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Purpose: Our purpose was to assess the use of machine learning methods and Mobius 3D (M3D) dose calculation software to
reduce the number of physical ion chamber (IC) dose measurements required for patient-specific quality assurance during
corona virus disease 2019.
Methods and Materials: In this study, 1464 inversely planned treatments using Pinnacle or Raystation treatment planning soft-
ware (TPS) were delivered using Elekta Versa HD and Varian Truebeam and Truebeam STx linear accelerators between June
2018 andNovember 2019. For each plan, an independent dose calculation was performed usingM3D, and an absolute dosemea-
surementwas taken using a Pinpoint IC inside theMobius phantom. The point dose differences between the TPS andM3D calcu-
lation and betweenTPS and ICmeasurementswere calculated.Agreement between the TPS and ICwas used to define the ground
truth plan failure. To reduce the on-site personnel during the pandemic, 2methods of receiver operating characteristic analysis (n
Z 1464) and machine learning (nZ 603) were used to identify patient plans that would require physical dose measurements.
Results: In the receiver operating characteristic analysis, a predelivery M3D difference threshold of 3% identified plans that
failed an IC measurement at a 4% threshold with 100% sensitivity and 76.3% specificity. This indicates that fewer than 25%
of plans required a physical dose measurement. A threshold of 1% on a machine learning model was able to identify plans that
failed an ICmeasurement at a 3% threshold with 100% sensitivity and 54.3% specificity, leading to fewer than 50% of plans that
required a physical dose measurement.
Conclusions: It is possible to identify plans that aremore likely to fail IC patient-specific quality assurancemeasurements before
delivery. This possibly allows for a reduction of physical measurements taken, freeing up significant clinical resources and
reducing the required amount of on-site personnel while maintaining patient safety. Published by Elsevier Inc.
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Introduction patient anatomy and using independent beam data and dose
The presence of the corona virus disease 2019 (COVID-19)
outbreak in the United States required an immediate
assessment of clinical priorities and strategies for radiation
oncology programs across the country. To mitigate the
harm from the pandemic, on March 16, 2020, the City and
County of San Francisco, along with a group of 5 other Bay
Area counties and the City of Berkeley, issued parallel
health orders imposing shelter in place limitations across
the region.1 Additionally, the schools in the Bay Area
closed and remained closed through the end of the school
year (June 2, 2020), requiring educators and families to
transition to a distance-learning format. The Bay Area
experience parallels experiences across the country and
around the world, posing childcare and other challenges for
health care workers and their families, and introducing a
new paradigm where on-site staffing is limited for many
departments.

For our radiation oncology department, these staffing
challenges are exacerbated by the wide array of special
procedures, diverse equipment, and a uniquely divided
campus composed of 3 separate and distinct clinical facil-
ities. In addition to clinical risk assessments for patients,
migrating the majority of the clinical physics team to a
remote working environment was a priority and required an
assessment of the essential needs for different equipment
and procedures to ensure continued safe practices during
this pandemic, particularly in the context of patient-specific
intensity modulated radiation therapy (IMRT) quality
assurance (QA). For patient-specific IMRT QA, it is com-
mon practice to measure point dose or 2-dimensional and
3-dimensional (3D) dose distributions before treating pa-
tients and then compare these measurements with treatment
planning system (TPS) calculations.2 The identification of
plans that require measurement has been previously dis-
cussed and justified clinically in the context of Virtual
IMRT QA.2-6 To reduce the necessary on-site resources and
to limit COVID exposure risk to the team performing IMRT
QA while maintaining a high-level of confidence in the
safety and accuracy of patient-specific IMRT treatments,
use of Mobius 3D (Varian Medical Systems, Palo Alto, CA)
was proposed to identify a subset of plans that would fail an
ion chamber (IC) measurement. Measurements would then
be performed only on the subset predicted to fail.

