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A B S T R A C T   

Preliminary analyses of satellite measurements from around the world showed drops in nitrogen dioxide (NO2) 
coinciding with lockdowns due to the COVID-19 pandemic. Several studies found that these drops correlated 
with local decreases in transportation and/or industry. None of these studies, however, has rigorously quantified 
the statistical significance of these drops relative to natural meteorological variability and other factors that 
influence pollutant levels during similar time periods in previous years. Here, we develop a novel statistical 
protocol that accounts for seasonal variability, transboundary influences, and new factors such as COVID-19 
restrictions in explaining trends in several pollutant levels at 16 ground-based measurement sites in Southern 
Ontario, Canada. We find statistically significant and temporary drops in NO2 (11 out 16 sites) and CO (all 4 
sites) in April-December 2020, with pollutant levels 20% lower than in the previous three years. Fewer sites (2–3 
out of 16) experienced statistically significant drops in O3 and PM2.5. The statistical significance testing 
framework developed here is the first of its kind applied to air quality data. It highlights the benefit of a rigorous 
assessment of statistical significance, should analyses of pollutant levels post COVID-19 lockdowns be used to 
inform policy decisions.   

1. Introduction 

The province of Ontario in Canada declared a state of emergency on 
March 17, 2020 to limit the spread of COVID-19, which caused the first 
related death in mid-March 2020. As a result, lockdown restrictions 
affected the majority of workplaces, which shifted to working from 
home, , and led to the closure of recreational and shopping facilities that 
gather large numbers of people. Table S1 lists the timeline of restrictions 
in Ontario, the state of Michigan in the U.S., which borders the south
western part of the province, and Ohio, which can influence pollution 
levels in Ontario via transboundary movement of pollutants. The 
imposition of the lockdown measures drastically reduced traffic, avia
tion and industrial activity in the province as reported from satellite 
analysis (Griffin et al., 2020). Satellite data for nitrogen dioxide (NO2) 
column using the Tropospheric Monitoring Instrument (TROPOMI) 
operated by NASA and European Space Agency were analyzed for the 

Greater Toronto area, home to Ontario’s capital and Canada’s most 
populous urban region (Griffin et al., 2020). The analysis showed a 
drastic reduction in NO2 levels by roughly 40% relative to 
pre-lockdown. This reduction is similar in magnitude to those reported 
in cities in China, Europe and the United States during their respective 
lockdowns and/or states of emergency (Bauwens et al., 2020). Com
parisons of data in 2020 were made to the same period in 2019 to 
quantify the drop in NO2 levels since weather and seasonal changes also 
affect the levels of these pollutants (Schiermeier, 2020). Griffin et al. 
(2020) estimated a 20% reduction in satellite-measured NO2 attributed 
to meteorology in Toronto. 

Indicator pollutants of air quality in Ontario are monitored by a 
network of 39 stations across the province maintained by the Ministry of 
the Environment, Conservation and Parks (MECP) (MECP, 2017). These 
pollutants include nitrogen oxides (NOx), CO, O3 and PM2.5. Sources of 
NOx are closely associated with combustion. In 2017, 70% of NOx 
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originated from road vehicles and other transportation in Ontario 
(MECP, 2017). Seasonal variations of NO2 levels are observed, with 
maximum levels occurring in the winter and minimum levels observed 
in the summer. The seasonal NO2 signature can be attributed to seasonal 
fluctuations in the boundary layer height and variations in photo
chemical lifetime. In general, wind speeds increase in spring and sum
mer as the height of the boundary layers increases, which enhances 
dispersion and lowers concentrations (Atkins and Lee, 1995). Also, NO2 
is a photoactive molecule that dissociates to NO and O and hence, 
contributes to ground-level O3 formation. CO is a byproduct of the 
incomplete combustion of fossil fuels. Similar to NOx, the transportation 
sector accounts for 71% of all CO emissions in Ontario (MECP, 2017). 
Seasonal variations of CO levels are dominated as much by photo
chemical lifetime as by dilution at all but the most polluted sites, with 
maximum levels occurring during late winter and minimum levels 
observed during late summer (ATSDR, 2012). This seasonal trend is the 
result of inversion conditions being more frequent during winter months 
than summer months. The major source of ground-level O3 is secondary 
processes from the photochemical reaction of NOx and volatile organic 
compounds (VOCs). Transportation and general solvent use account for 
43% of VOCs emissions in Ontario (MECP, 2017). As a result of its for
mation chemistry, concentrations of ground level O3 are highly variable 
on an hourly, daily, seasonally, and yearly basis. The scavenging effect 
of NO reduces local O3 levels in urban centres in Ontario, especially 
during summer months (MECP, 2017). 

Analyses of satellite and ground-based (i.e., surface) measurements 
of pollutant levels pre- and post-COVID-19 closures were also reported 
for different cities from around the globe (see references in COVID-19 
and Air Pollution (2020); Casado-Aranda et al., 2021; Kroll et al., 2020; 
AMIGO, 2021). A 35–60% reduction in NO2 and a 1.5–2 times increase 
in ground-level ozone (O3) was reported from the hundreds of surface 
monitoring stations in China (Le et al., 2020; Shi and Brasseur, 2020). 
Also, Le et al. (2020) reported extreme levels of fine particulate matter 
(PM2.5) in northern China due to conditions that promoted heteroge
neous aerosol chemistry. The authors did not carry out the analysis 
needed to account for meteorological effects on the reduction observed 
in NO2 (Shi and Brasseur, 2020). For Pittsburgh, the authors reported a 
50% reduction in the morning rush-hour-induced carbon monoxide 
(CO) and NO2 concentrations at the high traffic sites, consistent with the 
50% reduction in commuter traffic (Tanzer-Gruener et al., 2020). In this 
study, the authors examined weather patterns in 2020 relative to earlier 
years and concluded that the changes in pollutant concentrations 
observed in 2020 are mostly due to COVID-19 restrictions (Tanzer-
Gruener et al., 2020). The analysis by Venter et al. (2020) relied on 
quantifying the COVID-19 lockdown effect from the difference between 
2020 and predictions from a linear regression model based on historical 
data. Based on this analysis, the population-weighted drop in NO2 and 
PM2.5 concentrations were reported to be 60% and 31%, respectively, 
with a 4% marginal increase in O3 levels. However, none of the above 
studies has undertaken a rigorous quantification of the statistical sig
nificance associated with these findings, in that they have not quantified 
the extent to which the observed post-lockdown difference is merely due 
to the “random chance” inherently attributable to natural meteorolog
ical variation. The standard approach to establishing statistical signifi
cance is through a p-value calculation. Of the studies mentioned above, 
only that of Venter et al. (2020) reports p-values along with its results. 
However, the p-value of Venter et al. (2020) relies heavily on modeling 
assumptions which are difficult to verify with a small post-lockdown 
sample. This raises serious concerns over causality conclusions about a 
potential lockdown effect, particularly to the extent they inform policy 
decisions. This highlights the need for an in-depth analysis of the 
Ontario data, and the considerable challenge in accounting for 
short-term seasonal effects and natural variability in atmospheric 
chemistry when reporting an observed reduction in pollutant levels 
comparing pre- and post- lockdown data (Kroll et al., 2020). 

