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A B S T R A C T   

The dissemination of misinformation in health emergencies poses serious threats to public health 
and increases health anxiety. To understand the underlying mechanism of the dissemination of 
misinformation regarding health emergencies, this study creatively draws on social support 
theory and text mining. It also explores the roles of different types of misinformation, including 
health advice and caution misinformation and health help-seeking misinformation, and emotional 
support in affecting individuals’ misinformation dissemination behavior on social media and 
whether such relationships are contingent on misinformation ambiguity and richness. The 
theoretical model is tested using 12,101 textual data about COVID-19 collected from Sina Weibo, 
a leading social media platform in China. The empirical results show that health caution and 
advice, help seeking misinformation, and emotional support significantly increase the dissemi
nation of misinformation. Furthermore, when the level of ambiguity and richness regarding 
misinformation is high, the effect of health caution and advice misinformation is strengthened, 
whereas the effect of health help-seeking misinformation and emotional support is weakened, 
indicating both dark and bright misinformation ambiguity and richness. This study contributes to 
the literature on misinformation dissemination behavior on social media during health emer
gencies and social support theory and provides implications for practice.   

1. Introduction 

In December 2019, a new type of coronavirus was identified and then an outbreak began in Wuhan, China. On February 11, 2020, 
the World Health Organization (WHO) renamed this disease COVID-19. With the spread of the virus around the world, on March 11, 
2020, the WHO declared that COVID-19 caused a global pandemic, urging governments and organizations around the world to take 
action to minimize the spread of the virus. 

During health emergencies, the number of people who use social media to seek health-related information, such as health advice, 
prevention and treatment information, is high and continues to grow (Chu et al., 2017). To date, social media has increasingly 
influenced people’s daily lives and their health behaviors (Zhao, Da & Yan, 2020). The ubiquity of social media allows people to find 
useful health-related information more effectively and efficiently (Zhao, Zhang & Wu, 2019). In health emergencies, the public feels 
anxious and tends to search for relevant information to cope with the uncertainty caused (Lifang, Zhiqiang, ZHANG & Hong, 2020). 
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Thus, social media plays a critical role in spreading information about a health emergency (Waszak, Kasprzycka-Waszak & Kubanek, 
2018). 

However, due to the popularity of social media, health-related misinformation has become a critical issue in the health care system 
(Ghenai & Mejova, 2018; Zhao et al., 2020), especially in times of health emergencies. Chou, Oh and Klein (2018)) noted that “A piece 
of health-related information is false because of a lack of scientific evidence”. This definition mainly focuses on misinformation on 
health lifestyles or how to prevent or treat diseases. In fact, health help-seeking is another type of information during health emer
gencies (Li et al., 2020). Thus, misinformation in health emergencies includes two main dimensions in the current study: health advice 
and caution and health help seeking. Health advice and caution misinformation is defined as when “A health-related advice or sug
gestion of how to prevent or treat diseases is absolutely false”. Health help-seeking misinformation, as its name suggests, expresses 
misinformation, such as seeking health donations, to gain improper benefits or attract public attention. Recently, health misinfor
mation has received increasing attention from stakeholders (e.g., the health industry, social media platforms, and academia) because 
it, as an important kind of information, has been frequently disseminated on social media and can mislead people’s health behaviors. 
Consequently, understanding the spread mechanism of misinformation in health emergencies on social media has been a key issue that 
attracts much attention. 

As misinformation dissemination in health emergencies on social media can have adverse effects on public health, the previous 
literature has proposed specific ideas and examined interventions to curb misinformation diffusion. For example, Ozturk, Li and 
Sakamoto (2015) show that misinformation warnings, such as “this posting may contain misinformation”, decrease users’ likelihood of 
reposting the misinformation. In addition, some researchers have attempted to investigate the factors of misinformation dissemination, 
such as individuals’ information dissemination habits (Gu & Hong, 2020), personal involvement (Chua & Banerjee, 2018) and healthy 
literacy (Oh & Lee, 2019), but most of them have used questionnaire methods to test hypotheses. Thus, there is a lack of research that 
uses quantitative analysis of secondary data extracted from social media platforms. More importantly, limited studies have attempted 
to specify how different types of misinformation affect individuals’ dissemination behavior in health emergencies. 

To address this research gap, this study draws on social support theory because online health misinformation can be treated as 
providing false social support for individuals to disseminate misinformation. Based on this theory, this study classifies such support 
into informational support and emotional support (Biyani, Caragea, Mitra & Yen, 2014; Chen, Guo, Wu & Ju, 2020b; Liu, Ren, Shi, Li & 
Zhang, 2020b). Informational support can be seen as offering incorrect health advice or caution for the public to prevent a disease or 
providing unverified health help-seeking messages to attract public attention or evoke societal concerns. Emotional support refers to 
empathy, encouragement, and caring for people (Krause, 1986). The existing literature on the health care system has mainly treated 
informational support as a holistic concept (Chen et al., 2020b); thus, this method cannot provide a detailed perspective of how various 
types of misinformation can influence individuals’ dissemination behavior on social media in times of health emergencies. Conse
quently, based on the content features of health misinformation, this study further identifies two dimensions of informational support: 
health caution and advice misinformation and health help-seeking misinformation. The former is defined as “a piece of health-related 
information (such as prevention or treatment tips on how to deal with diseases) has not been verified or a lack of scientific evidence”, 
and the latter means that a piece of information is fabricated in health emergencies to seek health donation or gain improper benefits. 

Conroy, Rubin and Chen (2015) indicate that most misinformation creators use specific writing strategies to avoid being detected. 
Some studies have shown that one of the greatest features of rumors is ambiguity (Oh, Agrawal & Rao, 2013; Starbird et al., 2016). 
Thus, a trusted creator is more likely to use assertive words and less likely to use hedging words (Rashkin, Choi, Jang, Volkova & Choi, 
2017), and a deceiver shows more “uncertainty and ambiguity” in his or her creation (Buller & Burgoon, 1996). Thus, misinformation 
creators may use many ambiguous words to reduce the likelihood of detection and extend the reach to the target audience. In this study 
context, if a piece of health misinformation contains many ambiguous words, people may feel it is suitable for themselves or their 
friends. For example, a piece of health misinformation says “someone has said that smoking can prevent COVID-19 infection in extent”. 
In this sentence, “someone” and “in extent” are ambiguous words because they do not state details. Accordingly, ambiguity can be seen 
as a dark side of misinformation because it can mislead people and make them feel that misinformation is useful, while it may also 
benefit people. For example, Liu et al. (2020b) demonstrated that the uncertain words used by physicians positively moderate the 
relationship between treatment-related health information and patients’ perceived usefulness. Surprisingly, little research has 
examined the bright side of ambiguity in misinformation dissemination during health emergencies. Thus, this paper proposes 
misinformation ambiguity and further explores whether it shapes the relationships between informational support, emotional support 
and health misinformation dissemination. 

