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a b s t r a c t

The aim of this research is to forecast seasonal fluctuations in electricity consumption, and electricity
usage efficiency of industrial sectors and identify the impacts of the novel coronavirus disease 2019
(COVID-19). For this purpose, a new seasonal grey prediction model (AWBO-DGGM(1,1)) is proposed: it
combines buffer operators and the DGGM(1,1) model. Based on the quarterly data of the industrial en-
terprises in Zhejiang Province of China from the first quarter of 2013 to the first quarter of 2020, the
GM(1,1), DGGM(1,1), SVM, and AWBO-DGGM(1,1) models are employed, respectively, to simulate and
forecast seasonal variations in electricity consumption, the added value, and electricity usage efficiency.
The results indicate that the AWBO-DGGM(1,1) models can identify seasonal fluctuations and variations
in time series data, and predict the impact of COVID-19 on industrial systems. The minimum mean
absolute percentage errors (MAPEs) of the electricity consumption, added value, and electricity usage
efficiency of industrial enterprises separately are 0.12%, 0.10%, and 3.01% in the training stage, while those
in the test stage are 6.79%, 4.09%, and 2.25%, respectively. The electricity consumption, added value, and
electricity usage efficiency of industrial enterprises in Zhejiang Province will still present a tendency to
grow with seasonal fluctuations from 2020 to 2022. Of them, the added value is predicted to increase the
fastest, followed by electricity consumption.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background and motivation

Forecasting energy consumption in the course of economic ac-
tivity is important for a country to cope with climate change and
ensure sustainable economic growth [1]. Electricity is a high-
quality secondary energy and its consumption dominates the en-
ergy consumption structure. Industrial enterprises play a leading
role in electricity consumption and the electricity consumption of
industrial sectors is closely related to their economic growth.
Forecasting the electricity consumption and added value of in-
dustrial enterprises is related to the understanding of the reliability
ei), zyf422539392@163.com
of the economic growth rate of industrial sectors. Moreover, there is
a practical need for governments to forecast electricity demand and
analyze the constraints of various factors in economic planning.
According to the data released by Zhejiang Provincial Bureau of
Statistics (http://tjj.zj.gov.cn/), the output value of industrial en-
terprises in the province is growing rapidly: the total added value of
industrial enterprises in Zhejiang Province increased from 1158.4
billion yuan in 2013 to 1824.6 billion yuan in 2019, with an average
annual growth rate of 6.74%. Strongly driven by the growth of in-
dustrial production, the electricity consumption of industrial en-
terprises also shows a trend of rapid growth. In 2019, the electricity
consumption of industrial enterprises reached 3.2345 � 1011 kW h,
accounting for 75.4% of the total electricity consumption. It can be
seen from Figs. 1 and 2 that the electricity consumption and added
value of industrial enterprises in Zhejiang Province show seasonal
and cyclical fluctuations. The outbreak of the novel coronavirus
disease 2019 (COVID-19) in early 2020 has a significant effect on the
electricity consumption and added value of industrial enterprises.

The research expands the prediction method for energy
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Fig. 1. Quarterly electricity consumption data: industrial enterprises in Zhejiang Province from 2013 to 2020.

Fig. 2. Quarterly added value data: industrial enterprises in Zhejiang Province from 2013 to 2020.
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consumption in conventional scenarios and the improved method
is not only suitable for prediction of energy consumption of sea-
sonal time series with structural breaks under the influences of
unconventional events, but also can predict energy consumption in
conventional scenarios. To verify the practicability and effective-
ness of themodel, the quarterly data about electricity consumption,
added value, and electricity usage efficiency of the industrial en-
terprises in Zhejiang Province of China from 2013 to 2020 are used.
This conforms to the modeling requirement of the grey system for a
small sample size and poor information, so the model performs
well in predicting the seasonal and periodic data in the industrial
system. In addition, it also considers the significant influences of an
external impact, that is, the COVID-19 pandemic, on the accuracy of
the model.