Mobius3D (M3D) is a commercially available indepen-
dent dose verification software. M3D uses the full patient
Digital Imaging and Communications in Medicine
setdincluding the computed tomography (CT), plan, struc-
tures, and dosedto recalculate dose in 3 dimensions using a
collapsed cone superposition algorithm and independent
reference beam data.7 The software presents results as dose-
volume histogram comparisons for regions-of-interest, target
coverage, 3D gamma comparisons between the TPS and
M3D’s secondary dose calculation, and M3D-calculated
point doses at 7 points on a phantom.6 By including the
calculation algorithms, M3D provides a robust second check
of the treatment plan before the first fraction, as well as key
information about overall plan quality and deliverability
before IMRTQAmeasurement is performed. Furthermore, a
recent Imaging and Radiation Oncology Core study imple-
mented an independent dose recalculation system to evaluate
contribution of dose calculation errors to failing phantom
results and found that an independent calculation system is
well suited for detecting plan errors and appropriate for
conducting QA.8,9 This manuscript describes 2 novel
methods for significantly reducing the necessary number of
on-site personnel by reducing the number of required point
dose measurements for IMRT QA: a threshold analysis of
M3Ddata and the use ofmachine learning algorithms to build
a predictive model to identify patient plans requiring a
physical IC measurement.

Methods and Materials

Mobius QA process

The Mobius verification phantom is a water-equivalent
phantom featuring 7 IC positions (labeled A-G) and a film
plane. The M3D platform contains a digital Mobius phan-
tom used for dose calculation while the TPS uses a CT data
set of the Mobius phantom acquired and imported by the
user for QA purposes. Each patient IMRT plan is trans-
ferred to the M3D server from the TPS for a plan check
calculation. This plan check includes a phantom verifica-
tion section, where M3D calculates the dose (mean �
standard deviation) at each IC position (“M3D dose”). One
of the 7 positions is selected to obtain a physical point dose
measurement for absolute dose verification. The selected
point is ideally in a high dose, low gradient region, with a
mean dose that is greater than 80% of the prescription dose
and less than a 5% standard deviation. The patient plan is
also copied to the phantom CT in the TPS and recomputed
to determine the dose at each of the 7 chamber positions
(“TPS dose”). The Mobius phantom is set up on the treat-
ment couch with a small cylindrical IC (our clinic uses
PTW PinPoint 3D ICs with a 0.016 cm3 sensitive volume)
placed in the selected position, and a fraction is delivered to
measure the dose (“IC dose”). The M3D dose, TPS dose,
and IC dose for the chosen point are all recorded. The point
dose percent difference between the TPS calculation and
M3D calculation, and between the TPS calculation and IC
measurement is calculated using the TPS calculation as
ground truth. The QA process is illustrated in the flow chart
in Figure E1.

Data sets

Threshold model data set
From June 2018 through February 2020, 1464 IMRT plans
were evaluated using the Mobius QA process described
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previously. These plans were divided into 2 data sets: a
training set (to build models and rules) and a testing set
(which the models and rules do not see until it is time to
make the final prediction). This is illustrated in Figure E2.
The training data set was comprised of 1113 IMRT plans
that were delivered on an Elekta Versa HD (n Z 208),
Varian Truebeam (n Z 543), and Varian Truebeam STx (n
Z 362) between June 2018 and November 2019. The
testing data set was comprised of 351 plans from the same
machines: Versa (n Z 41), Truebeam (n Z 212), and
Truebeam STx (n Z 98), delivered between December
2019 and February 2020. This information is summarized
in Table 1. All plans were generated using Pinnacle version
16.0 (Philips Radiation Oncology Systems, Fitchburg, WI)
or RayStation version 7 (RaySearch Laboratories, Stock-
holm, Sweden) treatment planning software.

A secure online electronic data collection system
(REDCap)10 was used to collect IMRT plan parameters and
QA results including machine, energy, M3D point dose,
TPS point dose, and ion chamber measured point dose. In
addition to this, M3D plan information, such as M3D
calculated point dose, standard deviation on the M3D
calculated point dose, gamma passing rate, beam monitor
units, and number of segments, was also collected. The
gamma index, introduced by Low11 is a common analysis
metric used to quantify both the percent dose difference and
distance-to-agreement (DTA) between 2 dose distributions.
The gamma analysis in this study was performed within the
M3D software using thresholds of 5% dose difference and 1
mm DTA. This threshold was chosen during commis-
sioning of the software in 2017 using the 5% limit rec-
ommended by American Association of Physicists in
Medicine (AAPM) Task Group (TG-40)12 for independent
dose calculations and a 1 mm DTA to reflect the spatial
accuracy required for stereotactic body radiation therapy
(SBRT) treatments. The modulation factor, calculated by
dividing the total number of monitor units by the number of
segments, was included to provide an indication of plan
complexity, as highly modulated plans tend to be more
complex.13 Plans were excluded if a shift was necessary to
move the phantom into a high dose low gradient region for
QA, as the point dose data were not available on the server
for extraction.