In addition, the representational richness of a piece of information can affect its credibility and argument quality (Yin & Zhang, 
2020). Currently, development technologies enable people to create and use multimedia content more easily. Content can be posted in 
various formats on social media, such as text-only, text + images or text + videos. Thus, individuals are more likely to be attracted by 
that vivid information and will repost such information. The richness of information may lead individuals to be involved in information 
processing (Yin, Sun, Fang & Lim, 2018). Shi, Hu, Lai and Chen (2018) indicate that information richness is positively related to 
individuals’ information dissemination behavior. However, previous studies have primarily discussed this feature in the accurate 
information context, and little attention has been given to misinformation. Thus, this study proposes misinformation richness, which is 
defined as “the display format of misinformation on social media” and examines whether it will shape the linkage between social 
support and misinformation dissemination. 

Focusing on the COVID-19 pandemic, this study attempts to address two key aspects of the dissemination of misinformation on 
social media: 1) the determinants of misinformation dissemination in health emergencies and 2) whether misinformation ambiguity 
and richness shape the relationship between the determinants and individuals’ dissemination behavior. Drawing on the existing 
literature and text mining methods, this study proposes a theoretical model associated with five main hypotheses to answer the above 
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two questions. We collected 12,101 pieces of misinformation about the COVID-19 pandemic from Sina Weibo, one of the influential 
social media platforms in China, to test the model. This study makes several contributions. First, although misinformation has received 
many scholars’ attention, most prior studies have used questionnaires or simulations. This study takes a new step to explore how 
misinformation content affects individuals’ dissemination behavior by using object data retrieved from social media platforms, which 
enriches the literature on health emergency management. Second, inspired by social support theory, this research develops the de
terminants of misinformation dissemination and enriches the literature on health emergency management by mining the text features 
of health misinformation. To the best of our knowledge, this study is one of the first to apply social support theory to misinformation 
dissemination in health emergencies. Third, this study takes the first step to explore how the moderating effect of misinformation 
ambiguity and richness shapes misinformation dissemination behavior in the social media context. Accordingly, our findings provide 
some important implications for information practice and emergency management. 

This study is structured as follows: In the second part, we review the literature on misinformation and its dissemination on social 
media, and the existing literature on social support is also elaborated. In the third part, the influence mechanism among the re
lationships of informational support, emotional support, misinformation ambiguity and richness, and misinformation dissemination is 
analyzed, and hypotheses are proposed. In the fourth part, we describe the research method and report the empirical results of the 
research. Finally, in part of the discussion, the main findings, theoretical and practical implications, limitations of current research, 
and possible future research directions are discussed based on the results. 

2. Theoretical background 

2.1. Information seeking and misinformation dissemination in health emergencies 

Advancements in Internet technologies have immensely enhanced access to information during times of health emergencies (Cole, 
Kleine & Watkins, 2016). In a health emergency, people usually suffer from health anxiety and concern about their health condition; 
thus, they appear to search for health-related information more frequently on the Internet (McMullan, Berle, Arnáez & Starcevic, 
2019). Health information-seeking behavior (HISB) is described as “a process of gathering health-related information” (Mukherjee & 
Bawden, 2012). Various motivations influence individuals’ beliefs in seeking information during health emergencies, such as anxiety 
about their health or engaging in controlling and preventing the disease (Pesälä et al., 2017). Currently, the rise of social media has 
provided another effective channel for people to obtain information in health emergencies (Zhang et al., 2017a)). Miller and Bell 
(2012) have indicated that social media has great potential for health-related information seeking. Furthermore, the existing literature 
has shown the benefits of social media in health emergencies, such as sharing available information, increasing public engagement, 
and providing social support (Chen et al., 2020b; Moorhead et al., 2013; Rousseau et al., 2015). However, the lack of gatekeepers on 
social media also encourages the dissemination of misinformation (Bode & Vraga, 2018). Some researchers have realized the rela
tionship between social media and misinformation during times of health emergencies (Hou, Du, Jiang, Zhou & Lin, 2020; Pennycook, 
McPhetres, Zhang, Lu & Rand, 2020). For example, Pennycook et al. (2020) observed that since COVID-19 emerged, a large amount of 
misinformation (i.e., preventive tips on how to address the virus) has proliferated on social media. 

According to Bode and Vraga (2015), misinformation has gained much attention from academia. It is defined as “the factually 
incorrect information that is not backed up with evidence”. Because misinformation is easily available, its spread is rooted in infor
mation practices (Ruokolainen & Widén, 2020). Ma, Lee and Goh (2013) indicated that individuals’ information-seeking behavior has 
been associated with using social media for news dissemination. Thus, individuals wish “to be in the know” results in the dissemination 
of misinformation on social media (Duffy, Tandoc & Ling, 2020). Although the dissemination of misinformation is not a new phe
nomenon, many researchers indicate that the emergence of social media has made the spread of misinformation quicker and easier 
among people (Del Vicario et al., 2016; Vosoughi, Roy & Aral, 2018), especially during times of health emergencies, such as the current 
COVID-19 pandemic. The advent of social media, which allows people to share information almost without restriction, has intensified 
the dissemination of misinformation in health emergencies (Apuke & Omar, 2020). In recent years, misinformation has been a vital 
issue in health ecosystems (Li, Cheung, Shen & Lee, 2019; Zhao et al., 2019). According to Chou et al. (2018), health-related 
misinformation is defined as “a health-related claim that is false because a lack of scientific evidence”. Recently, the dissemination 
of misinformation on social media in health emergencies has gained increasing attention because dissemination can pose threats to 
public health. When facing health emergencies, people often experience health anxiety (Oh & Lee, 2019); thus, they wish to find 
information about disease prevention and treatment and gain social support to deal with the disease (Chen et al., 2018). Due to the lack 
of professional medical knowledge, it is difficult to separate misinformation for people; thus, they are more likely to share misin
formation without much consideration to whether the content is accurate. Apuke and Omar (2020) also reveal that people’s 
information-seeking behavior during COVID-19 is positively related to fake news sharing on social media. Although previous studies 
have indicated vaccine-related misinformation in health emergencies, such as Ebola and Zika (Wang, McKee, Torbica & Stuckler, 2019; 
Waszak et al., 2018), there may be other types of health-related misinformation, such as incorrect health advice and fake articles on 
health help seeking to be disseminated on social media. More importantly, there is a lack of research focusing on misinformation 
dissemination on COVID-19. Thus, it is necessary to further investigate the underlying mechanism of misinformation dissemination in 
health emergencies. 

