termi-
nation criteria are satisfied, the IPSO algorithm outputs the optimized 
parameters of the DNN model; otherwise, the next generation of the 
IPSO algorithm proceeds. 

Stage III. Model prediction. The output of the IPSO algorithm is the 
optimized parameters of the DNN model, and it is used to predict the 
COVID-19 social distancing dataset. The optimized DNN model is 
explored to predict the effect of social distancing on the four spread 
levels and daily new cases of COVID-19. Finally, the prediction accuracy 
and error results are obtained from the optimized IPSO-DNN model. 

4. Data 

From the University of Maryland COVID-19 Impact Analysis Plat-
form (Institute, 2020), we collected 603,456 county-level data with the 
related information of mobility and social distancing in all counties of 
the United States. The whole dataset contains eight social distancing 

metrics and the new daily COVID-19 cases in every county from January 
1 to July 10, 2020. 

4.1. Social distancing metrics 

The major non-pharmaceutical interventions and social distancing 
policies are essential strategies of the public health response to the 
COVID-19 pandemic around the world. From the evidence of imple-
mented social distancing measures in many countries, such as China and 
Italy, there is no doubt that social distancing is considered an effective 
way to mitigate the spread of COVID-19. Social distancing measures 
include avoiding mass gathering, closing schools and non-essential 
business, issuing mandatory stay-at-home orders, and having travel re-
strictions. This social distancing takes many forms, and the nature is to 
keep people apart from each other by confining them to their homes to 
reduce contact rates. 

Therefore, in this study, from the COVID-19 Impact Analysis Plat-
form, the values of mobility and social distancing metrics that represent 
people’s reactions to social distancing policies are considered the effect 
of social distancing on the spread of COVID-19. The platform aggregates 
mobile device location data from more than 100 million devices across 
the nation monthly to study human mobility behavior amid the COVID- 
19 pandemic. The basic metrics in our research are selected to cover the 
frequency, spatial range, and semantics of people’s daily travel. The 

Fig. 2. Flowchart of the proposed IPSO-DNN model.  
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eight basic mobility and social distancing metrics are described in 
Table 2 (Zhang et al., 2020). 

4.2. Spread level of COVID-19 

Moreover, to better describe the spread of COVID-19 as to measure 
the effect of social distancing in the United States, this study explores 
four measurable levels (i.e., containment, control, moderation, and 
growth) based on two performance indicators, which are the daily 
growth rate and the time to double cumulative cases. The daily growth 
rate is the percentage increase in cumulative COVID-19 cases, and the 
time to double cumulative cases is the number of days for cumulative 
COVID-19 cases to double at the current growth rate. The four levels of 
COVID-19 spread include containment, control, moderation, and growth 
that are defined in Table 3. 

The full COVID-19 social distancing dataset then contains eight input 
social distancing metrics and two output variables: the new daily 
COVID-19 cases collected from the COVID-19 Impact Analysis Platform 
and four levels of COVID-19 spread. The example dataset of Baldwin 
County, Alabama, from April 30 to May 9, 2020, is shown in Fig. 3. 

5. Model performance 

5.1. Parameters analysis for IPSO algorithm 

To choose the appropriate parameters in the proposed IPSO algo-
rithm, two nonparametric statistic tests, Friedman’s test (Friedman, 
1937) and Iman-Davenport’s test (García, Molina, Lozano, & Herrera, 
2009), are used to analyze the sensitivity of micro-population size and 
self-adaptive selected probability. The Friedman test (two-way analysis 
of variance by ranks) is a nonparametric analog of the parametric two- 
way analysis of variance, and the Iman-Davenport’s test is derived from 
Friedman’s test, less conservative than Friedman’s. These tests aim to 
answer whether there are global differences between the different sizes 
of parameters. The ranks of the Friedman test allow us to determine 
which sizes employed in the parameters of the IPSO algorithm are 
significantly better or worse than other sizes. The maximum number of 
fitness evaluation is 3,000, the learning coefficients of c1 and c2 are with 
the value of uniformly distributed between [0,1], and a total of 50 
experimental runs for the fitness function are set in Python, except for 
two analyzed parameters (i.e., micro-population size and selected 
probability p). The significance level of these nonparametric statistical 
experiments is 5%. 