This investigation aims to rigorously quantify the statistical 

significance of changes to air quality indicators from ground-based 
measurements in Southern Ontario as a result of the COVID-19 re
strictions. To this end, we developed a novel statistical protocol which 
accounts for seasonal variability, transboundary influences, and new 
factors such as COVID-19 restrictions in explaining trends in the levels of 
NO2, CO, O3 and PM2.5. Importantly, key findings are supported by a 
statistical significance testing framework, making minimal to no 
modeling assumptions, being the first of its kind applied to air quality 
data. We expand on the relevance of this model-free framework to the 
analysis of a one-time event such as the lockdown in the Methods section 
and Supporting Information, and on implications for policy-making in 
the Discussion. 

2. Methods 

2.1. Data acquisition 

For the selected sites in this paper, ground-based hourly data of 
pollutant concentrations were downloaded from the MECP website (htt 
p://www.airqualityontario.com). The sites of these ambient air moni
toring stations are chosen to be generally representative of regional air 
quality which is less influenced by immediate local sources of air con
taminants. Fig. 1 shows the locations of the air quality stations, mete
orology and solar irradiance stations that collect hourly data on 
pollutant levels, temperature and radiative forcing, respectively. These 
sites are classified as Rural (R) or Urban (U) by MECP, which we use here 
as well. This information is communicated on an hourly basis to the 
public through the MECP’s Air Quality Ontario website (http://www.ai 
rqualityontario.com). All instrumentation deployed at the MECP sites 
are US EPA designated equivalent methods. The stations, including 
monitoring equipment, are routinely inspected and maintained with 
mandatory bi-monthly onsite visits by MECP staff. The instruments are 
Thermo Scientific Model 42i NO-NO2-NOx Chemiluminescent Gas 
Analyzer, Thermo Scientific Model 49i O3 analyzer, Thermo Scientific 
TE48C/I for CO, and Thermo Scientific Model 5030 SHARP for real-time 
and continuous PM-10/PM-2.5 measurement. More information 
regarding quality assurance and quality control can be found in refer
ence (MECP, 2017). 

Air quality data for all reporting years were obtained from the Air 
Quality Ontario website. It is important to distinguish that preliminary 
data are not verified while finalized data have undergone extensive 
quality assurance/quality control (QA/QC) procedures as outlined in the 
appendix of the annual Air Quality in Ontario Report (MECP, 2017). 
However, typically there are minimal changes applied to the dataset 
during the QA/QC process. A quick analysis of selected 2018 data over 
the time period of interest suggests that hourly and daily differences are 
less than 1% between preliminary and finalized data. 

Hourly and daily meteorological data collected by the Meteorolog
ical Service of Canada network of stations were obtained from the Na
tional Climate Archives website (https://climate.weather.gc.ca/hist 
orical_data/search_historic_data_e.html). Solar irradiance monitoring 
data were obtained by contacting the surface weather observation 
network maintained by Environment and Climate Change Canada 
(ECCC). 

2.2. Statistical information 

The primary methodological contribution of this paper is to propose 
a novel approach to quantifying statistical significance for air quality 
data. Suppose that Npost daily pollutant concentrations are recorded 
post-lockdown and Npre daily pollutant concentrations are recorded pre- 
lockdown under similar conditions. Specifically, in our analysis Npost 

corresponds to the weekdays of a given month – say April 2020 – 
whereas Npre corresponds to the weekdays of the same month in the 
three reference years April 2017–2019. By comparing the same month 
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across years, we accounted for natural variation in seasonal meteo
rology. We eliminated weekends from our analysis since we are mainly 
interested in the effect of COVID-19 on traffic and industrial activity, 
which is typically lesser on weekends. 

Let Δobs denote the absolute difference in pre/post lockdown median 
pollutant levels per Eq. (1): 

Δobs =
⃒
⃒Medpre − Medpost

⃒
⃒ (1) 

Then under the null hypothesis H0 that there is no difference between 
pre/post-lockdown data, the absolute median difference Δobs ought to 
be zero. Statistical significance formally quantifies the extent to which a 
non-zero value of Δobs is not merely due to random natural meteoro
logical variations. Traditionally, statistical significance is measured by a 
p-value. In this case, the probability that a difference in medians ob
tained by repeating the data acquisition, Δrep, would exceed Δobs by 
random chance. However, the time-dependent nature of the pollutant 
data renders such experimental replication inconceivable. Thus, clas
sical p-values for these data can only be interpreted under the hypo
thetical construct of a statistical model, which has two related 
drawbacks. On the one hand, most model-based p-value calculations are 
only valid asymptotically. On the other hand, time-dependent data make 
the modeling assumptions difficult to verify - prohibitively so for the 
small (non-asymptotic) pre/post lockdown sample sizes Npre and Npost. 

As an alternative approach, our novel statistical protocol hinges on 
the assessment of statistical significance via a randomization test 
(Fisher, 1935; Manly, 2006), which we illustrate in Fig. 2 and described 
below. Instead of relying on a statistical model, the randomization test 
takes the Npre +Npost observations as non-random. If there is no pre/post 
lockdown effect, then we may take each of the Nperm = (Npre +Npost)!

permutations of the observations as equally likely. The randomization 
p-value is calculated as shown in Eq. (2): 

p = Probability(Δrand > Δobs) (2)  

where Δrand is randomly drawn from the set of all permutations. Since it 

is impractical to enumerate all Nperm permutations to calculate it exactly, 
the randomization p-value in Eq. (2) is instead estimated to arbitrarily 
high precision by Monte Carlo simulation, by reporting the fraction of 
times Δrand exceeds Δobs on a large number M≪Nperm of randomly drawn 
permutations (all of our p-values are calculated with M = 10000, thus 
having a Monte Carlo standard error of no more than 0.005). 