2.2. Social support theory 

To date, there is no universally accepted definition of social support. Huang, Nambisan and Uzuner (2010) advocated that social 
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support is the exchange of verbal and nonverbal messages to communicate emotional and informational messages that reduce re
trievers’ stress. Rozzell et al. (2014) claim that social support reflects the information that evokes a person’s feelings of being cared for, 
esteemed and valued. In fact, social support consists of multiple dimensions. According to Liang, Ho, Li and Turban (2011), social 
support includes informational support and emotional support. Informational support means the advice, suggestions and guidance that 
affect individuals’ behaviors (Chun & Lee, 2017). For example, when an individual obtains valuable information from social media, he 
or she may be willing to repost it on his or her social network sites. Emotional support reflects the expressions of caring, concerns, and 
encouragement (Lin, Hsu, Cheng & Chiu, 2015). Such support may bring warmth to people and reduce their stress or anxiety. The role 
of informational and emotional support has been verified in the health care literature (Chen et al., 2020b; Liu et al., 2020b; Yan & Tan, 
2014), but little research has paid attention to the dissemination of misinformation through these two support perspectives. 

Furthermore, misinformation in health emergencies can be seen as false support for individuals. During health emergencies, a large 
amount of misinformation emerged on social media. Although previous studies have attempted to classify health-related information 
into various categories, such as health education (Liu, 2013) and prevention and treatment information (Liu et al., 2020b), few studies 
have paid attention to classifying the types of misinformation in health emergencies. Accordingly, this study measures misinformation 
support from a more precise approach. During emergencies, people are eager to seek health-related information related to prevention 
or curing disease (Pennycook et al., 2020). In addition, due to the shortage of medical resources in the short term, some medical 
institutions or individuals may seek support needs, such as wishes to donate materials, money, or services for disease control. These 
two types of health information are important components of health emergency-related information (Li et al., 2020). Therefore, this 
study classifies misinformation into two dimensions: health advice and caution and health help seeking. Meanwhile, emotional support 
is related to the words (containing misinformation) of providing encouragement, sympathy, and care to others. By doing so, this study 
provides a precise measure of health misinformation and explores the underlying mechanism of the spread of misinformation. 

2.3. Information ambiguity 

Ambiguity exists when details about situations are uncertain, unpredictable, or probabilistic (Brashers, 2001). In research on 
ambiguity in emergencies, some researchers have explained that ambiguous information is caused either by the inefficiency of 
emergency communication (Reddy et al., 2009) or the cognitive dissonance of the public (Dwivedi, Shareef, Mukerji, Rana & Kapoor, 
2018). In ambiguous situations, people usually lack reliable extrinsic information to better understand the uncertain situation 
(Starbird, Maddock, Orand, Achterman & Mason, 2014, 2016) and are more likely to accept misinformation to fill the gap of 
ambiguity. 

The existing literature has revealed a relationship between health concerns or anxiety and a need for health-related information 
(McMullan et al., 2019; Oh & Lee, 2019). Some people are concerned about their health, and they are more likely to search the Internet 
for health-related information (Baumgartner & Hartmann, 2011; Muse, McManus, Leung, Meghreblian & Williams, 2012). Many 
researchers have argued that ambiguity in the information context contributes to misinformation or rumors (Bordia & DiFonzo, 2004; 
Starbird et al., 2016). During health emergencies, due to the lack of professional knowledge about how to prevent and control diseases, 
people can actively engage with information seeking. If a piece of misinformation contains many ambiguous words or terms, people 
may feel it is suitable for themselves or others, which in turn encourages them to disseminate the misinformation. Starcevic and Berle 
(2013) have indicated that online health-related information is often incomplete and ambiguous; however, whether such ambiguity 
has contributed to the dissemination of health misinformation remains debatable, especially in times of health emergencies. Thus, this 
study proposes misinformation ambiguity and attempts to examine its moderating role in shaping the relationship between social 
support and misinformation dissemination. 

2.4. Media richness theory 

Media richness theory (MRT), proposed by Daft and Lengel (1986), emphasizes the abilities of communication media to facilitate 
understanding. Media richness means that the information load of the media aims to promote shared information. Later, Daft, Lengel 
and Trevino (1987) divided media richness into four types: face-to-face communication, telephone, written documents, and unpro
cessed documents. To date, advances in technology enable people to create and share multimedia content more easily. For example, 
individuals can post content with plain text, images or videos; thus, the media richness varies from low to high (Chen et al., 2020a; 
Denktaş-Şakar & Sürücü, 2020). Due to word limitations on social media (such as Twitter), individuals are likely to extend what they 
want to post by including complementary material, such as special tags or symbols, URLs (Castillo, Mendoza & Poblete, 2011), images 
or videos (Gupta, Lamba, Kumaraguru & Joshi, 2013; Jin, Cao, Zhang, Zhou & Tian, 2016). Thus, this study proposes misinformation 
richness to capture the features of misinformation expression and further investigates its moderating role in the relationship between 
social support and misinformation dissemination. 

3. Hypotheses development 

3.1. Social support and misinformation dissemination 

Liu et al. (2020b) indicated that different types of online health information have different influences on individuals’ perceived 
usefulness. Thus, this study also postulates that different types of health misinformation may affect its dissemination. 

Existing studies have classified online health information into several suitable categories, such as symptoms, cures, and prevention 
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(Liu, 2007; Liu & Lu, 2010). Previous research has suggested that individuals may learn a little about a disease, so they wish to seek 
information on how to prevent the disease or deal with it once they have relevant symptoms (Oh & Lee, 2019). In addition, medical 
institutions or individuals may seek health-related support via social media (Li et al., 2020), and someone may repost such information 
to meet these health needs as soon as possible. In this study, we focus mainly on health emergencies, such as COVID-19. Thus, this 
study classifies misinformation into two dimensions: health caution and advice misinformation and health help-seeking misinfor
mation. In great detail, health caution and advice misinformation is related to the incorrect prevention of the occurring disease. For 
example, a posting about COVID-19 claimed that eating garlic can prevent infection, but the WHO verified this health advice as false.1 

Health help-seeking misinformation relates to incorrect statements about seeking health-related support. For example, a posting 
claimed that Shanghai medical teams aiding Wuhan need donations for personal protective equipment (PPE) supplies, such as masks, 
protective clothing, liquid soap, etc., for COVID-19 prevention and control. However, this posting was confirmed by the government of 
Hubei Province to be a rumor.2 In times of health emergencies, due to health anxiety and the lack of professional knowledge, health 
caution and advice misinformation make individuals believe that such misinformation may enable them to better manage their health 
condition, and health help-seeking misinformation enables them to feel that they need to provide support to those who seek help and 
contribute to emergencies. Thus, individuals are willing to repost such misinformation on social media without being aware of its 
accuracy. Based on the above arguments, we hypothesize the following: 

H1a. . Health caution and advice misinformation positively influences individuals’ dissemination behavior. 