5.1.1. Micro-population size analysis 
In this research, the effect of micro-population size is investigated 

because the smaller population size is, the lower computational cost of 
the IPSO algorithm will be. We select the population size from the micro- 

population set {5,6,7,8,9,10} to verify the performance of IPSO. 
Friedman’s test and Iman-Davenport’s test are employed to demon-

strate whether the performance of IPSO is significantly affected by 
different micro-population size settings. In addition, Friedman’s test 
with multiple comparisons is used to determine the best population size 
for the proposed IPSO algorithm. The statistical analysis results are 
shown in Table 4 and Table 5. From Table 4, we can see that the micro- 
population size has no significant effect on the overall performance of 
the proposed algorithm, indicating that the size of the micro-population 
is not extremely sensitive to the IPSO algorithm, and the algorithm is 
relatively robust. However, from Table 5, we conclude that when the 
population size is 8 and the overall performance of the IPSO algorithm is 
the best. 

5.1.2. Self-adaptive selected probability analysis 
In this experiment, the influence of selected probability p is investi-

gated, because p can balance the exploration and exploitation capabil-
ities of IPSO. A small selection probability will prompt IPSO to perform a 
local search. In contrast, a larger selection probability will encourage 
IPSO to conduct a global exploration, and the selection probability 
setting will affect the overall performance of the proposed algorithm. 
Since the population size in the proposed algorithm is eight, this paper 
selects parameters from the set {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 
0.875, 1} for the simulation testing. 

Friedman’s and Iman-Davenport’s tests are applied to examine 
whether the performance of the proposed IPSO algorithm is significantly 
sensitive to different self-adaptive selected probability settings. More-
over, Friedman’s test with multiple comparisons is used to identify the 
most suitable self-adaptive selected probability for the IPSO algorithm. 
The statistical results are shown in Table 6 and Table 7. It can be seen 
from Table 6 that the choice of selection probability p has a non- 
significant effect on the optimization performance of the IPSO algo-
rithm. However, from Table 7, when the selection probability is 0.75, 
the overall performance of the IPSO algorithm is the best, so the selec-
tion probability p of IPSO is set to be 0.75. 

5.2. Model comparisons 

To evaluate the performance of the proposed IPSO-DNN model, we 
compare the IPSO-DNN model with other models. To be more specific, 
IPSO-SVM (Support Vector Machine), IPSO-LR (Logistic Regression), 
IPSO-DT (Decision Tree), PSO-DNN, GS (Grid Search)-DNN, and BO 
(Bayesian Optimization)-DNN, all these seven hybrid models prediction 
accuracy results obtained from the COVID-19 social distancing dataset 
are thoroughly evaluated. The whole social distancing dataset contains 
all eight social distancing metrics, the new daily COVID-19 cases, and 
the four spread levels of COVID in all 3,006 counties of the United States. 

The hyperparameters of DNN that are optimized in this paper include 
1) the number of hidden layers on the range [1, 100]; 2) the number of 
neurons in each layer on the range [1, 8]; 3) activation functions consist 
of Sigmoid, ReLU, Softmax, and Tanh; and 4) the learning rate of DNN 
model on the range [0.01, 0.99]. The experiments were conducted using 
Python language on a 4-core machine with a 3.60 GHz Intel® Core™ i7- 
7700 CPU and 16 GB RAM. In the case of IPSO and PSO, the algorithm 
terminates when the maximum number of iterations 100 is reached or 
when the global best solution does not change anymore. The hybrid 

Table 2 
Description of eight social distancing metrics.  

Social Distancing Metrics Description 

Percentage of residents 
staying home 

Percentage of residents that make no trips more than 
1.61 km away from home. 

Daily work trips per 
person 

Average number of work trips made per person. A work 
trip is a trip going to or from one’s imputed work 
location. 

Daily non-work trips per 
person 

Average number of non-work trips made per person. 

Distances traveled per 
person 

Distances in kilometers traveled per person on all travel 
modes (car, train, bus, plane, bike, walk, etc.) per day. 

Trips per person Average number of all trips taken per person per day. 
Percentage of out-of- 

county trips 
Percentage of all trips that cross county borders. 

Percentage of out-of-state 
trips 

Percentage of all trips that cross state borders. 

Transit mode share Percentage of rail and bus transit mode share.  

Table 3 
Definition of four levels of COVID-19 spread.  

Indicators Containment Control Moderation Growth 

Daily growth 
rate (%) 

<=0.1% and <=1% 
and 

<=10% 
and 

Daily growth rate 
stays above 10% or 
time to double 
cumulative cases 
stays below 7 days 

Time to double 
cumulative 
cases (days) 

>=700 >=70 >=7  
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models terminate when the maximum running time of 1,440 minutes is 
reached. The performance of the hybrid IPSO-DNN model on the vali-
dation, and test stages are examined using accuracy and the following 
three error measures, which are mean bias error (MBE), mean absolute 
error (MAE), and root mean squared error (RMSE). 