To the best of our knowledge, this is the first application of such a 
randomization test to quantifying statistical significance for air quality 
data. Perhaps the most common randomization test is the Wilcoxon- 
Mann-Whitney (WMW) procedure (Mann and Whitney, 1947; Wil
coxon, 1945), which Huang et al. (2015) have used to measure spatio
temporal differences in PM2.5. WMW is a powerful test which can detect 
a range of departures from the null hypothesis of no lockdown effect. In 
contrast, our randomization test uses the difference-in-medians statistic 
Δ. This statistic focuses on a conservative overall lockdown effect that 
does not depend on the highest or lowest pollutant recordings, as these 
were found to fluctuate considerably due to natural meteorological 
variation. To the extent that testing Δ is of specific interest, WMW is 
known to be invalid except under highly restrictive assumptions (Divine 
et al., 2018; Ludbrook and Dudley, 1998). 

Classical and randomization p-values share a similar interpretation. 
For p > 0.05, ∆obs is similar to ∆rep for model-based p-values or ∆rand for 
randomization p-values, hence the difference can be attributed to 
random chance (e.g., natural meteorological variation). If p < 0.05, ∆obs 
is not similar to ∆rep or ∆rand, and therefore the difference is unlikely to 
be due to random chance (i.e., can be attributable to other factors such 
as COVID-19 lockdowns). 

Randomization p-values have the appealing property that they are 
exact (up to Monte Carlo error), in that no asymptotic argument is 
required for their calculation. If the observations are assumed to be in
dependent and identically distributed (iid), randomization p-values are 
also classical p-values which are commonly used for nonparametric 
significance testing (Manly, 2006). For air quality data, Zeb et al. (2019) 
used a different nonparametric approach to test for the presence of 

Fig. 1. Map of Southern Ontario showing locations of air quality stations maintained by MECP, national meteorological and irradiance stations maintained by ECCC.  
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monotonic trends in trace gases. Unlike the randomization test proposed 
here, the test used by Zeb et al. is not exact in the sense that asymptotic 
arguments must be invoked to calculate the p-value. However, such 
arguments are not applicable to the small sample of measurements in 
each monthly comparison at hand. In the Supporting Information, a 
generalization of the randomization test to compare more than two 
reference years is proposed, and the connection between randomization 
and classical p-values is described in further detail. 

3. Results 

3.1. Assessing the trend in pollutant levels from 2008 to 2019 

The 10-year trend in the level of pollutants that affect air quality in 
Ontario is shown in Fig. 3 from 2008 to 2017 per the latest air quality 
report from MECP (MECP, 2017). Data from 2018 and 2019 were 
calculated to complement the data in the report. Progressive reduction 
in NOx emissions in Ontario and the US are observed because of regu
lations per the Clean Air Act (MECP, 2017). Fig. 3a and S1a show the 
annual mean trend of NO2 for the cities in Southern Ontario analyzed in 
this study from 2008 to 2019 per data collected by MECP. These levels 
were obtained from averaging the raw hourly data and hence do not 
reflect seasonal effects. The 11-year trend observed in the annual mean 
of NO2 appears to be leveling off for the majority of the cities in 
2017–2019, which is the three-year period used here as the ‘reference’ 
years (see above). Levels of CO are measured in only four sites in 
Southern Ontario. Fig. 3b shows the 1-h maximum in CO levels at these 
sites. The 11-year trend in CO appears to vary by site, where there is a 

clear downward trend for Hamilton Downtown, Ottawa Downtown and 
Toronto West, and an upward trend for Windsor Downtown. The 
11-year trend in O3 levels is shown in Fig. 3c and S1b, which indicates 
either no change or a slight upward trend depending on the site. Similar 
to NO2, these levels were obtained from averaging the raw hourly data 
and hence do not reflect seasonal effects. Ground level O3 in the summer 
continues to exceed the Ontario Ambient Air Quality Criteria (AAQC) of 
80 ppb (1-h), particularly in Southern and Eastern Ontario. As for 
PM2.5, the 11-year trend is shown in Fig. 3d and S1c. There is an 
observed downward trend overall with magnitudes varying per site. 
Residential sources account for 56% of all sources by sector from fuel 
wood combustion in fireplaces and wood stoves, followed by industrial 
(21%) and transportation sectors (12%) (MECP, 2017). Together, O3 and 
PM2.5 drive smog episodes in May-September in Ontario, which are 
affected by local and regional weather patterns and long-range trans
boundary influences from industrial and urbanized US states. RTo To 
summarize, the above analysis gives a general quantification of air 
quality in Southern Ontario in the absence of major short-term lock
downs like the ones imposed in 2020 by the government to limit the 
spread of COVID-19. 

3.2. Assessing variation in temperature and solar irradiance in 
2017–2020 

The overlap of seasonal variations in the concentrations of NO2, CO, 
O3 and PM2.5 with measures enforced by the Ontario government to 
limit the spread of COVID-19 complicated the assessment of reductions 
associated with reduced traffic, aviation, and industry emissions. To 

Fig. 2. Graphical outline of the statistical randomization test and interpretation of the p-value.  
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assess meteorological changes in 2020 relative to reference years, 
2017–2019, Fig. S2a shows box plots of daily mean temperature for 
three locations selected based on their type (rural versus urban) from 
January until June. Similar figures were generated for the July- 
December period when restrictions were gradually lifted (Fig. S2b). 
Below each box in the plot is the p-value calculated from the randomi
zation test described in the Methods section. The set of p-values on the 
right (i.e., below the 2020 data) test whether there is a statistically 
significant difference between the median monthly temperature in 2020 
compared to 2017–2019. However, the set of p-values on the left of the 
box in the plot (i.e., below the 2017–2019 box data) test whether there is 
a statistically significant difference among the three reference years, 
meaning, in a given month, whether the statistical distribution of the 
data in 2017 is equal to that in 2018 and also to that in 2019. For March 
2020, the p-value is less than 0.05 for all sites, suggesting that a potential 
lockdown effect on air pollutants might be masked by unusually high 
temperatures relative to the reference years. On the other hand, 
p > 0.05 for April, May, and some sites in June 2020. These data suggest 
that temperature was not significantly different in 2020 compared to 
reference years, and therefore does not confound pollutant 

concentrations during the months when the lockdown is both in full and 
waning force. The other set of p-values below the boxes to the left side 
tests the difference between medians in the reference years (a general
ization of the randomization test above to more than two samples is 
provided in the Supporting Information). The p-values for February, 
March, and June are all greater than 0.05, indicating that 2017–2019 
median temperatures were not statistically different during those 
months. In contrast, the corresponding p-values for January, April, and 
May 2017–2019 are well below 0.05. Since the months within these 
reference years did not experience the lockdown effect, the low p-value 
indicates that there is considerable natural variation in seasonal mete
orology during these months, making it difficult to detect the specific 
impact of COVID-19 in 2020. 