H1b. . Health help-seeking misinformation positively influences individuals’ dissemination behavior. 

In addition to creators’ informational support for people, there is also some emotional support provided in the misinformation, 
which is manifested in the creators’ appeasing behavior toward people. This is because in times of a health emergency, people’s 
psychological states, such as health anxiety or worry, and sometimes these emotions may be greater than the severity of the emergency 
(Meggiolaro et al., 2016). At such times, in addition to health advice or help seeking information, people also need emotional support 
to increase their confidence or alleviate their concern. Therefore, if a piece of health misinformation contains emotional support, such 
as providing encouragement, care, and empathy (Bambina, 2007), it is more likely to help individuals increase their confidence and 
reduce their anxiety when facing a health emergency. Then they are more likely to engage with such misinformation spreading. Thus, 
we hypothesize that: 

H2. Emotional support provided in health misinformation positively influences individuals’ dissemination behavior. 

3.2. The moderating role of misinformation ambiguity 

In health misinformation, ambiguity words are widespread; misinformation ambiguity means the level of uncertainty contained in 
the misinformation (Oh et al., 2013). Ambiguity exists when details of situations are uncertain, unpredictable, or probabilistic 
(Brashers, 2001). From a cognitive perspective, when facing a health emergency, people are willing to spend effort seeking more 
information to mitigate their health concerns. If a piece of health misinformation includes ambiguous words, such as someone, in 
recent years, possible, and seems to be, people may feel that the misinformation is provided for the masses, and they believe it may be 
useful for them to deal with health issues. Zhang and Ghorbani (2020) indicate that specific writing strategies for misinformation used 
by creators attract others’ attention. In this study, ambiguity word terms mean the uncertainty of health misinformation, and 
misinformation creators use ambiguous words to mislead people and avoid detection. Thus, misinformation creators are likely to use 
ambiguous words to widen the audiences for health misinformation. Previous research indicates that ambiguous words may lead to a 
dark side in online health information interactions (Liu et al., 2020b); by contrast, this study argues that ambiguous words may in
crease the dissemination of health misinformation. Thus, we hypothesize that: 

H3a. . Misinformation ambiguity strengthens the effect of health caution and advice misinformation on individuals’ dissemination behavior. 

H3b. . Misinformation ambiguity strengthens the effect of health help-seeking misinformation on individuals’ dissemination behavior. 

According to Cutrona and Russell (1990), emotional support is beneficial for people who experienced or are experiencing 
health-related circumstances. During a health emergency, most people are experiencing health anxiety or worry, and they are eager to 
obtain emotional support, such as encouragement and comfort, from others to reduce their health concerns. Accordingly, when 
ambiguous words are contained in a piece of health misinformation, people may think such misinformation will be easier for the public 
to meet their emotional needs, and they will perceive the misinformation as useful; thus, they are more likely to repost it. Thus, we 
hypothesize that: 

H3c. . Misinformation ambiguity strengthens the effect of emotional support on individuals’ dissemination behavior. 

1 https://m.weibo.cn/5078700027/4467874712692795  
2 http://news.sina.com.cn/c/2020-02-02/doc-iimxxste8329411.shtml 
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3.3. The moderating role of misinformation richness 

In this study, misinformation richness is defined as “the display format of misinformation”. This definition is consistent with Chen 
et al. (2020a). Recently, many studies have examined the relationship between the richness level of information and individuals’ 
information dissemination behavior in the context of social media (Brubaker & Wilson, 2018; Chen et al., 2020a; Ji, Chen, Tao & Li, 
2019; Kim & Yang, 2017; Shi et al., 2018). For example, Shi et al. (2018) analyzed 1479,310 Twitter posts based on text mining, and 
the results showed that a post with images and links is more likely to be shared by individuals in the social media context. A Rahim, 
Ibrahim, A Salim, N and Ariffin (2019)) analyzed 2132 postings published on the Malaysian Health Department’s official Facebook 
page, confirming that videos had a significant and positive effect on individuals’ sharing behavior. Thus, according to MTR, visual 
content, such as images and videos, seems to grasp individual attention more easily than plain text (Guidary et al., 2019; Yin & Zhang, 
2020). However, the effects of images and videos on health misinformation dissemination remain debatable. Compared to plain text 
with health misinformation, misinformation content that includes images or videos can provide supplemental health-related infor
mation; thus, individuals prefer to pay more attention to it and share it. Thus, this study hypothesizes that: 

H4a. . Misinformation richness strengthens the effect of health advice and caution misinformation on individuals’ dissemination 
behavior. 

H4b. . Misinformation richness strengthens the effect of health help-seeking misinformation on individuals’ dissemination behavior. 

H4c. . Misinformation richness strengthens the effect of emotional support on individuals’ dissemination behavior. 

Finally, our research model is presented in Fig. 1. The model includes three independent variables (health advice and caution 
misinformation, health help-seeking misinformation, and emotional support), two moderator variables (misinformation ambiguity 
and misinformation richness), and one dependent variable (misinformation dissemination behavior). In addition, five control variables 
(length of the misinformation, number of followers of the misinformation creator, number of likes and comments on misinformation, 
and number of times the misinformation mentioned others) are included to eliminate the interference of other factors on the results. 

4. Research methodology 

4.1. Research context 

In this study, we focus on the emergency health event: the COVID-19 pandemic. After the outbreak of COVID-19, a variety of 
health-related information was posted on social media, such as the current situation of the disease and how to prevent the disease. 
Social media accounts are one of the most important information sources during emergencies; however, much health misinformation is 

Fig. 1. The research model.  
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emerging. This study focuses on a leading social media platform in China, namely, Sina Weibo. The platform provides an ideal setting 
to investigate the health misinformation dissemination process for two reasons. First, Sina Weibo has become an influential microblog 
in China, and it is reported that by the end of 2019, there were over 510 million monthly active users. Thus, once an emergency event 
occurs, the relevant information can be disseminated in a timely manner. Second, during COVID-19, the platform built a special section 
to gather health misinformation, which provides data support for our research. Accordingly, the platform is suitable for our study. 