The accuracy helpful to evaluating the performance of the deep 
learning model is based on the element from a matrix known as the 
confusion matrix. A confusion matrix is a table that is often used to 
describe the performance of a classification model on a set of test data 
for which the true values are known. The “accuracy” of performance of 
hybrid IPSO-DNN model is defined as following: Accuracy =

TP+TN
TP+TN+FP+FN, where “TP” is for True Positive, “FP” is for False Positive, 
“TN” is for True Negative, and “FN” is for False Negative. It is the most 
common measure of the classification process, which can be calculated 
as the ratio of correctly classified examples to the total number of 
samples. 

Moreover, MBE indicates whether the model is over-or under-pre-

dicted in general. MBE = 1
n
∑n

i=1(yi
∧
− yi). The lower MBE is the better the 

prediction model is. But you might have zero as some differences are 
positive and others are negative MAE and RMSE measure residual errors, 
giving a global idea of the difference between the observed and forecast 

values. They are defined as MAE = 1
n
∑n

i=1
⃒
⃒yi
∧
− yi

⃒
⃒, RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(
yi
∧
− yi

)2
√

where n is the total number of observations, ŷi is the 
prediction value and the yi is the actual value of a data point. The lower 
the absolute values of the MBE, MAE and RMSE indicate that the IPSO- 
DNN model is better.  

(1) Comparison with IPSO-SVM, IPSO-LR, and IPSO-DT models 

In the first scenario, we compare the performance of the IPSO al-
gorithm based on the optimizing parameters technique for the deep 
learning models and three different machine learning models to explore 
the effect of social distancing for COVID-19. SVM is an essential machine 
learning technique that trains the dataset with feature vectors and uses a 
large margin for classification. In this paper, the RBF kernel function is 
selected as the SVM for regression (Yu, 2017). The Logistic Regression 
(LR) technique is applied to describe data and analyze the relationship 
between one dependent binary variable and one or more nominal 
ordinal interval or ratio-level independent variables. Decision Tree (DT) 
uses the tree representation, and each leaf node corresponds to a class 
label, and attributes are represented on the internal node of the tree. 

From Fig. 4 and Fig. 5, we observe that the IPSO-SVM model could 
not find the optimal solution when it reached the terminated time of 
1,440 minutes in the experiments. It fails to explore the effect of social 
distancing on the spread of COVID-19 according to the termination 
criteria of maximum running time. Therefore, the computing time of 
IPSO-SVM is defined as 1,440 minutes. The main reason is that IPSO- 
SVM needs more computing time to process the large-scale COVID-19 
social distancing dataset to output the prediction results. In comparison, 
all other hybrid models could obtain the global best solution within the 
maximum running time of 1,440 minutes. The learning times required of 
IPSO-LR, IPSO-DT, and IPSO-DNN models are 148, 186, and 102 mi-
nutes to predict the four spread levels of COVID-19, respectively. For 
forecasting the new daily COVID-19 cases, the computing time of the 

Fig. 3. The exemplary social distancing dataset of Baldwin County, Alabama.  

Table 4 
Results obtained by Friedman and Iman-Davenport tests under different micro- 
population size.  

Friedman 
value 

χ2 value  p- 
value 

Iman-Davenport 
value 

value in 
FF 

p- 
value 

3  11.0705  0.70  0.5806  2.3683  0.7146  

Table 5 
Ranking results obtained by Friedman’s test under different micro-population 
size.  

Population size 5 6 7 8 9 10 

Ranking  4.08  3.81  3.35  2.92  3.35  3.50  

Table 6 
Results obtained by Friedman and Iman-davenport tests under different selected 
probability.  

Friedman 
value 

χ2 value  p- 
value 

Iman-Davenport 
value 

value in 
FF 

p- 
value  

3.1538  14.0671  0.8704  0.4308  2.1206  0.8803  
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above three models is 163, 205, and 125 minutes, respectively. It il-
lustrates that a higher accuracy can be achieved when the proposed 
IPSO-DNN model has a minimum computing time compared to theIPSO- 
LR and modified PSO-DT models. This clearly exhibits the superiority of 
the DNN model over conventional machine learning models in terms of 
dealing with the large-scale social distancing dataset. Thus, the pro-
posed modified PSO algorithm can serve as a promising candidate for 
the DNN model parameter tuning for the large-scale COVID-19 social 
distancing data analysis.  

(2) Comparison with PSO-DNN model 

In the second scenario, the basic PSO algorithm is used to find the 
best parameters for the DNN model to explore and predict the effect of 
social distancing for COVID-19. The population size of PSO is 30, and 
other parameters are defined as the same as the IPSO algorithm. The 
reason of different population sizes between PSO and IPSO is that the 
larger the population size, the more scattered the search performed in 
the PSO algorithm. With a larger population size, each generation takes 
more function calls, and a larger part of the search space may be visited 
(Piotrowski, Napiorkowski, & Piotrowska, 2020). Therefore, we set the 
population size of PSO to 30 instead of 8 to give a better outcome when 
compared with the modified PSO method. 