Machine learning models data set
In 603 of the 1464 plans in the data set described in the
previous section, the M3D point dose was available for all 7
IC positions rather than that selected at the time of QA.
Table 1 Description and breakdown of training and testing data set

Model Data set Elekta Versa HD

Mobius threshold Training 208 (18.7%)
Testing 41 (11.7%)

Machine learning Cross-validated 0 (0%)
This additional information was available due to the
implementation of scripting in QA plan preparation in
RayStation. This subset was comprised of only Truebeam
(n Z 462, 76.6%) and Truebeam STx (n Z 141, 23.4%)
plans, all of them computed in RayStation. The complete
set of features described in Table E1 were included in a
machine learning regression model, and its performance
was assessed, which will be described in the following
section. This data set will be referred to as the machine
learning data set.
Classification system

Two models were generated based on the features described
in Table E1: a threshold model and a linear model using
statistical learning. These models were assessed by their
ability to correctly identify plans that failed the IC mea-
surement. The classification system described in Table 2
was used to calculate the sensitivity (proportion of failing
plans that were correctly flagged as failing) and specificity
(proportion of passing plans that were not flagged as
failing) according to equations (1) and (2). To ensure the
identification of any plans that might fail the IC measure-
ment, a sensitivity of 100% was prioritized.

SensitivityZTP= ðTP þ FNÞ ð1Þ
SpecificityZTN = ðTN þ FPÞ ð2Þ

Threshold model

The disagreement between the TPS dose and the IC dose
was computed, and thresholds of 5%, 4%, and 3% were
analyzed. Thresholds of disagreement between TPS and
M3D point doses (M3D threshold) were evaluated for
ability to predict IC results using confusion matrices and
receiver operating characteristic curve analysis.14,15 In this
model, a sensitivity of 100% was preferred while maxi-
mizing specificity. For further quantitative analysis, the
plans were stratified by machine and disease site.

For the 4% and 3% thresholds, the gamma index and
modulation factor were also analyzed to determine how
inclusion of additional metrics could improve predictive
power. A Mann-Whitney U test was used to test for sta-
tistical significance of using these factors in a predictive
capacity. Analysis for this model was performed in Matlab
version R2019a (The Mathworks Inc, Natick, MA).
s

Varian Truebeam Varian Truebeam STx Total

543 (48.8%) 362 (32.5%) 1113
212 (60.4%) 98 (27.9%) 351
462 (76.6%) 141 (23.4%) 603



Table 2 Classification system for plans using M3D and IC results

Classification Description Indications

TP Failing plans were correctly identified as
failing (failed both M3D and IC)

IC measurement required

FP Passing plans were incorrectly identified
as failing (failed M3D but passed IC)

IC measurement required

TN Passing plans were correctly identified as
passing (passed both M3D and IC)

No IC measurement required

FN Failing plans were incorrectly identified
as passing (passed M3D but failed IC)

No IC measurement required

Abbreviations: FN Z false negative; FP Z false positive; IC Z ion chamber; M3D Z Mobius3D; TN Z true negative; TP Z true positive.
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Machine learning models

Various machine learning methods have been applied to
patient-specific QA data in the last 5 years in an attempt to
use their ability to model complex multivariable relation-
ships to predict QA test results. For the machine learning
data set, a linear least square regression model was first
built, in which the sum of the square error is minimized to
find the best fit.16 The features described in Table E1 were
first normalized by subtracting the mean of each feature and
dividing by its standard deviation, and then they were used
as inputs to the linear regression model. To avoid overfitting
the model, 10-fold cross-validation, which involves split-
ting the data into 10 parts and building a linear regression
model 10 times, each time withholding a different part of
the data on which to test the built model, was performed.
The 10-fold cross-validated correlation between predicted
and measured percent dose difference was reported.

These same features were also used as inputs to decision
trees. Decision trees are a set of nodes where each node
divides the data based on a single rule about a specific
feature.17 To reduce the complexity of the trees the
maximum number of splits can be defined. These decision
trees were built with the maximum number of splits set
between 20 and 30 inclusive. For each maximum number of
splits, 10 trees were built with a random subsample of 500
out of the 603 patients. Each terminal node contained a set
of patients who were grouped together based on the tree
rules upstream of the node. Each of these terminal nodes
was then considered a binary feature, meaning that for each
patient a 1 or 0 was entered for each terminal node feature,
which indicated whether the patient occupied the node.
Using the terminal nodes as features together with the
original features allowed for the modeling of non-
linearities.18,19 Both the terminal nodes and the original
features (Table E1) were passed to a Lasso-regularized
linear regression model, again following input normaliza-
tion, to perform the final feature selection and for model
building. Lasso-regularization adds a constraint to the size
of the coefficients that serves as a feature selection tool.
This algorithm, which used the decision tree output in a
Lasso linear regression model, known as RuleFit, has been
shown to be both highly interpretable while providing state
of the art accuracy.20 The predicted output and correlation
were reported from a 10-fold cross-validated model with
hyperparameter tuning of the lambda parameter. The 10
most important variables according to the regularized linear
model were identified, and the decisions that placed pa-
tients in that node (leaf rules) were fully described.