As shown in Fig. 1, the two stations in Southern Ontario for 
measuring solar irradiance are in Ottawa and Delhi. Fig. S3a shows the 
daily solar Global Horizontal Irradiance (GHI) at these locations from 
January till June between 2017 and 2020. GHI values were obtained 
from the measured radiation field. Similar figures were generated for the 
July-December period when restrictions were gradually being lifted 
(Fig. S3b). In this case, the p-values are generally greater than 0.05, 

Fig. 3. Eleven-year trends in air quality pollutant levels in selected cities in Southern Ontario. The population of these cities is listed in Table 1: (a) annual mean of 
NO2 levels, (b) One-hour (1-h) maximum level of CO, (c) annual mean of O3 levels, and (d) annual mean in PM2.5 levels. Similar data for more cities are shown 
in Fig. S1. 
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indicating little difference in solar irradiance between these years. 

3.3. Assessing variation in pollutant levels 

Fig. 1 shows the locations of selected air quality stations in Southern 
Ontario that collect hourly data on pollutant levels analyzed here. Each 
air quality station measured hourly levels of NO2, O3 and PM2.5. Only 
four out of the 16 stations reported CO measurements: Hamilton 
Downtown, Ottawa Downtown, Toronto West, and Windsor Downtown. 
The MECP’s rationale behind choosing these sites for CO measurements 
is that Hamilton and Windsor are in the top five of the most polluted 
cities in Ontario. Toronto West station is near the busiest highway in 
North America, Hwy 401 (Dabek-Zlotorzynska et al., 2019). Ottawa was 
likely chosen because it is the nation’s capital city and is technically 
located in Eastern Ontario, further away from the US border with little 
industrial activity. The next few sections describe the variation in 
pollutant levels at different resolutions: hourly, daily, weekly and 
monthly in order to show how data resolution affects the type of con
clusions that can be made. As detailed above, the statistical approach we 
developed here aims at quantifying the significance in the difference 
between median pollutant levels of weekdays (no weekends) per month 
in 2020 and the previous three years, 2017–2019, used as reference. 

3.3.1. Variation in NO2 levels 
Fig. S4 shows the diurnal average levels of NO2 in April over 

2017–2019 and 2020 for Grand bend (rural), Kitchener (urban), and 
Toronto West (urban). These data are superimposed with solar irradi
ance and average hourly temperature for each location. April was cho
sen because it followed two weeks of COVID-19 lockdown measures in 
Ontario. The data show a reduction in the NO2 levels due to photodis
sociation with increasing solar irradiance, which peaks around 
12:00–13:00. Levels of NO2 are also expected to decrease due to its re
actions with OH/HO2(RO2) (Finlayson-Pitts and Pitts Jr., 2000). Over
all, the average hourly concentrations of NO2 in Grand Bend range from 
1.5 to 3 ppb, Kitchener from 2.5 to 11 ppb, and from 5 to 22 ppb for 
Toronto West, which peak around 06:00 during the morning rush hour. 
While the average data in Fig. S4 show lower diurnal NO2 levels in 2020 
compared with the average data in 2017 – 2019, standard deviation 
calculations ( ± 1 σ) revealed extensive overlap between the two cases 
(see shaded areas). Based on the extensive overlap of standard deviation 
data, there is little evidence of a significant reduction observed in April 
2020 relative to 2017–2019. 

We then calculated the daily NO2 levels for each station from 
January until June in 2020 for comparison with the daily average of 
each month from 2017 to 2019. Fig. S5-S7A show selected data for the 
same locations in Fig. S4. The values of the standard deviation were 
removed for clarity. The trends in the daily NO2 concentrations over a 
five-month period show a great degree of overlap between the 2020 and 
average 2017 – 2019 data. Also, these data show the seasonal reduction 
in NO2 in the spring months compared to winter. The start of the COVID- 
19 lockdown in March 2020 is marked in these Figures. There is no clear 
evidence that additional reductions in daily NO2 levels were observed in 
the daily values in 2020 compared with the average daily values in 
reference years in any of the stations we analyzed. We then looked at 
median values of NO2 levels for weekdays only (no weekends) for all 
weeks from January until the end of June, per year in 2017–2020. 
Figs. S5-S7B show selected data from this type of analysis for the same 
stations in Fig. S4. The median of weekdays analysis did not reveal clear 
reduction in NO2 levels in the weeks after the COVID-19 lockdown 
either. 

Following the hourly, daily and weekly analyses described above, the 
weekdays distribution in NO2 levels in a given month in 2020 and in 
reference years was graphically shown using box and whisker plots.  
Fig. 4 shows representative plots for the three air quality stations shown 
in Fig. S4. The p-values for March 2020 are all statistically insignificant, 
perhaps linked to unusually high temperatures during this month. On 

the other hand, many stations recorded drops in NO2 concentrations 
below the 0.05 significance level in April-June. Of particular note is 
Toronto West in April 2020, for which p-values below 0.05 were 
recorded both for 2020 relative to the reference years and between the 
reference years and themselves. This suggests that the drop in NO2 in 
April 2020 compared to the reference years is large, even set against the 
considerable seasonal variability of pollutant levels which naturally 
occurs during the month of April. As presented in the following sections, 
the weekdays median values for NO2 were used to calculate the per
centage difference in 2020 relative to the reference years, 2017–2019, 
and to calculate the p-values used to quantify the statistical significance 
of the percent difference. 

3.3.2. Variation in CO levels 
Fig. 5 shows box and whisker plots for the weekday distribution in 

CO levels in four air quality stations, Hamilton Downtown, Ottawa 
Downtown, Toronto West and Windsor Downtown. These are all urban 
stations, each of them having a significantly lower median CO value in 
April 2020 than in the reference years. There is also some evidence that 
the lockdown is easing, with many p-values above 0.05 in May-June 
2020. Similar to NO2, the weekdays median CO values were used to 
calculate the percentage difference in 2020 relative to the reference 
years, 2017–2019. 