From Fig. 4, we can see that the accuracy of the IPSO-DNN model is 
higher than the PSO-DNN model. The generalized opposition-based 
learning and self-adaptive strategy improve the performance of MODI-
FIED PSO algorithm to optimize the parameters of the DNN model. For 
the PSO-DNN, there is no self-adaptive exploitation strategy to help the 
basic PSO algorithm jump out of local optimal, and the search and 
optimization ability is also limited. From Fig. 5, the learning times 
required of the PSO-DNN model are 202 and 227 minutes on the four 
levels of COVID-19 spread and the new daily COVID-19 cases prediction, 

respectively. It shows that the computing time of modified PSO-DNN is 
much less than the PSO-DNN model, it indicates the micro-population 
setting in the IPSO algorithm decreases the compute cost of PSO algo-
rithm. The results demonstrate that the proposed strategy of PSO in the 
IPSO-DNN model makes it outperforms the PSO-DNN model on the 
COVID-19 social distancing prediction.  

(3) Comparison with GS-DNN and BO-DNN models 

In the third scenario, the selectable parameter range settings of GS- 
DNN and BO-DNN are the same as the IPSO-DNN model. The GS algo-
rithm is a common approach for selecting parameter values of the DNN 
models. However, the GS approach is time consuming and does not 
perform well in DNN hyperparameter optimization. BO is a sequential 
model-based optimization algorithm that sets a prior over the optimi-
zation function and gathers the information from the previous sample to 
update the posterior of the optimization function. Therefore, by priori-
tizing more promising parameters from past results, the BO algorithm 
can find the best parameters in lesser tuning time than GS. 

From Fig. 4, we know that the accuracy results obtained by GS-DNN 
and BO-DNN models are less than IPSO-DNN on the prediction of new 
daily COVID-19 cases and COVID-19 spread levels. Fig. 5 shows that the 
learning times required of the GS-DNN and BO-DNN models to forecast 
the new daily cases are 1,350 and 219 minutes, respectively. For iden-
tifying the four spread levels of COVID-19, GS-DNN and BO-DNN models 
need 1,030 and 197 minutes of computing time, respectively. Therefore, 
we learn that the proposed IPSO-DNN model outperforms the GS-DNN 
and BO-DNN models. The main reason is that the proposed modified 
PSO-DNN model performs parameters in an evolutionary way, which 
can balance the local exploitation and global exploration ability during 
parameter optimization. The results also manifest that the proposed 
IPSO algorithm is very efficient in determining the hyperparameters of 

Table 7 
Ranking results obtained by Friedman’s test under different selected probability.  

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 

Ranking  4.65  4.29  4.84  5.04  4.27  3.65  4.31  4.31  

Fig. 4. Accuracy results of different models.  
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the DNN model. 
Table 8 summarizes the performance of seven models in terms of 

MBE, MAE, and RMSE. First, the proposed IPSO-DNN model performs 
very well in predicting new COVID-19 cases per day. The performances 
of PSO-DNN, GS-DNN, BO-DNN, and IPSO-LR are similar in predicting 
daily new cases and COVID-19 spread levels. The IPSO-SVM model fails 
to explore the effect of social distancing on new COVID-19 daily cases 
based on the limited computing time. Although the MAE and RMSE of 
IPSO-DNN and IPSO-DT models are close, the MBE of the IPSO-DT 
model is negative, which indicates IPSO-DT under-predict the daily 
new COVID-19 cases. The results demonstrate that the proposed self- 
adaptive strategy of IPSO-DNN can help find optimal parameters for 
the DNN model with fewer errors. In addition, for the four COVID-19 
spread levels, the IPSO-SVM model cannot output the solution in a 
limited computing time. The proposed IPSO-DNN model outperforms 
other models in all MBE, MAE, and RMSE on predicting the effect of 
social distancing on COVID-19 spread. The summary results indicate 
that the IPSO-DNN model provides better prediction results than other 
models as the proposed methods have the advantage of employing 
optimal parameters. Therefore, the proposed IPSO algorithm with the 
self-adaptive strategy in deep evolutionary learning is significantly to 
predict and analyze the effect of social distancing on COVID-19 spread 
for the DNN model. 