Linear regression was used over logistic regression to
return a prediction of IC disagreement rather than a pass-or-
fail parameter, which would be specific to a single in-
stitution’s passing threshold. A threshold of the predicted
disagreement between TPS dose and IC measurement was
found, which was able to identify plans failing the IC
measurement by more than 3% while maintaining 100%
sensitivity. Analysis for this model was performed in
Matlab vR2019a (The Mathworks Inc) and R Studio v1.2
(RStudio Inc, Boston, MA).
Results

Threshold model

The percent difference between TPS and M3D dose and
between TPS and IC dose in the training data set was not
correlated, with an R-squared of 0.01, as shown in
Figure E3. Figure 1 shows receiver operating characteristic
curves to determine a threshold at which sensitivity can be
kept at 100% while maximizing specificity for IC thresh-
olds of 5%, 4%, and 3%.

Confusion matrices for the different IC thresholds are
shown in Tables 3 to 5 for all plans, and are also broken
down by machine. Table E2 shows the confusion matrices
when an M3D threshold of 5% is applied to identify plans
that fail at an IC threshold of 5%. There are no results for
the testing data set because there are no plans above 5%
difference for either M3D or IC. A total of 1032 plans
(92.7%) passed both the M3D and IC threshold (Versa:
74.5%; Truebeam STx: 97.5%; Truebeam: 96.5%). The 8
plans that failed at the IC measurement threshold also
failed at the M3D calculation threshold, and included 3
lung and 5 head and neck plans. In addition, 73 plans failed
the M3D calculation but not the IC measurement. This
indicates that a threshold of 5% for M3D has a sensitivity
of 100% and a specificity of 93.4%, suggesting that only
7.3% of the 1113 plans required an IC measurement.
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Table 6 shows the confusion matrix results when an
M3D threshold of 3% was applied to identify plans that fail
at an IC threshold of 4%. In the training data set, a total of
833 plans (74.8%) passed both the M3D and IC thresholds
(Versa: 45.2%; Truebeam STx: 82.6%; Truebeam: 81.0%).
The 3 plans that failed the IC measurement that were not
treated on the Versa were all spine SBRT plans. All plans
that failed the IC measurement also failed the M3D
calculation. In addition, 259 plans failed the M3D calcu-
lation but not the IC measurement. This indicates an M3D
threshold of 3% yields a sensitivity of 100% and specificity
of 76.3% when identifying plans that fail at an IC threshold
of 4%. The testing data set had similar results with 70.3%
of plans passing both the M3D and IC thresholds. Only 1
plan in the testing data set failed the IC measurement at the
4% threshold, and it also failed the M3D calculation at the
3% threshold. The testing data set shows 100% sensitivity
and 70.3% specificity at these thresholds, indicating that
only 29.7% of plans would require QA.

Table E3 shows the confusion matrix when an M3D
threshold of 0.5% was applied to identify plans that fail at an
IC threshold of 3%. In the training data set a total of 134 plans
(12.0%) passed both the M3D and IC threshold (Versa: 6.7%;
Truebeam STx: 14.6%; Truebeam: 12.3%). All plans that
failed the ICmeasurement also failed theM3D calculation. In
addition, 886 plans failed the M3D calculation but not the IC
measurement. This indicates that an M3D threshold of 0.5%
results in a sensitivityof 100%and a specificity of 13.1%when
identifying plans that fail at an IC threshold of 3%. The testing
data set had similar results, with 13.1% of plans passing both
the M3D and IC thresholds. The testing data set shows 100%
sensitivity and 13.8% specificity at this threshold.