3.3.3. Variation in O3 and PM2.5 levels 
Fig. 6 shows box and whisker plots for the weekday distribution in 

the concentrations of O3 and PM2.5 over 2017–2019 and 2020 for some 
of the sites that experienced statistically significant drops in each 
pollutant per Table 1. For O3, the sites shown in the Figure are Sarnia 
and Windsor West, with Toronto West added for comparison given its 
proximity to Hwy 401. For PM2.5, the sites shown in the Figure are 
Hamilton West, Ottawa Downtown and Windsor Downtown. The raw 
data show the seasonal changes in O3 levels for these selected sites that 
increase in spring and summer months. The apparent trend in PM2.5 
levels is a narrower distribution of data points in May and June 
compared to earlier months for all years, and in 2020 in general, 
compared to reference years, 2017–2019. Similar to NO2 and CO, the 
weekday median values for O3 and PM2.5 were used to calculate the 
percentage difference in 2020 relative to the reference years, 
2017–2019. 

3.4. Assessing the variability of pollutant levels within the reference years 
2017–2019 

Table S2 lists the p-values calculated for the concentration distri
bution of each pollutant within the three-year period 2017–2019 during 
April–June. The main assumption is that seasonal factors are the major 
contributors to the concentration distribution in each year, which are 
similar over a three-year period. The statistical significance test used 
here resulted in p < 0.05 for a number of sites in a given month. 
Tables S3-S18 list the median values for each pollutant in April–June 
over 2017–2019. Median values for 2020 are also listed. The median 
values provide an accurate indication of the similarity between years 
reflected in the calculations of the p-values. For example, the p-value for 
May in 2017–2019 for NO2 levels at Grand Bend station is 0. The median 
values for NO2 listed in Table S3 are 2.8, 4.0, and 1.6 for 2017, 2018 and 
2019, respectively. Hence, the p-value of 0 indicates considerable nat
ural variation in NO2 concentration levels from year to year between 
2017 and 2019. Other examples of statistically significant differences 
over the reference years are highlighted in Table S2 with underlined p- 
values. When the p-value for 2020 is less than 0.05, this indicates that 
there is a significant difference between 2020 and the past three years 
that could be attributed to new factors such as the COVID-19 lockdown 
restrictions. In the case when p-values for the reference years are also 
less than 0.05, this indicates that 2020 stands out despite considerable 
variability among the reference years. This suggests the presence of new 
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Fig. 4. Box and whisker plots of NO2 levels during weekdays (24-h average) for a given month at Grand Bend (rural), Kitchener (urban) and Toronto West (urban). 
Median values from these weekdays data were used to calculate percentage difference in NO2 levels in 2020 relative to 2017–2019 as described in the text. Number 
below each data box corresponds to the calculated p-value. See text for details. 
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unique factors in 2020 that are separate from those causing the differ
ence in pollutant levels among the reference years. This result is 
different from the scenario where p-values are less than 0.05 for the 
reference years but greater than 0.05 for 2020. This result would suggest 
that seasonal meteorology can account for large differences between 
years, compared to which the lockdown effect is insignificant. 

3.5. Assessing the variability of pollutant levels in 2020 relative to the 
reference years 2017–2019 

As detailed in the Methods section, the calculated p-values reflect the 
degree of similarity in the distribution of daily pollutant levels in 2020 
and the reference years: p-values < 0.05 indicate statistically significant 
difference between the 2020 median weekday levels and those in 
reference years. The calculated percentage difference, which could 
indicate increase, decrease, or no change in pollutant levels, can be 
attributed to new factors other than temperature and solar irradiance 
because it was calculated for the same monthly period. These factors 
would include the effect of COVID-19 measures on reducing traffic, 
aviation and industrial activities. It could also include new residential 
sources, which increased in contribution due to ‘go home and stay at 
home’ public health advisories starting in March 2020. Another 
important factor that has been known to influence air quality in Ontario 
is transboundary air pollution from the United States that increases the 

concentration of pollutants studied here. The US did not enforce COVID- 
19 lockdown measures during the same time period as Ontario. As 
highlighted in Table S1, ‘stay at home orders’ in Michigan and Ohio 
were implemented after Ontario and were beginning to be lifted well 
before Ontario lifted its ‘stay at home’ order. This difference in lock
down enforcement was expected to have a big impact on NOx and CO 
levels for stations in the Windsor and Sarnia area, along the US border, 
which are heavily impacted by transboundary transport, in so much that 
any impact from COVID-19 lockdown measures would be difficult to 
disentangle from US sources impacting these sites. 

The weekday median values for the pollutants analyzed here were 
used to calculate the percentage difference in two ways to highlight two 
cases: In case 1, percentage difference values were calculated for each 
month in 2020 relative to the corresponding month in the reference 
years, 2017–2019 (Table 1). This type of calculation assumes that sea
sonal variability is similar for each month, and hence any statistically 
significant difference in pollutant levels is presumably due to new fac
tors such as transboundary influences or COVID-19 restrictions. Fig. 7 
shows graphical representation of the percentage difference in NO2 
levels for selected sites. In case 2, percentage difference values were 
calculated relative to January in 2020 and in the reference years 
2017–2019. Then, if an extra decrease was observed for a given 
pollutant in 2020 relative to reference years, the difference in the per
centages was calculated to quantify that extra decrease as reported in 

Fig. 5. Box plots of CO levels during weekdays (24-h average) per month at Hamilton Downtown (urban), Ottawa Downtown (urban), Toronto West (urban) and 
Windsor Downtown (urban). Median values from these weekdays data were used to calculate percentage difference in CO levels in 2020 relative to 2017–2019 as 
described in the text. Number below each data box corresponds to the calculated p-value. See text for details. 
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Table S19. This type of calculation shows the magnitude of seasonal 
changes in each pollutant for 2020 and reference years 2017–2019 
relative to their highest levels in January. The assumption here was that 
new factors that might influence pollutant levels in 2020 beyond sea
sonal changes will be manifested as either increases or decreases in 

percentage. 
Fig. 8 shows graphical representation of this extra decrease in NO2 

concentrations for selected sites. Therefore, the calculated p-values were 
used to quantify the statistical significance of these percentages in cases 
1 and 2. For Table 1 and S19, the data are only shown for April until June 

Fig. 6. Box and whisker plots of O3 (left panel) and PM2.5 (right panel) levels during weekdays (24-h average) per month for the sites analyzed in Figs. 4 and 5. 
Median values from these weekdays data were used to calculate percentage difference in O3 and PM2.5 levels in 2020 relative to 2017–2019. The number below each 
data box corresponds to the calculated p-value. See text for details. 
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since COVID-19 lockdown measures started March 17, 2020 in Ontario. 
The statistically significant percentages are highlighted in shaded areas 
based on the p-values listed in parentheses. These p-values are the same 
as those listed in the monthly 2020 columns in Table S2. Calculated 
percentages that indicate no change or an increase in pollutant levels 
were assigned ‘n.o.’ in an effort to highlight decreases attributed to the 
impact of COVID-19 lockdown measures or other new factors. 