5.3. Experimental results and discussion 

Our experiments focus on predicting and analyzing the effect of so-
cial distancing on the spread of COVID-19 using the proposed IPSO-DNN 
model in the selected five states, Washington, California, New York, 
Florida, and Texas in the United States. In five selected states, collect and 
pre-process the COVID-19 social distancing county-level dataset from 
the first confirmed case date to July 10, 2020. This experiment explicitly 
considers the stay-at-home order, reopening state, and social distancing 
restrictions in each state. Set all experimental environments and pa-
rameters as the same as in Section 5.3. We predict the daily new COVID- 
19 confirmed cases and the spread of COVID-19 under the different 
social distancing measures adopted by each state and then analyze the 

distinct COVID-19 outcomes of taking social distancing interventions in 
the selected five states in the United States. Fig. 6 and Table 9 indicate 
the accuracy and error measures obtained from the proposed IPSO-DNN 
model. The detailed description of COVID-19 social distancing in the 
above selected five states is illustrated as follows.  

(1) Washington 

Since the Centers for Disease Control and Prevention (CDC) 
confirmed the first case of 2019 Novel Coronavirus in the United States 
occurred in Washington on January 21, 2020, the COVID-19 pandemic 
first began to outbreak in the state of Washington (Branswell, 2020). 
Because there was no vaccination available for the COVID-19 pandemic 
at that time, therefore Washington state issued a stay-at-home order on 
March 23 and reopened the state step by step on May 31 later. 

Using the IPSO-DNN model, we can obtain the prediction results of 
the effect of social distancing on the spread of COVID-19 in Washington 
state. Firstly, from Fig. 6, we can see that our proposed IPSO-DNN model 
acquires 72.45% and 76.46% accuracy in predicting new daily COVID- 
19 cases and COVID-19 spread levels, respectively. In Table 9, the re-
sults of error measure MBE, MAE, and RMSE are 6.2397, 6.2397, and 
23.9902 on the prediction of new daily COVID-19 cases, respectively. 
And the results of these error measures are 0.3738, 0.5447, and 1.1004 
on the forecasting of COVID-19 spread levels, respectively. The above 

Fig. 5. Computing time results of different models.  

Table 8 
Results of seven models for predicting the effect of social distancing on COVID- 
19 spread.  

Model Daily new COVID-19 cases Levels of COVID-19 spread 

MBE MAE RMSE MBE MAE RMSE 

IPSO-DNN  4.6767  4.8177  45.0471  0.4160  0.4755  1.0313 
PSO-DNN  6.4295  6.8436  52.6956  0.6932  0.6636  1.2112 
GS-DNN  7.4152  7.4152  65.8293  0.7569  0.7575  1.3121 
BO-DNN  6.1002  6.1002  49.3345  0.4057  0.4032  1.1870 
IPSO-SVM  –  –  –  –  –  – 
IPSO-LR  6.3868  6.4229  55.5791  0.6291  0.6562  1.2086 
IPSO-DT  − 0.5064  5.7326  45.7731  − 0.0336  0.6385  1.1933  
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prediction results manifest that the optimized IPSO-DNN model can self- 
adaptive tuning parameters of DNN for Washington state to achieve 
more than 70% prediction accuracy with minor errors. 

Secondly, Fig. 7 presents that the spread of COVID-19 has slowed 
down with the efforts of related social distancing measures. However, 
these aggressive interventions do not show immediate results, which are 
essential to control COVID-19 in the future. The duration of adopting 
restricted social distancing is 69 days in Washington. From levels of 
COVID-19 spread, we know that the number of new cases in Washington 
kept growing for 34 days from February 29 to April 2, 2020. And after 
being issued stay-at-home order on March 23, there was a distinct 
outcome in Washington. The spread of COVID-19 has been moderated 
for 32 days and controlled for 30 days. However, reopening the state on 
May 31 means that social distancing orders would not be taken as 
aggressively as before, so that the progress of control this coronavirus 
has been slowed down and the level of cumulative COVID-19 cases still 
increased in Washington till to the end, July 10, 2020. Therefore, 
following a spike in COVID cases in July, Washington announced a 
pause to the Safe Start reopening plan. 

Finally, in Fig. 8, we can see that the effective social distancing 
measures mitigate the spread of the COVID-19 pandemic with a signif-
icant decline in the new daily COVID-19 cases and extend the time to 
double the cumulative cases in Washington during the social distancing 
period. In addition, we can learn that reopening Washington state re-
duces the implementation efforts of social distancing policies and 
changes the state’s mobility metrics values, which also increases the 
daily new COVID-19 cases and the time to double the cumulative cases 
decreasing from May 31 to July 10, 2020. After social distancing, the 
daily new COVID-19 cases are declining in Washington state. We can see 
that there is a relationship between social distancing and the spread of 
COVID-19. In general, if social distancing intervention has been imple-
mented strictly and longer, COVID-19 infections would decrease quickly 
in an even shorter time. The above results also manifest that our pro-
posed IPSO-DNN model can adjust the prediction direction continually 
to predict the effect of social distancing on the spread of the COVID-19 
pandemic based on the changing value of mobility and social distancing 
metrics in Washington.  