Table 3 shows the breakdown of the 4% and 3% IC
passing rates in the training data for selected disease sites.
The median and the Mann-Whitney U test P values for the
gamma passing rate and modulation factor at the 4% and 3%
IC thresholds are shown in Table E4 for the training data set.
Both the gamma passing rate and modulation factor differ-
ences were statistically significant between plans that passed
an IC measurement at a 3% threshold and plans that failed.
Only the modulation factor was statistically significantly
different between plans that passed an IC measurement at a
4% threshold and plans that failed. A threshold model with
100% sensitivity was not able to be built using these metrics.
Machine learning models

The linear least square regression model demonstrated a
weak correlation (R-squaredZ 0.19) between the predicted
percent difference and the measured percent difference in
the machine learning data set, as shown in Figure 2. The
root mean square error of the fit is 0.53. Figure 3 shows a
histogram of residuals between the predicted and measured



Table 3 Breakdown of passing rates using M3D and IC for training data by selected disease sites

4% Ion chamber threshold 3% Ion chamber threshold

Brain Brain
n Z 155 Ion chamber Plans to QA n Z 155 Ion chamber Plans to QA

Fail Pass Fail Pass
M3D Fail 0 18 11.6% M3D Fail 2 124 81.3%

Pass 0 137 Pass 0 29
Prostate Prostate
n Z 146 Ion chamber n Z 146 Ion chamber

Fail Pass Fail Pass
M3D Fail 0 16 11.0% M3D Fail 14 22 24.7%

Pass 0 130 Pass 0 110
Lung Lung
n Z 106 Ion chamber n Z 106 Ion chamber

Fail Pass Fail Pass
M3D Fail 9 51 56.6% M3D Fail 19 82 95.3%

Pass 0 46 Pass 0 5
Spine Spine
n Z 142 Ion chamber n Z 142 Ion chamber

Fail Pass Fail Pass
M3D Fail 2 36 26.8% M3D Fail 7 118 88.0%

Pass 0 104 Pass 0 17
Head & neck Head & neck
n Z 87 Ion chamber n Z 87 Ion chamber

Fail Pass Fail Pass
M3D Fail 6 35 47.1% M3D Fail 15 63 89.7%

Pass 0 46 Pass 0 9

Abbreviations: IC Z ion chamber; M3D Z Mobius3D; QA Z quality assurance.
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percent differences. The mean and standard deviation of the
distribution are 0.00 and 1.41, respectively.

The 110 binary decision tree models created 2913 ter-
minal nodes. These nodes were added to the 36 other fea-
tures and used as input to the 10-fold cross-validated Lasso-
Table 4 Confusion matrices when a 1% machine learning
model threshold is used to predict a 3% IC threshold

All machines

n Z 603 Ion
chamber

Plans to QA

Fail Pass
Machine Learning model Fail 41 257 49.4%

Pass 0 305
Truebeam STx
n Z 141 Ion

chamber
Fail Pass

Machine Learning model Fail 6 31 26.2%
Pass 0 104

Truebeam
n Z 462 Ion

chamber
Fail Pass

Machine Learning model Fail 35 226 56.5%
Pass 0 201

Abbreviations: IC Z ion chamber; QA Z quality assurance.
regularized linear model. The 10 most important variables
as selected by the regularized model were identified and
their leaf rules described in Table E5. A leaf rule is a list of
the decisions made in the decision tree that would place a
plan in a terminal node. Using this model improved the
correlation between the predicted percent difference and
the measured percent difference in the machine learning
data set to an R-squared of 0.60, as shown in Figure 4, and
the root mean square error to 0.71. Figure 5 shows a his-
togram of residuals between the predicted and measured
percent differences. The mean and standard deviation of the
distribution is 0.02 and 0.97, respectively.

Table 4 contains the confusion matrices when a

threshold on the machine learning model of 1% is applied

to identify plans that fail at an IC threshold of 3%. Results

are omitted for an IC threshold of 4% because there were

only 4 plans above this threshold. No plans were above the

5% IC threshold. A total of 305 plans (50.6%) passed both
the machine learning model (1%) and IC (3%) threshold

(Truebeam STx: 73.8%; Truebeam: 43.5%). All 41 plans

that failed the IC measurement also failed at the machine

learning model threshold. In addition, 257 plans failed at

the machine learning model threshold but not the IC mea-

surement. This gives the 1% machine learning model

threshold 100% sensitivity and 50.6% specificity when

identifying plans at the 3% IC threshold, indicating that

only 49.4% of these plans required an IC measurement.