In order to identify the major contributors to the reduction in NO2 
observed by satellite measurements in Southern Ontario (Griffin et al., 
2020), Figs. 7 and 9 graphically show selected data from Table 1 for 
selected sites. Percentages were calculated in these Figures according to 
case 1 described above. Figs. 8 and 10 show the extra decreases observed 
in 2020 for NO2 and CO, respectively, for selected sites from percentages 
calculated according to case 2 described above, which are also listed in 
Table S19. The statistically significant decreases in NO2 levels occurred 
in April and May and ranged from 18% to 42%, depending on the 
location of the station (Table 1). For example, Fig. 7a shows that the 
rural station, Grand Bend, experienced a 39% reduction in NO2 levels in 
April, no change in May, and a 20% increase in June. The p-value 
associated with the latter percentage is 0.2 (Table S2), and hence the 
calculated increase in NO2 June 2020 levels is considered statistically 
insignificant (i.e., June weekday median levels in 2020 are within the 
distribution of the corresponding values in June 2017–2019). Urban 

sites that experienced a statistically significant reduction in NO2 levels 
in April 2020 include Guelph (22%), London (29%), Sarnia (42%), 
Toronto East, North, and West (~22–30%). 

Other urban sites experienced a statistically significant reduction in 
NO2 levels in May 2020, which include Kitchener (29%), London (20%), 
Windsor Downtown and Windsor West (40%). A few urban sites expe
rienced a reduction in NO2 levels in June 2020, with the one in London 
(18%) found to be statistically significant. As shown in Fig. 7, statisti
cally significant reductions in NO2 were observed in some cities in July- 
October. During this period, gradual lifting of restrictions was taking 
place, with all regions of the province entering the last stage of re
strictions in August (i.e., back to “normal”). However, from August to 
October, residents were still encouraged to limit their outings and 
movements (e.g., work from home when possible, limit social outings, 
etc.). Moreover, data in Table S19 show that the majority of sites in 
Southern Ontario experienced a statistically significant 4–28% extra 
decrease in NO2 levels in 2020 beyond seasonal variability observed in 
the same months in 2017–2019. This trend in the data agrees with that 
shown in Table 1, with the exception of Grand Bend, where the statis
tically significant drop shown in Fig. 7a in April does not align with that 
in Fig. 8a. The box plot for the NO2 data in Grand Bend is shown in Fig. 4 
where there is a clear fluctuation in the median 2020 data over Febru
ary–June relative to January compared to a progressive decrease in the 

Table 1 
Summary of the percentage decrease in pollutant levels in 2020 relative to the same period in 2017–2019. The statistically significant values are highlighted in p-values 
below 0.05 listed in parentheses.  

Notes: a See Fig. 3 for location. b 2016 Census (Statistics Canada, 2016) c % decrease in 2020 in a given month = (median in 2020 – median in 2017–2019) * 100% / 
(median in 2017–2019). ‘n.o.’ = no decrease observed, on the other hand, an increase was observed in pollutant level in 2020 relative to 2017–2019. 
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corresponding data for 2017–2019. Given the location of this site on the 
Canadian shore of Lake Huron, it is very likely that these fluctuations are 
due to transboundary influences from Michigan, USA. Fig. 8 also shows 
the statistically significant extra reduction in NO2 levels in 2020 for 

Kitchener, London and Toronto West during July-October period. Other 
sites that experienced similar extra reduction in NO2 include Guelph 
(25%), Hamilton West (37%), Hamilton Mountain (14%), Ottawa 
Downtown (9%), Toronto Downtown (14–27%), and Toronto East 

Fig. 7. Percentage difference in weekday median levels of NO2 in 2020 relative to the same period in reference years, 2017–2019 for selected sites. The data for 
April–June are listed in Table 1 for these sites. The ‘*’ highlights the statistically significant decreases based on the p-values. 

Fig. 8. Percentage difference in weekday median levels of NO2 in 2020 and 2017–2019 relative to January of the same year(s). The vertical percentages highlight the 
statistically significant ’extra’ decreases based on the p-values listed in Table 1 for April–June. 
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(6–15%). As explained in the Environmental Significance section, these 
extra reductions might explain the lower number of day with air quality 
health index greater than 4 corresponding to moderate risk compared to 

the 2017–2019 reference years. 
The data in Fig. 9 for CO levels in different urban sites show about 

20% statistically significant reduction in April 2020 for Hamilton 

Fig. 9. Percentage difference in weekday median levels of CO in 2020 relative to the same period in reference years, 2017–2019 for selected sites. The data for 
April–June are listed in Table 1 for these sites. The ‘*’ highlight the statistically significant decreases based on the p-values. 

Fig. 10. Percentage difference in weekday median levels of CO in 2020 and 2017–2019 relative to January of the same year(s). The vertical lines highlight the 
statistically significant percentage decreases based on the p-values listed in Table 1 for April–June. 
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Downtown, Ottawa Downtown, and Toronto West. Windsor Downtown 
experienced 11% reduction in April 2020. The statistically significant 
reduction in CO levels continued in May 2020 for Ottawa Downtown 
(14%) and Windsor Downtown (17%). All of these urban sites experi
enced a statistically insignificant reduction in CO in June 2020, which 
coincided with the second phase of lifting restrictions in Ontario (see 
Table S1). Moreover, data in Fig. 10 show that these sites experienced a 
statistically significant 2–16% extra decrease in CO levels in 2020 
beyond seasonal variability observed in the same months in 2017–2019. 
This trend in the data agrees with that shown in Fig. 9. Statistically 
significant extra decreases in CO were also observed for Hamilton 
Downtown in September (16%) and Toronto West in August and 
September (8% and 11%, respectively). Hamilton entered Stage 3 the 
third week of July, and Toronto at the end of July. So there would have 
been limited restrictions in August and September. This data might also 
reflect the influence of less ‘vacation traffic’ during this time period. 

The data in Fig. 11 for O3 levels in different urban sites show sta
tistically significant reductions in March-May 2020 for Sarnia and 
Windsor West, both of which are border cities with Michigan, USA with 
extensive industrial activity. The reduction observed in March 2020 for 
these sites of nearly 40%, is greater than that observed for the Toronto 
West site at 24% (Fig. 11e), which is near Hwy 401. For the latter site, 
the reductions observed in April and May were not statistically signifi
cant. For most of the other sites, either no decreases in O3 levels were 
observed in 2020, or the decreases were not statistically significant 
relative to the 2017–2019 reference years in the July–December period 
(see Tables S3-S18 for median values). These observations suggest the 
dominance of seasonal factors or other factors that affect the chemistry 
of ozone production in these sites (Kroll et al., 2020). 