(2) California 

California is the second state where the COVID-19 pandemic out-
broke following Washington in the United States. Its first case of coro-
navirus was confirmed in Orange County on January 26, 2020. On 

March 19, California became the first state to issue a stay-at-home order, 
mandating all residents to stay at home except to go to an essential job or 
shop for essential needs in the United States (Linder, 2020). In Califor-
nia, social distancing interventions only last for 44 days. 

From the experiment results, Fig. 6 indicates that the proposed IPSO- 
DNN model can obtain more than 70% accuracy on predicting new daily 
COVID-19 cases and COVID-19 spread levels in California. Table 9 
shows that for predicting the new daily COVID-19 cases in California, 
the results of MBE, MAE, and RMSE are 26.2249, 26.2249, and 30.1224, 
respectively; for predicting the levels of COVID-19 spread, the results of 
these error measures are 0.1264, 0.5069, and 0.9628, respectively. The 
proposed IPSO-DNN model performs better on COVID-19 spread levels 
prediction than new daily COVID-19 cases because social distancing 
intervention has more distinct outcomes on controlling the spread of 
COVID-19 in California. 

Fig. 9 demonstrates that social distancing mitigates the COVID-19 
within two weeks. However, due to the limited time of implementing 
social distancing compared to Washington state, only moderation but 
not control of COVID-19 engendered in California during this period. For 
instance, after the stay-at-home order and related strict social distancing 
rules were issued on March 19, social distancing efforts took 16 days to 
slow down the spread of COVID-19 effectively and moderately not 
control COVID-19 spread for the following 96 days in California. 
Recently, California is mainly closing again amid a spike in COVID-19 
cases across the state on October 10. Compared to Washington state, 
we can learn that aggressive social distancing and long-lasting social 
distancing interventions are required to control the spread of COVID-19. 
The new daily COVID-19 cases and time to double the cumulative cases 
are described in Fig. 10. There is no doubt that social distancing plays a 
vital role in decreasing the daily new cases and increasing the time to 
double the cumulative cases in California. The results obtained from the 
proposed IPSO-DNN model demonstrate that the significant effect of 

Fig. 6. Accuracy results of all selected five states obtained from IPSO-DNN.  

Table 9 
Results of five states for COVID-19 social distancing prediction.  

State Daily new COVID-19 cases Levels of COVID-19 spread 

MBE MAE RMSE MBE MAE RMSE 

Washington  6.2397  6.2397  23.9902  0.3738  0.5447  1.1004 
California  26.2249  26.2249  30.1224  0.2756  0.5359  1.0723 
New York  27.0441  27.5170  35.2950  0.1264  0.5069  0.9628 
Florida  16.9829  18.0634  89.2466  0.2382  0.5958  1.0907 
Texas  4.7137  5.2478  47.3079  0.3268  0.3877  0.9545  
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social distancing on mitigating COVID-19 in California, and more 
importantly, the duration of social distancing interventions needs to be 
lasting longer to help flatten the COVID-19 pandemic curve.  

(3) New York 

Although Washington and California COVID-19 outbroke before 
New York, New York was the first hotspot state of COVID-19 pandemic 
in the United States due to its soaring cases of COVID-19 in just a few 

days. As a result, New York became the U.S. epicenter of the novel 
coronavirus outbreak, which killed tens of thousands of state residents 
and left hundreds of thousands more infected with COVID-19. Although 
on July 10, New York still had the most COVID-19 cumulative cases, 
which is 401,193 cases, in the United States. 

However, according to our analysis results, New York has already 
controlled the spread of the COVID-19 pandemic for the foreseeable 
future. The aggressive social distancing interventions are the only way 
New York obtained moderation and control events in the COVID-19. 

Fig. 7. Cumulative COVID-19 cases & Daily growth rate in Washington.  

Fig. 8. Daily new cases & Time to double cumulative cases in Washington.  

Fig. 9. Cumulative COVID-19 cases & Daily growth rate in California.  
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Under the New York state’s plan, all four phases of the reopening require 
New Yorkers to adhere to social distancing guidelines, including wear-
ing masks or face coverings in crowded public spaces, on public or 
private transportation, or in for-hire vehicles (Gold & Stevens, 2020). In 
this paper, we consider when all counties in New York entered Phase 1, 
the start of the reopening process, as the reopen date of New York state, 
which was June 8, 2020. 