Table 5 Confusion matrices when a 3% M3D threshold is used to predict 4% IC threshold

Training Testing

All machines All machines
n Z 1113 Ion chamber Plans to QA n Z 350 Ion chamber Plans to QA

Fail Pass Fail Pass
M3D Fail 21 259 25.2% M3D Fail 1 103 29.7%

Pass 0 833 Pass 0 246
Versa Versa
n Z 208 Ion chamber n Z 41 Ion chamber

Fail Pass Fail Pass
M3D Fail 18 96 54.8% M3D Fail 0 28 68.3%

Pass 0 94 Pass 0 13
Truebeam STx Truebeam STx
n Z 362 Ion chamber n Z 98 Ion chamber

Fail Pass Fail Pass
M3D Fail 2 61 17.4% M3D Fail 0 21 21.4%

Pass 0 299 Pass 0 77
Truebeam Truebeam
n Z 543 Ion chamber n Z 212 Ion chamber

Fail Pass Fail Pass
M3D Fail 1 102 19.0% M3D Fail 1 57 27.4%

Pass 0 440 Pass 0 154

Abbreviations: IC Z ion chamber; M3D Z Mobius3D; QA Z quality assurance.
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Discussion

For this study, a large IMRT QA data set was used to

determine whether M3D calculations could identify

which IMRT plans require a physical IC measurement

during the COVID-19 crisis and beyond. A threshold

analysis using the difference between the TPS and M3D

calculated dose was performed, along with the develop-

ment of a machine learning regression model, and the

resulting confusion matrices were compared. Additional

plan complexity metrics such as gamma index and mod-

ulation factor were also considered to improve the power

of the methods but ultimately were not shown to be ad-

vantageous at this time.
Our analysis demonstrated that meaningful thresholds

could be found in which M3D had perfect (100%) sensi-
tivity in identifying IMRT QA plans that failed IC mea-
surements at the 5% and 4% thresholds. Applying a
threshold of 5% on the M3D calculation to identify failing
plans at the 5% IC threshold can safely reduce the quantity
of plans requiring an IC measurement by 93%, leading to a
significant reduction of required on-site measurement time.
A more conservative M3D threshold of 3% identifies plans
that fail the IC measurement at the 4% threshold while
retaining perfect sensitivity and reducing the number of
plans requiring physical measurements by 70%. Both of
these scenarios would lead to a significant decrease in
necessary on-site IMRT QA resources and personnel.

These thresholds can be easily adjusted to fit an in-
stitution’s comfort level and can be further adapted based
on treatment site and machine. However, we found no
correlation (R-squared Z 0.01) between the Mobius model
and the measurement. This suggests that the success of the
threshold model was more likely to be related to suboptimal
M3D modeling of the Versa HD machine, which in the
training data set accounted for 100% of failing plans at the
5% IC threshold level and 85.7% at the 4% level. At the 3%
IC threshold level, where Versa HD only accounted for
55.9% of the failures, the Mobius threshold model was only
able to reduce the QA load by less than 15% (with a 0.5%
threshold on the M3D calculation). It should also be noted
that because the training and testing data sets were acquired
at different time points, time-correlated biases may be
present. Other groups have also found that Mobius3D
modelled Varian accelerators better than Elekta accelera-
tors,21 further supporting that Versa HD modeling issues
may contribute to a systematic larger difference. A further
confounder in the data is the fact that the Versa HD at our
institution is used to treat more complex cases, such as lung
and head and neck.

This led us to investigate a better model that would be
correlated with the IC measurement. Although a linear
model provided some weak correlation (R-squared Z
0.19), this improved significantly when decision trees were
incorporated into the model. The Lasso-regularized ma-
chine learning model incorporating these trees had a cor-
relation R-squared of 0.60 and would reduce the QA
workload by just over 50% when applying a model
threshold of 1% to identify plans that fail at the 3% IC
threshold, compared with a reduction of less than 20% that
was observed at the 3% IC threshold in the Mobius
threshold model. Once again, the model threshold can be
adjusted to fit institutional tolerances and comfort level. It
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features on the machine learning data set.
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should be noted that the range of predicted disagreement is
smaller than the range of measured disagreement because
there are fewer measured data points at the extremes, which
results in the prediction models being more likely to predict
smaller values.
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Fig. 3. Histogram of residuals between measured and predicte
model with 36 features on the machine learning data set.
These machine learning models use the dose data at all 7
M3D phantom IC positions compared with the data from a
single position as available for the threshold model.
Removing the data related to the additional 6 IC positions
from the machine learning data set shows a small reduction
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d percent differences using a 10-fold cross-validated linear



True TPS/IC% Difference

Pr
ed

ic
te

d 
TP

S/
IC

%
 D

if
fe

re
nc

e
R2 = 0.60

Residual (true predicted)

-4
-4 -3 -2 -1

-3

-2

-1

0

0 1 2 3 4

Fig. 4. Correlation between the predicted percent difference and the measured percent difference in the 10-fold cross-
validated regularized linear model with the node features added to the 36 previous features on the machine learning data set.