4.2. Data collection 

Sample data in this research were collected from Sina Weibo by crawling technology. We developed a Python-based web crawler to 
automatically collect health-related misinformation from January 23 to March 31, 2020. The reason for this period is that on January 
23, 2020, Wuhan was locked down to control the spread of COVID-19, which was an important point in time for China’s government 
and the public to fight the disease. At the end of March, the COVID-19 pandemic was essentially over in China. Thus, the public is eager 
to receive helpful information in a short time during an emergency. For each misinformation, text content, the number of reposts, likes 
and the number of fans of the misinformation poster are captured, and links, images, and videos are also captured, if available, to 
measure the misinformation richness. After collecting the initial data, we dropped 3050 texts because these posts were not original. On 
Sina Weibo, a post beginning with the//@ symbol indicates that the post is forwarded or reposted. Finally, the total number of 12,101 
texts were left. 

4.3. Operationalization for variables 

Misinformation dissemination. Most previous studies have measured individuals’ information dissemination behavior using quan
titative indicators, such as the number of shares (Bonsón & Ratkai, 2013; Brubaker & Wilson, 2018; Chen et al., 2020a; Kim & Yang, 
2017; Lifang et al., 2020). Following this logic, the number of shares can also be used as a quantitative indicator to evaluate the spread 
of health misinformation. The previous research has indicated that when the rumors have already been exposed to a wider audience, 
people are more likely to take dissemination behavior Zhao et al., 2013). Thus, the number of views may be a critical factor that 
influences each post reposts. In this study, due to the API of Sina-weibo does not directly provide the number of views of each post, 
there is an objective difficult to crawl this data. In addition, a main objective of this study is to investigate whether different types of 
health misinformation are a construct to influence individuals’ dissemination behavior in the times of health emergencies. We have to 
admit that the more exposed people of the misinformation, the more times of retweets or shares. However, in this study, we assume 
that the misinformation has been viewed by people, namely, Weibo users were exposed to the misinformation, and further explore they 
how respond to such misinformation (e.g., retweet it on social media in this study). Further, if many people were exposed to a piece of 
misinformation, but they did not retweet it, the scope of dissemination is limited. In previous studies (A Brubaker & Wilson, 2018; 
Chen et al., 2020a; Khobzi, Lau & Cheung, 2019; Lifang et al., 2020; Rahim et al., 2019; Shi et al., 2018; Xu & Zhang, 2018), they also 
do not include the number of views in their research model to capture the contagiousness of a particular post because of the objective 
difficulty. In order to mitigate this bias as far as possible, the number of fans of the misinformation creator and the number of times the 
text of misinformation has mentioned other users are controlled. Compared to common viewers, the fans of the misinformation creator 
view the misinformation earlier and faster; they are more likely to disseminate the misinformation. Thus, we argue that the number of 
fans is related to the number of views. In addition, as Shi et al. (2018) indicate, “Mentioning” in the practice of referring to a user in a 
post through the use of “@username”. This form aims to gain the target users’ attention. We hope these two variables can mitigate the 
bias caused by omitting of the number of views in some degree. 

Health advice and caution and help seeking misinformation. To identify the types of health misinformation, we invited three graduate 
students to manually label our sample data. Before manual annotation, we informed them of the labeling rules, e.g., health caution and 
advice terms, such as smoking can prevent viruses, and help seeking terms, such as need masks or disinfectants. Then the students 
performed the labeling work in two steps. Step 1: We randomly sampled 3000 texts to perform pilot tagging work and obtained an 
average Cohen’s kappa of 0.678, which was within the substantial interval [0.60, 0.80] suggested by Landis and Koch (1977) and Li, 
Zhang, Tian and Wang (2018). Step 2: The remaining texts are tagged based on the agreement obtained during the first step. Even
tually, the Kappa value was 0.714 for all text, indicating a high agreement in manual classification results. Finally, based on the 
one-hot encoding method, we built a vector distribution for each text, such as “(1,0)” denotes health caution and advice misinfor
mation, and “(0,1)” denotes health help-seeking misinformation. In practice, health advice and caution and help-seeking words or 
terms may contain misinformation at the same time, because misinformation creators want to provide various content to attract public 
attention and avoid detection. For example, a piece of health misinformation presents “During COVID-19, you could try to eat vitamin C 
to prevent infection. In addition, a local medical institution is now seeking health assistance; please forward this post to let more people know 
about it”. Thus, we encoded this misinformation as (1,1). 

Emotional support. Following the works of Chen et al. (2020b) and Liu et al. (2020b), we performed the operationalization of 
emotional support in three rounds. In the first round, we recruited three graduate students to manually code work. They were informed 
that the purpose of the coding was to construct the dictionaries of emotional support. They highlighted the emotional words or terms 
from health misinformation in a sample of 3000 texts in parallel. Then, we calculated the kappa statistic (Cohen, 1960), which is used 
to conduct the reliability test of corpus classification, and the average value equals 0.723, which was within the substantial interval 
suggested by Li et al. (2018). Therefore, we constructed a first version of the emotional words dictionary with 20 words or terms. In the 
second round, two authors marked 2000 new postings in parallel. Similar to the first coding process, we constructed a second version of 
the dictionaries (the average Kappa value equals 0.734). We then compared the second version of the dictionaries with the first version 
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and added new words or terms to the first version of the dictionaries. Based on these two procedures, the emotional dictionary 
expanded from the original 20 words to 35 (such as don’t worry, good luck, hope, glad, fortunately, cheer up, get well soon, everything 
will be well, etc.). In addition, we consulted two emotional professionals and confirmed our identification of the dictionary. In the third 
round, we used Jieba (Sun, 2012), a Chinese text analysis tool, to automatically extract words or terms from the remaining 7101 texts 
based on the dictionary constructed. 

Misinformation ambiguity. Because there is no mature dictionary of ambiguous words or phrases, we needed to construct such a 
dictionary. Although some studies have attempted to manually code ambiguity or uncertainty words in the misinformation context 
(Maddock et al., 2015; Starbird et al., 2014, 2016), they focused on the English context, and their method and dictionary may be 
inappropriate to the Chinese context. In addition, Liu et al. (2020b) adopted manual code to construct an uncertainty dictionary. 
However, their dictionary only included affirmation words or phrases. Zhao, Resnick and Mei (2015) indicated that interrogative 
words or phrases (such as “How about you?” and “Really?”) could also express information ambiguity, whereas they did not pay 
attention to health misinformation. Based on the procedures of the emotional dictionary, we further constructed a dictionary of 
ambiguous words or terms, such as usually, possible, someone had said, somewhere, seems to be, truly? how about you? What do you 
think?, etc. The average Kappa values of the two versions are equal to 0.754 and 0.743, respectively. Finally, the ambiguity dictionary 
was built with 30 words or terms. 

Misinformation richness. As suggested by prior research (Chen et al., 2020a; Ji et al., 2019; Yue, Thelen, Robinson & Men, 2019), this 
study classifies misinformation richness into three levels according to the complexity of the misinformation presentation form. The 
three levels ascend with richness: plain text, text + images, and text + video. Plain text is marked as a low level of misinformation 
richness, text + images is marked as a moderate level of misinformation richness, and text + video is marked as a high level of 
misinformation richness. Low, moderate and high misinformation richness are coded as 1, 2, and 3, respectively. 