Fig. 12 a-c show the variability in PM2.5 levels for three out of four 
urban sites that experienced a 35–40% statistically significant reduction 
in May 2020, which are Hamilton West, Ottawa Downtown and Windsor 
Downtown. The relatively large reduction in the levels of PM2.5 in 

Hamilton West site was also observed when the percentage was calcu
lated relative to January of the same year(s) (Fig. 12d). One explanation 
could be the effect of Ontario’s lockdown on the industrial activity in 
Hamilton, which was not observed in the other sites. The Ottawa 
Downtown site experienced 11% reduction in PM2.5 (Fig. 12e), which 
likely reflects the effect of the city’s lockdown on transportation. The 
Windsor Downtown site experienced only 7% reduction in PM2.5 
(Fig. 12f), which was possibly influenced by the industrial activity in 
Michigan, USA. Interestingly, levels of PM2.5 were higher in June 2020 
compared to previous years in all of the sites analyzed. For most of the 
other sites, either no decreases in PM2.5 levels were observed in 2020, 
or the decreases were not statistically significant relative to the 
2017–2019 reference years in the July–December period (see Tables S3- 
S18). 

4. Discussion 

Sites within the City of Hamilton were expected to see little impact 
from decreased transportation and industrial activity, as many of the 
city’s industry were likely classified as “essential services” during the 
lockdown that started in mid-March. As a result, only one site in the city 
had a statistically significant drop in NO2 (Hamilton Downtown – June). 
The statistically insignificant drops in NO2 at all other sites in Hamilton 
could be due to slowed production or could be due to annual variability 
driven by atmospheric chemistry (Kroll et al., 2020; Seinfeld et al., 
1991). This result matches the observations of Shi and Brasseur (2020), 
who found substantial variability in NO2 levels, as well as other pol
lutants, in Beijing, which had less severe lockdown measures than 
Wuhan. 

In the Toronto region, NO2 levels were expected to be significantly 
impacted by local sources, such as transportation and industry given 
their relatively large distance from significant U.S. sources of the Ohio 
Valley. All Toronto sites saw large drops in NO2 levels in April 2020 

Fig. 11. (a-c) Percentage difference in weekday median levels of O3 in 2020 relative to the same period in reference years, 2017–2019. The data for April–June are 
listed in Table 1 for these sites. (d-f) The percentage in O3 median values in 2020 and 2017–2019 relative to January of the same year(s). The vertical lines highlight 
the statistically significant percentage decreases based on the p-values listed in Table 1 for April – June. 
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relative to 2017–2019, except Toronto Downtown, which experienced 
17–27% extra reduction in NO2 during the July-October period. The 
drop in NO2 levels observed here are similar to those reported by Griffin 
et al. (2020) after accounting for seasonality estimated in their analysis. 
The Toronto West site also saw a drop in measured CO levels. While not 
all decreases in pollutant levels were significant compared to previous 
years, the trend suggests that decreased movement of the population and 
industry played a considerable part in the observed drops. These results 
corroborate the findings of Griffin et al. (2020) who found that re
ductions in NO2 in the Toronto region are not entirely due to COVID-19 
related emissions reductions. The mix of significant and insignificant 
decreases from previous years could be due to the fact that a number of 
industries within the Toronto region were likely still operating during 
the lockdown, given their “essential services” status. These findings 
could also be highlighting the importance of other factors such as 
meteorology and atmospheric chemistry (Kroll et al., 2020; Seinfeld 
et al., 1991). 

Medium sized cities in Southwestern Ontario were also expected to 
have little impact from transboundary sources for NO2 with trans
portation making a larger impact on NO2 and CO sources than industry. 
While some of these cities have manufacturing facilities, they are not 
expected to be on the scale of Toronto or Hamilton. As seen in Table 1, 
Kitchener and London had statistically significant drops in NO2 in May 
and April-June, respectively. Guelph had statistically significant drops 
in April and during the July-October period. These data suggest that the 
drop in NO2 could be directly linked with decreased traffic in these 
cities. This is corroborated by transportation data from Kitchener that 
saw a 55% decrease in traffic in early May, and a 47% decrease in late 
May – early June in 2020 compared to previous traffic counts within the 
city (Table S20). Furthermore, Ottawa experienced statistically insig
nificant drops in NO2 in all three months, as well as statistically sign
ficant drops in CO in April and May. This likely reflects the effect of the 
city’s lockdown on transportation and is reinforced by the findings for 
PM2.5 levels in the city. 

Sarnia, Windsor Downtown and Windsor West were expected to have 

a large transboundary influence from both Michigan and Ohio, but also a 
potentially significant influence from transportation. Given the wide 
range of dates of closures and re-openings across the two US states and 
Ontario, it was expected that little to no difference would be seen in 
2020 compared to previous years. Any difference was expected to be 
seen in April since all three jurisdictions were closed in this month. 
However, both Windsor sites saw significant decreases in NO2 in May, 
with Windsor Downtown also seeing a significant decrease in CO in April 
and May. Sarnia saw a significant decrease of NO2 only in April. This 
may suggest that Sarnia is more impacted by local transportation, 
including cross border traffic, as opposed to Windsor, which is impacted 
by local industry immediately across the border in and around Detroit. It 
is not clear why the Windsor sites did not see a significant drop in NO2 
April but did in May and June, which requires further analysis. Again, 
this finding is similar to that of Griffin et al. (2020) who found that NO2 
levels in this region of the province were difficult to recreate as a result 
of difficulties in estimating changes in US-based emissions due to 
reduced activity during COVID lockdowns. 

The trends in O3 levels where the majority of the sites did not 
experience statistically significant drops during April-June 2020 relative 
to the same period in 2017–2020 suggest that these sites are in VOC- 
limited region on the typical ozone isopleths such that decreasing NOx 
levels at low to medium VOC levels does not decrease O3 levels (Seinfeld 
et al., 1991). The VOC/NOx ratio characteristic of that region is between 
4:1 and 8:1 (Seinfeld et al., 1991). Quantifying the VOC/NOx ratio for 
different Ontario cities is currently awaiting the public availability of the 
2020 VOC data for comparison with the 2017–2019 reference years. 