Hasse et al. International Journal of Radiation Oncology � Biology � Physics1094
in correlation from the linear model from the R-squared of
0.19 to 0.17, but a more sizeable reduction in the correla-
tion from the Lasso-regularized model of the tree output
from the R-squared of 0.60 to 0.47.

For the purposes of a departmental COVID staffing
action plan, we decided to implement the Mobius
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Fig. 5. Histogram of residuals between measured and predicted
linear model on the machine learning data set.
threshold approach using an M3D threshold of 3% in an
attempt to ensure measurement of any IMRT plans that
will fail an IC measurement with a 4% passing threshold.
We also chose to continue with IC measurements for all
SBRT and Elekta Versa plans. The choice of additional
measurements for all Versa plans is due to the marginal
-predicted)

1 2 3 4

percent differences in the cross-validated Lasso-regularized
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agreement of the M3D and TPS for this machine.
Furthermore, to detect any gross deliverability errors
before a patient’s first fraction, and to allow for log file
analysis in M3D, all plans would be run on the machine
by a therapist or physicist before the first fraction without
taking any measurements. Avoiding errors in deliver-
ability is especially crucial in the context of COVID as
these errors may result in extended time in the depart-
ment. If deliverability or transfer errors are not detected
before the first fraction, the length of time a potentially
infected patient is in the clinic increases and puts other
patients and staff at risk. Implementing the proposed
strategy will reduce the number of required measurements
while maintaining patient safety. Performing deliver-
ability dry-runs without an IC measurement reduces the
staff specialization level and therefore can be run by staff
already on-site and in between patients. This also enables
deliverability issues to be identified earlier in the day
compared with traditional end-of-day QA. A second op-
tion also exists that can reduce QA further by replanning
those plans that are higher than the model tolerance. Of
course, consideration must also be given to the extra time
and dosimetry staff burden of a replan. The difference
between the predicted IC disagreement and the model
threshold limit can be used to aid these decisions.

Although the machine learning model offered stronger
correlation with IC measurement over the Mobius threshold
model, there is still room for improvement. Limitations of
this study include limited sensitivity to determine error
causality and the use of the IC to obtain point dose mea-
surements as ground truth, which can only probe a limited
number of locations within a 3D irradiated volume. How-
ever, this study should be of interest to any sites that use IC
for an IMRT QA passing metric. Furthermore, the method
of data analysis presented here can be used to highlight
systematic deviations for further examination. In the future,
plan parameters that are commonly associated with IMRT
QA failure modes, for example MLC positions, can be
added to the machine learning models in an effort to further
increase correlation and achieve a model that will be
implemented post-COVID for general QA workload
reduction.

In conclusion, an M3D threshold analysis strategy was
developed to identify the IMRT plans that required physical
IC measurements, reducing the necessary on-site personnel
resources by 70% while maintaining institutional patient
safety and accuracy standards during the COVID-19
pandemic. Plan characteristics associated with common
IMRT QA failure modes will be investigated and added to
new machine learning models to reduce the QA workload
further with improved confidence to be implemented
post-COVID.
References

1. Order of the Health Officer No. C19-07. San Francisco Department

of Public Health. Available at: www.sfdph.org/dph/alerts/files/

HealthOrderC19-07-%20Shelter-in-Place.pdf. Accessed March 16,

2020.

2. Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M,

Solberg TD. A mathematical framework for virtual IMRT QA using

machine learning. Med Phys 2016;43:4323-4334.

3. Valdes G, Chan MF, Lim SB, Scheuermann R, Deasy JO, Solberg TD.

IMRT QA using machine learning: A multi-institutional validation. J

Appl Clin Med Phys 2017;18:279-284.

4. Interian Y, Rideout V, Kearney VP, et al. Deep nets vs expert designed

features in medical physics: An IMRT QA case study.Med Phys 2018;

45:2672-2680.