Control variables. To eliminate the interference of other factors on the results, the study included control variables, including the 
number of fans of the misinformation creator, the number of likes of each text, the number of comments of each text, the content length 
of each text, and the number of times the text has mentioned other users. 

The definitions of the variables in this study are presented in Table 1. 

4.4. Data analysis and results 

STATA version 15.1 was used to analyze our data samples. The summary statistics of the variables are presented in Table 2. Then, 
we check for the issue of multicollinearity in Stata. As shown in Table 2, the variance inflation factor (VIF) values for all variables in 
this study were all below 4 (no larger than the threshold of 10), indicating that multicollinearity is not an issue in our data sample. 

Based on the procedure of Zhang, Guo, Xu and Li (2020), we built two empirical models to test our hypotheses. The models are as 
follows: 

MDi = β0 + β1Advice infori + β2Help infori + β3Emot infori + β4Ambiguityi+

β5Advice infori ∗ Vaguenessi + β6Help infori ∗ Ambiguityi+

β7Emot inforii ∗ Ambiguityi + β
′

Zi

(1)  

MDi = β0 + β1Advice infori + β2Help infori + β3Emot infori + β4Richnessi+

β5Advice infori ∗ Richnessi + β6Help infori ∗ Richnessi+

β7Emot infori ∗ Richnessi + β
′

Zi

(2)  

Where Models 1 and 2 capture the moderating roles of misinformation vagueness and richness, respectively, β parameters are the 
coefficients to be estimated, and Z is the vector controlling the number of followers, the length of each health misinformation that the 
poster has released, the number of comments on each health misinformation, and the number of likes for each health misinformation. 

Table 1. 
Measurement of variables.  

Variable name Measure item Description 

Dependent variable  
Misinformation dissemination MD The number of reposts of each text. 
Independent variables  
Health advice and caution misinformation Advice_infor Whether the text contained wrong health-related advice and caution information. 
Health help seeking misinformation Help_infor Whether the text contained wrong health-related, help-seeking information. 
Emotional support Emot_infor Number of emotional words or terms in each text. 
Moderate variables  
Misinformation ambiguity Ambiguity Number of ambiguous words or terms in each text. 
Misinformation richness Richness The richness level of each text. 
Control variables  
Followers Fans Number of followers of the account that has released the text. 
Likes Likes Number of likes on each text. 
Comments Comments Number of comments on each text. 
Length Length Length of each text. 
Mentions Mentions Number of times the text has mentioned other users.  
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Given that the variables vary in their initial magnitudes, we standardized the control (excluding Mentions) and dependent variables 
for the main analysis; that is, we drew on the log transformation of the control and dependent variables (Chen et al., 2020a). The 
models were tested hierarchically (see Table 3). First, model 1, including only the control variables, was tested, and then model 2, 
including the independent variables, was tested. Model 3 and model 4 with interaction terms were tested to verify the moderating 
effects. 

As shown in Table 3, model 2 revealed that the coefficients of health caution and advice misinformation (β = 0.426, p < 0.001) and 
health help-seeking misinformation (β = 0.175, p < 0.01) are both positive and significant. This finding is consistent with our hy
potheses that the various types of health misinformation are positively associated with its dissemination on social media, which in
dicates that H1a and H1b are supported. Meanwhile, the effect of emotional support is positive and significant (β = 0.045, p < 0.001), 
supporting H2. 

In Model 3, the moderating effect of misinformation vagueness was tested. We found that the interaction term Advice_infor * 
Vagueness is positive and significant (β = 0.079, p < 0.001); hence, H3a is supported. Surprisingly, the interaction terms Help_infor * 
Vagueness (β = − 0.031, p < 0.001) and Emot_infor * Vagueness (β = − 0.062, p < 0.001) are both negative, and these results are 
contrary to our hypotheses. Thus, H3b and H3c are not supported. In addition, we also found that misinformation vagueness (β =
0.664, p < 0.05) is positively related to the spread of health misinformation, and this finding is consistent with Oh et al. (2013) and 
Starbird et al. (2016). 

Model 4 focuses on the moderating role of misinformation richness. We found that the interaction term Advice_infor * Richness is 
positive and significant (β = 0.035, p < 0.01), whereas the interaction term between Emot_infor and Richness is negative (β = − 0.062, 
p < 0.001). This means that H4a is supported and H4c is not supported. The interaction term Help_infor * Richness is not significant (β =
0.015, p > 0.05) and does not support H4b. Furthermore, we found that misinformation richness (β = 0.517, p < 0.001) is positively 
related to the spread of health misinformation. 

To better understand the moderating effects, the interaction diagram was plotted based on the procedures of Aiken et al. (1991). 
Figs. 2-6 present the results. Fig. 2 shows that the effect of health caution and advice misinformation on health misinformation 
dissemination is found to be positive under both high misinformation vagueness and low misinformation vagueness. However, at low 
ambiguity (solid line), the dissemination of health misinformation slowly occurs compared with high ambiguity (dashed line), 

Table 2. 
Variable statistics.  

Variables Mean S.D. Min Max VIF 

MD 40.084 1086.278 0 76,492  
Advice_infor 0.29 0.51 0 1 2.28 
Help_infor 0.06 0.32 0 1 3.78 
Emot_infor 0.986 1.776 0 9 1.08 
Richness 1.229 0.464 1 3 1.21 
Ambiguity 1.147 0.556 0 7 1.14 
Fans 25.263 618.527 0 45,331 2.41 
Likes 22.801 636.506 0 48,984 5.55 
Comments 12.906 174.282 0 10,518 5.85 
Length 29.576 41.259 10 838 1.15 
Mentions 1.051 1.443 0 14 1.12  

Table 3. 
Regression results.  