In New York, strictly social distancing has been implemented 78 days 
which is the longest among the selected five states in the United States. 
New York is also the only state that mandates people to wear masks or 
face coverings in public whenever social distancing was not possible 
initially. Table 9 indicates that MBE, MAE, and RMSE results are 
27.0441, 27.5170, 35.2950 on forecasting daily new cases, respectively; 
and 0.1264, 0.5069, and 0.9628 for the levels of COVID-19 spread 
prediction, respectively. Fig. 6 presents that the prediction accuracy is 
69.51% for the daily new cases and 78.97% for the levels of COVID-19 
spread. The accuracy result of COVID-19 spread levels is higher than the 
new daily COVID-19 cases. Presumably, the new cases soaring up 
abruptly in such a short time makes it hard to project. 

Fig. 11 and Fig. 12 illustrate New York has controlled the spread of 
COVID-19 and its new daily COVID-19 cases continue to decrease with 
implement aggressive social distancing interventions for 78 days. After 
social distancing, the days of moderation and control of COVID-19 are 
33 days and 63 days, respectively. It is evident that social distancing 
helps to flatten the COVID-19 curve in New York. Moreover, it makes 
sense that the number of new daily COVID-19 cases has continued to 
decline and flatten. However, we can see from Fig. 12 that the time to 
double cumulative cases does not steadily increase. It means that even if 
New York state has controlled the COVID-19 pandemic, it may be 
vulnerable to contagion from other states who fail to control the COVID- 
19 or do not conduct aggressive social distancing interventions. The 
above results explicitly explain how social distancing flattens the 
COVID-19 pandemic curve in New York using our proposed IPSO-DNN 
model.  

(4) Florida and Texas 

Florida and Texas have emerged as new hotspots in the COVID-19 
pandemic in the United States due to the explosion of COVID-19 cases 
after reopening states in early May. These two states are also the states 
where the related social distancing politics are not adopted very strictly, 
and reopening the states is faster than other selected states. The date 
when issued the stay-at-home order on April 2 in Florida and Texas, and 
the date of reopening state was on May 4 in Florida and May 1 in Texas. 

The sharp rise in COVID-19 cases in Florida and Texas illustrates the 
risk of letting people pack together in places such as bars and movie 
theaters and the need to take a cautious approach to reopen (Olson, 

2020). Until October 6, Florida and Texas recorded a sharp increase in 
COVID-19 infections for many days (Provan, 2020). Especially, Texas 
has overtaken California as a US state with the second-highest death toll 
on September 21. The durations of practicing social distancing in Florida 
and Texas are just 31 days and 28 days, respectively. And there is no 
strict reopening social distancing guideline in these two states. 

From Fig. 6, we know that prediction accuracy results obtained from 
the IPSO-DNN model are 70.03% on new daily COVID-19 cases and 
77.19% on the levels of COVID-19 spread in Florida. Meanwhile, the 
accuracies of Texas on the prediction of new daily COVID-19 cases and 
COVID-19 spread levels are 80.84% and 82.37%, respectively. It is 
noticed that the IPSO-DNN model performs better in Texas than in 
Florida. Perhaps it is because Texas paused the state’s reopening plan 
after reporting a record increase in COVID-19 cases and hospitalizations 
in June (Jasmine, 2020). Therefore, Texas adopted more strict reopen-
ing guidelines, and the mobility values are more stable to predict the 
spread of COVID-19 than Florida. From Table 9, for predicting new daily 
COVID-19 cases, the results of MBE, MAE, and RMSE are 16.9829, 
18.0634, and 89.2466 in Florida, 4.7137, 5.2478, and 47.3079 in Texas, 
respectively. For estimating the levels of COVID-19 spread, these results 
are 0.2382, 0.5958, and 1.0907 in Florida, 0.3268, 0.3877, and 0.9545 
in Texas, respectively. In general, these evaluation results demonstrate 
that our proposed model performs very well on the spread of COVID-19 
in the United States. 

Fig. 13 and Fig. 15 show that the COVID-19 is still rapidly spreading 
in Florida and Texas. Although these two states still suffer from the 
COVID-19 pandemic, there is a significant development of social 
distancing in mitigating the spread of COVID-19. From Fig. 14 and 
Fig. 16, the results illustrate that Florida and Texas perform very poorly 
in reducing the COVID-19 cases due to the lack of restricted social 
distancing guidelines. The new daily COVID-19 confirmed cases in 
Florida and Texas all speed up, and the time to double the cumulative 
cases has not reduced significantly after reopening the state. It indicates 
the consequence of COVID-19 outbreaks due to a lack of lasting and 
aggressive social distancing interventions. Therefore, we learn that so-
cial distancing plays a vital role in mitigating the spread of the COVID- 
19 pandemic in these states. 