5. Lam D, Zhang X, Li H, et al. Predicting gamma passing rates for

portal dosimetry-based IMRT QA using machine learning. Med Phys

2019;46:4666-4675.

6. Potter NJ, Mund K, Andreozzi JM, et al. Error detection and classi-

fication in patient-specific IMRT QA with dual neural networks. Med

Phys 2020;47:4711-4720.

7. Dunn L, Jolly D. Automated data mining of a plan-check database and

example application. J Appl Clin Med Phys 2018;19:739-748.

8. Kerns JR, Stingo F, Followill DS, Howell RM, Melancon A, Kry SF.

Treatment planning system calculation errors are present in most

imaging and radiation oncology core-Houston phantom failures. Int J

Radiat Oncol Biol Phys 2017;98:1197-1203.

9. Kry SF, Glenn MC, Peterson CB, et al. Independent recalculation

outperforms traditional measurement-based IMRT QA methods in

detecting unacceptable plans. Med Phys 2019;46:3700-3708.

10. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JC.

Research Electronic Data Capture (REDCap)dA metadata-driven

methodology and workflow process for providing translational

research informatics support. J Biomed Informat 2009;42:377-381.

11. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quan-

titative evaluation of dose distributions. Med Phys 1998;25:656-661.

12. Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation

oncology. Med Phys 1994;21:581-618.

13. Hernandez V, Saiz J, Pasler M M, et al. Comparison of complexity

metrics for multi-institutional evaluations of treatment plans in

radiotherapy. Phys Imag Radiat Oncol 2018;5:37-43.

14. DeLuca PM. ICRU report 79: Receiver operating characteristic anal-

ysis in medical imaging. J ICRU 2008;8.

15. Japkowicz N, Shah M. Performance evaluation in machine learning.

In: El Naqa I, Li R, Murphy M, editors. Machine Learning in Radi-

ation Oncology. New York: Springer; 2015.

16. Valdes G, Luna J, Eaton E, et al. MediBoost: a Patient Stratification

Tool for Interpretable Decision Making in the Era of Precision Med-

icine. Sci Rep 2016;6:37854.

17. Schroeder LD, Sjoquist DL, Stephan PE. Understanding Regression

Analysis: An Introductory Guide. 2nd ed. Bookshare. Beverly Hills:

Sage Publications; 1986.

18. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and

Regression Trees. Florida: Routledge; 2017.

19. Luna JM, Gennatas ED, Ungar LH, et al. Building more accurate decision

trees with the additive tree. Proc Natl Acad Sci 2019;116:19887-19893.

20. Friedman J, Popescu B. RuleFit with R. Available at: http://statweb.

stanford.edu/wjhf/R-RuleFit.html. Accessed March 2020.

21. Nakaguchi Y, Nakamura Y, Yotsuji Y. Validation of secondary dose

calculation system with manufacturer-provided reference beam data

using heterogeneous phantoms. Radiol Phys Technol 2019;12:126-135.

http://www.sfdph.org/dph/alerts/files/HealthOrderC19-07-%20Shelter-in-Place.pdf
http://www.sfdph.org/dph/alerts/files/HealthOrderC19-07-%20Shelter-in-Place.pdf
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref2
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref2
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref2
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref3
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref3
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref3
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref4
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref4
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref4
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref5
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref5
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref5
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref6
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref6
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref6
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref7
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref7
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref8
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref8
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref8
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref8
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref9
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref9
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref9
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref10
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref10
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref10
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref10
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref10
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref11
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref11
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref12
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref12
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref13
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref13
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref13
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref14
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref14
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref15
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref15
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref15
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref16
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref16
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref16
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref17
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref17
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref17
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref18
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref18
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref19
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref19
http://statweb.stanford.edu/%7Ejhf/R-RuleFit.html
http://statweb.stanford.edu/%7Ejhf/R-RuleFit.html
http://statweb.stanford.edu/%7Ejhf/R-RuleFit.html
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref21
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref21
http://refhub.elsevier.com/S0360-3016(20)34452-7/sref21

	Use of Receiver Operating Curve Analysis and Machine Learning With an Independent Dose Calculation System Reduces the Numbe ...
	Introduction
	Methods and Materials
	Mobius QA process
	Data sets
	Threshold model data set
	Machine learning models data set

	Classification system
	Threshold model
	Machine learning models

	Results
	Threshold model
	Machine learning models

	Discussion
	References