DV: ln(MD) Model 1 Model 2 Model 3 Model 4 

Advice_infor  0.426*** 0.503*** 0.368*** 
Help_infor  0.175** 0.205*** 0.095** 
Emot_infor  0.045*** 0.114*** 0.118*** 
Ambiguity   0.664*  
Richness    0.517*** 
Advice_infor * Ambiguity   0.079***  
Help_infor * Ambiguity   − 0.031***  
Emot_infor * Ambiguity   − 0.062***  
Advice_infor * Richness    0.024* 
Help_infor * Richness    − 0.027 
Emot_infor * Richness    − 0.061*** 
Ln(Fans) 0.007*** 0.006*** 0.005*** 0.005*** 
Ln(Likes) 7.75e-06 0.001* 9.85e-06 8.98e-06 
Ln(Comments) − 0.001*** − 0.000* − 0.001*** − 0.001** 
Ln(Length) 0.012*** 0.009*** 0.008*** 0.007*** 
Mentions 0.042 0.032*** 0.031*** 0.027*** 
Observations 12,101 12,101 12,101 12,101 
R-squared 0.356 0.415 0.447 0.440 

Note: * p < 0.05; ** p < 0.01; ***p < 0.001; two-sided hypothesis tests. 
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indicating that high vagueness increases the positive effect of health caution and advice misinformation on individuals’ health 
misinformation dissemination behavior. As shown in Fig. 3, the effect of the interaction of health help-seeking misinformation on 
health misinformation dissemination was weaker under high vagueness (dashed line). Fig. 4 also shows that at high vagueness (dashed 
line), the dissemination of health misinformation increases more slowly than at low vagueness (solid line), indicating that high 
misinformation vagueness weakens the positive effect of emotional support on health misinformation dissemination. Fig. 5 indicates 
that the positive effect of health advice and caution misinformation on individuals’ dissemination behavior is stronger under high 
richness (dashed line). Finally, Fig. 6 reveals that high misinformation richness weakens the positive effect of emotional support on 
health misinformation dissemination. Overall, Figs. 2-6 provide extra support for H3a, H3b, H3c, H4a, and H4c. 

4.5. Robustness check 

To test the robustness of our results, we added the unoriginal postings (the procedure of data processing is similar to Section 4.3) to 
our data sample. The regression results are reported in Table 4. Most of the effects were quantitatively consistent with our main results 
reported in Table 3. Therefore, we can be more confident that the results of our analysis are solid and robust. 

5. Discussion 

5.1. Main findings 

This study presents four key insights. First, different types of misinformation, namely, health caution and advice misinformation 
and health help-seeking misinformation included in this study, are positively related to their dissemination during health emergencies. 
In particular, the impact of health caution and advice misinformation is more significant than that of health help-seeking misinfor
mation. This may be because people pay more attention to their health conditions during a health emergency, health caution and 
advice misinformation are associated with health suggestions or guidance that prevent someone from acquiring diseases in general (Li 
et al., 2020). People may believe that the potential value of such misinformation for health help-seeking misinformation is great; thus, 
they are more likely to disseminate it on social media. In addition, we find that emotional support from misinformation can positively 
influence its dissemination. It is acknowledged that the public wishes to obtain encouragement and comfort from others on social 
media (Chen et al., 2020b; Liu et al., 2020b; World Health Organization, 2020); therefore, they are likely to repost misinformation to 
reduce their health anxiety or stress. 

Second, our research findings reveal that misinformation ambiguity strengthens the effect of health advice and caution misin
formation on the dissemination of misinformation. This finding indicates that for misinformation written with more ambiguous words, 
health advice and caution misinformation is more likely to be disseminated on social media. This is also consistent with the finding that 
ambiguity is an important feature of rumor spreading (Maddock et al., 2015; Starbird et al., 2014, 2016). If a piece of health advice and 
caution misinformation has a high level of ambiguity, more individuals may believe that the advice is not specific to those who 
experience disease but can also be suitable for themselves to better know the disease. Thus, they are willing to disseminate such 
misinformation on social media without being aware of its accuracy. In contrast, the moderating effect of misinformation ambiguity on 
the relationship between health help-seeking misinformation and its dissemination is negative and significant. One possible expla
nation for this difference is that such misinformation is about one’s needs for health support; thus, under high levels of ambiguity, 
individuals will believe that the misinformation is not specific and question its trustworthiness. 

Third, we find that the richness of misinformation positively moderates the relationship between health advice and caution 

Fig. 2. The moderating effect of misinformation ambiguity on health caution and advice.  
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Fig. 3. The moderating effect of misinformation ambiguity on health help seeking.  

Fig. 4. The moderating effect of misinformation ambiguity on emotional support.  

Fig. 5. The moderating effect of misinformation richness on health caution and advice.  
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misinformation and its dissemination. This is contrary to the finding that text-only can create greater citizen engagement (calculated 
by the number of likes, reposts, and comments) under uncertainties (Chen et al., 2020a; Lee & Xu, 2018). One plausible explanation is 
that visual media, such as images or videos, more easily grasp public attention than plain text (Guidry et al., 2019). A piece of health 
advice and caution misinformation visualized may provide more health-related content; thus, individuals are more likely to be trig
gered to disseminate such misinformation. However, the moderating effect of richness on the relationship between health help-seeking 
misinformation and its dissemination is not significant. This might be because the content of images or videos is not matched with the 
misinformation (Chen et al., 2020a; Daft et al., 1987); thus, individuals are less likely to disseminate it. 

Fourth, the effect of emotional support on the dissemination of misinformation is weakened with the presence of misinformation 
ambiguity and richness. The former reveals that for misinformation presenting a high level of ambiguity during health emergencies, 
individuals do not obtain the emotional support provided by the misinformation very useful. This is because during health emer
gencies, people with health anxiety have low levels of ambiguity tolerance (Fergus, 2013; Oh & Lee, 2019), so they need emotional 
support from others to increase their confidence or alleviate such anxiety. As a result, if they still encounter ambiguous information 
when seeking emotional support, their willingness to repost will be lowered. On the other hand, the latter indicates that for misin
formation presenting a high level of richness, individuals are less likely to repost it on social media. This may be because the emotional 
support contained in visual media is not matched with individuals’ needs; thus, their emotions are not triggered. 

5.2. Theoretical implications 

This paper provides several insights into the existing literature. First, it contributes to the health care system by focusing on the 
dissemination of misinformation during health emergencies. Recently, some efforts have contributed to detecting health-related 

Fig. 6. The moderating effect of misinformation richness on emotional support.  

Table 4. 
Results of robustness check (added nonoriginal postings).  

DV: ln(MD) Model 1 Model 2 Model 3 Model 4 

Advice_infor  0.431*** 0.471*** 0.596*** 
Help_infor  0.165** 0.159*** 0.084*** 
Emot_infor  0.050*** 0.101*** 0.122*** 
Ambiguity   0.532*  
Richness    0.587*** 
Advice_infor * Ambiguity   0.051***  
Help_infor * Ambiguity   − 0.008  
Emot_infor * Ambiguity   − 0.047***  
Advice_infor * Richness    0.038** 
Help_infor * Richness    − 0.021* 
Emot_infor * Richness    − 0.061*** 
Ln(Fans) 0.010*** 0.008*** 0.007*** 0.006*** 
Ln(Likes) 6.12e-06 0.004* − 0.000 − 0.000 
Ln(Comments) 0.005*** − 0.000 0.004*** 0.004*** 
Ln(Length) 0.000* 0.001** 0.000*** 0.000*** 
Mentions 0.039*** 0.029*** 0.028*** 0.023*** 
Observations 15,151 15,151 15,151 15,151 
R-squared 0.369 0.422 0.447 0.441 

Note: * p < 0.05; ** p < 0.01; ***p < 0.001; two-sided hypothesis tests. 
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misinformation on social media (Hou, Pérez-Rosas, Loeb & Mihalcea, 2019; Sicilia, Giudice, Pei, Pechenizkiy & Soda, 2017; Zhao et al., 
2020). However, little research has attempted to investigate the mechanism of misinformation dissemination in times of health 
emergencies. Based on text mining, this study provides an in-depth analysis of misinformation dissemination in health emergencies, 
which enriches the literature on individuals’ information-seeking behavior. 