The statistically significant drops in CO at sites across the province, 
especially in April, highlight the drop in transportation during the 
pandemic. The drop in CO concentrations continued into May, with half 
of the sites recording a statistically significant drop. As the province 
relaxed quarantine measures and the population re-emerged during May 
and June, the drops in CO were generally smaller than April, and not 
always statistically significant. For the Toronto West site, statistically 
significant drops in CO were also observed in August, September and 

Fig. 12. (a-c) Percentage difference in weekday median levels of PM2.5 in 2020 relative to the same period in reference years, 2017–2019. The data for April–June 
are listed in Table 1 for these sites. (d-f) The percentage in PM2.5 median values in 2020 and 2017–2019 relative to January of the same year(s). The vertical lines 
highlight the statistically significant percentage decreases based on the p-values for April–June. 
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December reflecting reduced traffic on Hwy401 as Ontario residents 
were encouraged to limit travel. This could also be a reflection of the re- 
implementation of restrictions in the Toronto region that began in 
October (see Table S1). 

5. Environmental and health significance 

Results presented here are highly significant because (1) quantifying 
the significance of short term events on pollutant levels through statis
tical rigor is essential for well-informed policy decisions and public 
confidence, (2) our analysis provides numerical evidence of the effect 
that large scale lockdowns have on air quality in Southern Ontario, since 

Fig. 13. Comparison of the number of days with AQHI greater or equal to 4 (moderate risk, as calculated on the MECP website) in 2020 with the corresponding 
average for 2017–2019 reference years for selected stations during spring/summer months. 
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worsening air quality is one of the impacts of climate change (von 
Schneidemesser et al., 2015), and (3) policy makers would be better 
informed when planning for mitigation and adaptation for long-term 
and lasting positive effects of reducing air pollution (Ching and 
Kajino, 2020). For example, issuing special air quality and health ad
visories in Ontario relies on the calculation of the Air Quality Health 
Index (AQHI) directly from the 3-h average levels of NO2, O3 and PM2.5 
(MECP, 2017) according to Eq. (3) (Stieb et al., 2008): 

AQHI = (
1000
10.4

) × [
(
e0.000537×O3 − 1

)
+
(
e0.000871×NO2 − 1

)
+

(
e0.000487×PM2.5 − 1

)
]

(3) 

This index is used to formulate health messages to the at risk and 
general populations. Values of AQHI between 1 and 3 indicate ‘low risk’, 
4–6 ‘moderate risk’, 7–10 ‘high risk’ and above 10 ‘very high risk’ 
(MECP, 2017). Fig. 13 shows, for selected cities, the average number of 
days when the AQHI exceeded 4 in 2017–2019 for a minimum of one 
time (i.e., 3 h) versus the number of days in 2020 for the spring/summer 
months according to the data posted on the MECP website (MECP, 
2021). With the exception of Toronto Downtown which did not expe
rience reduction in NO2 levels in April (Table 1), there is a clear 
reduction in the number of days with AQHI above 4 in 2020 versus the 
average in the reference years 2017–2019. For Kitchener, the trend 
continued into May. However, within the standard deviation of the 
average values in 2017–2019, all the other cities showed similar number 
of days with AQHI above 4 for May-August. This result reflects the effect 
of easing COVID-19 restrictions during spring/summer months on air 
quality. 

In addition, meaningful change with respect to air pollution and air 
quality can only be solved with meaningful local change in select cir
cumstances. Our results highlight the impact that transboundary 
pollution and local industrial sources can have, limiting the effect that 
changing local transportation modes, as an example, can have on local 
air quality. Furthermore, our results also suggest that seasonal meteo
rology can account for large differences between years, compared to 
which the lockdown effect is insignificant. This highlights the impor
tance of considering all factors that influence air pollution and that 
policies critical to one jurisdiction may not have a significant impact in 
another jurisdiction. As the province continuously monitors and reports 
the effect of air quality regulations for different sites, future data 
collection should also focus on specific chemical compounds or classes 
that affect local O3 and PM2.5 formation (Kroll et al., 2020) to disen
tangle local versus transboundary sources. 

In light of recent research that correlates long term exposure to NO2 
(Ogen, 2020), PM2.5 and PM10 in polluted cities (Zoran et al., 2020) 
with fatalities caused by COVID-19, future analysis should also focus on 
the relationship between pollution levels and the number of confirmed 
COVID-19 cases and deaths in the sites analyzed here. Since airborne 
transmission is identified as the dominant route for the spread of 
COVID-19 (Asadi et al., 2020; Zhang et al., 2020), research that corre
lates PM levels in Southern Ontario and the rates of infections and 
deaths are worth investigating. It is important to account for population 
density, age, race, socioeconomic status and establish a clear baseline 
from previous years on major causes of respiratory diseases and fatality. 

6. Conclusions 

In conclusion, the government measures to limit the spread of 
COVID-19 in Southern Ontario resulted in statistically significant re
ductions in pollutant levels emitted from the transportation and indus
trial sectors in the majority of the sites analyzed over April–December 
2020. These reductions were beyond the seasonal variability observed 
within the last three years. Other sites were influenced by transboundary 
and/or other local influences (i.e., industry) that countered local re
ductions in human activity. While it is interesting to look at multiple 

months of data, any conclusions about the observed reductions beyond 
June in relating the changes directly to the impact of COVID restrictions 
is difficult. April and May were very much lockdown months in all ju
risdictions but starting in June, as the province (and neighboring states) 
opened up, the potential for transport of pollutants and staggered ac
tivity across the province makes it difficult to draw clear conclusions as 
to why the significant decreases happened in July to December. Our 
paper is not attempting to say unequivocally that significant decreases in 
April to June are due to lockdown restrictions. However, the coinci
dence of reduced activity with a reduction in pollutant levels which 
cannot be explained by random chance strongly suggests a lockdown 
effect. The significant decreases beyond June, particularly at the end of 
the year, could be due to other factors beyond meteorological parame
ters, seasonal variability, and transboundary influences. This highlights 
the power of our statistical approach: it can find statistically significant 
changes in year-on-year pollutant levels even when they are not antic
ipated. A more in-depth analysis of transportation, commercial and in
dustrial activity in individual municipalities during these time periods is 
required to make a more conclusive assessment of the pollutant changes 
beyond June 2020. 

The city-level long- and short-term trends in pollutant levels pro
vided herein is very useful in informing the public about the status of air 
quality through calculating the AQHI in response to government mea
sures and regulations aimed at limiting the spread of new diseases or to 
reduce air pollution and smog episodes. Our approach also highlights 
the benefits of rigorous assessment of statistical significance of pollution 
trends in informing future policies aimed at mitigating carbon emissions 
in Ontario, Canada. 
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