Table 9 shows the summary results of the MBE, MAE, and RMSE 
evaluation measures acquired from our proposed IPSO-DNN model in 
the above selected five states. The performance of IPSO-DNN on pre-
dicting levels of COVID-19 spread in all five states is better than the daily 
new COVID-19 cases. It is possible that the value of daily new cases is 
more random than levels of COVID-19 spread. In general, the IPSO-DNN 
model performs very well on predicting COVID-19 based on social 
distancing influence in all the selected five states. Therefore, it reveals 
that the effect of social distancing can be represented as mobility metrics 
which has a significant impact on the COVID-19 spread. The duration of 

Fig. 10. Daily new cases & Time to double cumulative cases in California.  
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social distancing is also crucial to control this COVID-19 pandemic. 

6. Conclusions 

The kernel hyperparameters significantly influence the performance 
and must be set and tuned for the DNN model. It is quite time-consuming 
and computationally expensive for traditional methods to select the 

optimal hyperparameters for DNN. Therefore, we utilize the advantages 
of global and local exploration capabilities from Evolutionary Algo-
rithms (EAs) to improve the hyperparameter configuration for deep 
learning models. Particle Swarm Optimization (PSO) is a powerful and 
efficient evolutionary method to help the DNN model find optimized 
hyperparameters. However, the PSO tends to converge prematurely on 
local optima, especially in complex multimodal functions. Therefore, we 

Fig. 11. Cumulative COVID-19 cases & Daily growth rate in New York.  

Fig. 12. Daily new cases & Time to double cumulative cases in New York.  

Fig. 13. Cumulative COVID-19 cases & Daily growth rate in Florida.  

D. Liu et al.                                                                                                                                                                                                                                      



Computers & Industrial Engineering 166 (2022) 107970

15

propose a hybrid IPSO-DNN model, which employs improved PSO to 
optimize the parameters of the DNN model by conducting a self-adaptive 
strategy and generalizing opposition-based learning in the micro pop-
ulation setting. We also analyze the parameters (i.e., micro-population 
size and the value of selected probability) on two nonparametric 

statistic tests: Friedman’s and Iman-Davenport’s tests to determine the 
best parameters of the IPSO algorithm to improve the performance of 
DNN. 

In this paper, we explore the IPSO alogirthm based parameter value 
selection technique that optimizes the DNN model by selecting the 

Fig. 14. Daily new cases & Time to double cumulative cases in Florida.  

Fig. 15. Cumulative COVID-19 cases & Daily growth rate in Texas.  

Fig. 16. Daily new cases & time to double cumulative cases in Texas.  
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number of hidden layers, the number of neurons in each layer, and the 
activation functions in each layer. Our results show that the proposed 
IPSO-DNN model is useful and efficient in exploring the effect of social 
distancing in deep learning on the spread of COVID-19. We demonstrate 
the performance of our proposed hybrid model outperforms other 
compared models, such as IPSO-SVM, IPSO-LR, IPSO-DT, PSO-DNN, BO- 
DNN, and GS-DNN, in terms of prediction accuracy and computing time. 
The obtained results indicate that the proposed self-adaptive strategy 
can help the IPSO algorithm find out optimization parameters for the 
DNN model. The developed IPSO-DNN model also explains how social 
distancing helps flatten the COVID-19 curve in Washington, California, 
New York, Florida, and Texas. It also shows social distancing is essential 
to control the spread of COVID-19, as well as the duration and degree of 
implementing social distancing interventions also matter. Therefore, our 
proposed IPSO-DNN model provides an effective method for tuning the 
hyperparameters of DNN in a self-adaptive evolutionary way and holds 
great potential to predict the effect of social distancing on the spread of 
COVID-19. 

As for future work, we would consider improving the performance of 
the IPSO algorithm in a stricter environment and demonstrating its 
performances on public datasets for solving more generally challenging 
problems in the real world. We also intend to explore the modified PSO 
to optimize larger DNN or other deep learning models, such as Con-
volutional Neural Networks (CNN) and Recurrent Neural Networks 
(RNN), to solve multiple and challenging emergency management tasks. 
We will also consider many new powerful activation functions, such as 
Softplus, MPELU, PreLU, EreLU, to improve the performance of deep 
learning models. Moreover, some other improved versions of the PSO 
algorithm. For instance, the proposed exploiting barebones PSO 
(BBePSO) and a dynamic exploiting barebones PSO (DBBePSO) perform 
very well on optimizing hyperparameters. Therefore, we will focus on 
developing evolutionary algorithms and systematic adaptation schemes 
in hyperparameters configurations to balance the exploration and 
exploitation in the deep learning models. 
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