Second, to the best of our knowledge, this is one of the first studies to apply social support theory to investigate the dissemination 
mechanism of misinformation in health emergencies. Although social support has identified positive effects in health ecosystems 
(Chen et al., 2020b; Liu, Xiao, Fang, Zhang & Lin, 2020a, 2020b; Wang, Zhao & Street, 2014), few studies have been conducted to 
explore how social support affects individuals’ misinformation dissemination behavior on social media. Furthermore, it is different 
from previous studies that focused more on informational support from a whole concept (Bambina, 2007; Biyani et al., 2014; Zhang 
et al., 2017b). In this study, we creatively measure informational support from two aspects, including health advice and caution 
misinformation and health help-seeking misinformation. More importantly, we further develop a detailed view of how diverse types of 
misinformation can affect individuals’ dissemination behavior. Our findings contribute to a deep understanding of how social support 
from misinformation can influence individuals’ information dissemination behavior in health emergencies. 

Third, this study highlights the bright and dark sides of misinformation ambiguity and richness. Previous studies have focused on 
the ambiguity of misinformation detection (Oh et al., 2013) and the richness of individuals’ engagement behavior (Chen et al., 2020a; 
Shi et al., 2018). However, little research has examined the moderating effect of ambiguity and richness on misinformation dissem
ination. By testing the moderating role of misinformation ambiguity and richness, we found that ambiguity and richness positively 
moderate the relationship between health caution and advice misinformation and misinformation dissemination, while they nega
tively moderate the relationship between health help-seeking misinformation and misinformation dissemination. Even though the 
bright side of ambiguity and richness for misinformation dissemination has been verified in this article, which is consistent with the 
previous literature (Lee & Xu, 2018; Oh et al., 2013; Starbird et al., 2014, 2016), we also find their dark side in our research context. 
Accordingly, this research enriches the information ambiguity and richness literature on misinformation dissemination by disen
tangling the negative role of misinformation ambiguity and richness from the bright sides. 

Finally, this study also contributes to the literature on health emergency management. In health emergencies, misinformation 
dissemination is an important issue and has gained considerable attention (Apuke & Omar, 2020). Our findings could provide social 
media platforms and health organizations with determinants that prompt misinformation dissemination and enable them to better 
manage online information in health emergencies. 

5.3. Practical implications 

The findings of this study also provide several practical implications. First, individuals should improve health literacy, which is 
defined as “individuals’ cognitive and social skills to access, understand, and use information in ways which promote and maintain 
good health” (WHO, 1998), to decrease the dissemination of misinformation during health emergencies. Previous studies have 
indicated that a person with a high level of health literacy is more suspicious about online health-related information than one with 
low health literacy (Chen et al., 2018; Diviani, van den Putte, Giani & van Weert, 2015). Oh and Lee (2019) also highlight the 
importance of enhancing the level of health literacy to prevent health misinformation from spreading among social media users. Our 
findings indicate that health caution and advice misinformation and health help-seeking misinformation are significantly related to 
their dissemination. Therefore, individuals should think more about such information in health emergencies before reposting it on 
social media. 

Second, as we found, there are bright and dark sides of misinformation ambiguity and richness. This finding informs social media 
platform operators of actionable interventions to decrease the dissemination of misinformation during health emergencies. For 
example, for health advice and caution information, operators should encourage authors to write with more certainty words or terms 
because such misinformation with uncertain words is more likely to be accepted by individuals and then disseminated. 

Third, from the perspective of social media providers, they could develop and implement screening tools for health advice and 
caution and help seek relevant information during times of health emergencies. Such tools may enhance the ability the providers in 
detecting misinformation and further improve their manage level in timers of social media platform. 

5.4. Limitations and future research directions 

Although this study has provided interesting findings for both theory and practice, it has several limitations that should be 
considered in future research. First, although two types of health misinformation and ambiguity terms have proven to be effective and 
credible in this study, some biases cannot be avoided in the process of manual labeling work. Future research could improve the 
accuracy of the code method. Second, drawing on the research of Ji et al. (2019), emotional strength may also affect individuals’ online 
behavior. This study only focuses on the effect of emotional valence, and subsequent research could further explore the contingent role 
of emotional strength. Last, the number of views of misinformation is an important determinant of reposts. This study does not include 
this factor in the research model because the API of Sina-Weibo does not provide such data, and there is a practical limitation of 
collecting data from the social media company. Accordingly, we do not articulate how many users will view the misinformation, which 
is crucial for the validity of analysis in this study. There are plenty of papers from econometric field pointing out similar critical issue 
and significant impact if it is not controlled in the analysis, and may also pose significant influence on the parameter estimation. Thus, 
we must acknowledge the limitations of the way this study estimates the spread of health misinformation exist. Although the number of 
fans and the number of times the misinformation has mentioned other users are included to reduce the adverse effects of such omission, 
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we have to acknowledge this method is not the best. In the future, researchers could obtain the number of views to increase the validity 
of our results. 

6. Conclusion 

The dissemination of misinformation in health emergencies can have adverse effects on public health (Zhao et al., 2020). Thus, it is 
important to explore the underlying mechanism of misinformation dissemination during health emergencies. This study draws on text 
mining and social support theory to identify health caution and advice misinformation, health help-seeking misinformation, and 
emotional support to explore the mechanism of individuals’ information dissemination behavior on social media under the contin
gency of misinformation ambiguity and richness. The empirical results show that the two types of misinformation proposed and 
emotional support are essential determinants of individuals’ dissemination behavior, and misinformation ambiguity and richness 
strengthen the effect of health advice and caution misinformation and weaken the effect of emotional support, indicating both the 
bright and dark sides of themselves. Our research methodology and empirical findings contribute to the current literature on health 
emergency misinformation, social support theory, information ambiguity and richness, and individuals’ information dissemination 
behavior. Furthermore, this study also provides significant practical implications for health emergency management and the design of 
interventions for addressing the dissemination of misinformation. 
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