1.2. Literature review

The electricity usage efficiency of industrial sectors reflects the
relationship between their added value and electricity consump-
tion. Its improvement is of significance to the upgrading of the
structure of industry and realizing the high-quality development of
industrial sectors in China; however, because the electricity con-
sumption and economic output of industrial enterprises are
affected by many factors, such as urbanization, climate, price and
government policy intervention [2], they show certain character-
istics of seasonal variations, making them difficult to forecast.
Scientifically, reasonably forecasting and mastering seasonal vari-
ations in electricity consumption, economic added value and
2

electricity usage efficiency of industrial sectors are the important
bases for the layout, policy and development planning of electricity
industry in the future. In recent years, scholars have investigated
the forecasting of electricity consumption. The studies focus on
models based on traditional statistical methods, such as an autor-
egressive integrated moving average (ARIMA) model [3,4], a
multivariate regression model [5e7] and an error correction model
[8]. Furthermore, with the development of artificial intelligence
and big data technology, machine learning methods have attracted
the attention of many scholars. The models based on big data and
machine learning methods include support vector machine (SVM)
[9e11], artificial neural networks (ANNs) [12], nonlinear auto-
regressive neural networks (NARNNs) [13] and Quantile Regres-
sion Neural Network (QRNN) [14], which are widely used in the
such forecasts. In addition, some scholars use evolutionary algo-
rithms, such as the particle swarm optimization (PSO) algorithm
[15] and genetic algorithm [16] to optimize the model parameters,
thus improving forecast accuracy. These models have provided
good energy forecasts, albeit with certain shortcomings; for
example, the strongly explanatory models based on the traditional
statistical methods can only make predictions under strict as-
sumptions, and the forecast effects are unsatisfactory. The models
based on machine learning have strong predictability at the cost of
interpretability and need a lot of data for repeated training and
testing, with a high complexity therein. For these reasons, some
scholars begin to use hybridmodels for forecast. By combining with
the traditional machine learningmethods and econometric models,
Fan et al. [17] constructed a new hybrid forecastingmodel, namely a
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model integrating empirical mode decomposition (EMD), support
vector regression (SVR), PSO, autoregression (AR), and generalized
autoregressive conditional heteroskedasticity (GARCH). The model
is used to forecast electricity consumption data in New South
Wales. In view of the low robustness of traditional statistical
methods and machine learning methods in predicting the non-
linear electricity demand, Bedi and Toshniwal [18] built a deep
learning model considering the long-term dependence of historical
data. They used clustering and long short-term memory (LSTM)
network for prediction and the results indicate that the model is
practicable and effective.

The grey forecasting model was first proposed by Professor
Deng Julong in the 1980s [19]. Compared with other forecasting
methods, the grey forecasting model has obvious advantages when
used on incomplete information and small sample data. It is widely
used in many fields, such as economy, energy, and agriculture due
to its outstanding performance [20e22]. From different research
perspectives including optimization of background values [23,24],
model parameters [25e27] and initial conditions [28], as well as
accumulative generation method [29e31], some scholars have
expanded the research scope of the grey model (GM) and improved
its forecast accuracy. In recent years, many scholars have found that
the traditional GM with a linear structure has been unable to
provide accurate forecasts of energy consumption, so a lot of
scholars have extended the traditional model to adapt to the data
with non-linear characteristics. Jia et al. [32] corrected the GM(1,1)
model through use of Markov chains and verified the accuracy of
the model by forecasting coal consumption of Gansu Province,
China from 1999 to 2018. Ayvaz et al. [33] forecast greenhouse gas
emissions in the regions including Turkey by establishing discrete
grey models (DGMs) with rolling and non-rolling mechanisms. Luo
et al. [34] optimized the parameters of a discrete grey polynomial
model through the PSO algorithm. Ma & Liu [35] developed a time-
delayed polynomial grey model (TDPGM(1,1)) to forecast natural
gas consumption in China. Nguyen et al. [36] filtered the errors by
Fourier series, so that the non-linear grey Bernoulli model (NGBM)
can be applied in different situations in the case of data fluctuation
and information uncertainty. By extending the traditional integer-
order buffer operators to fractional-order operators, Wu et al. [37]
revealed the internal relationship between the strengthening and
weakening buffer operators and verified the effectiveness of the
model through six cases. Based on the greymodeling technique and
forward difference method, Wu et al. [38] built a new fractional-
order multivariate grey model (GM(a,n)). Wei et al. [39] expanded
the DGM(1,1) model and used the data adaptive selection algorithm
to optimize the model structure, which shows favorable robust-
ness. By adopting the variable weight buffer operator of perfect
information, He et al. [40] predicted the production and sales of
new-energy vehicles in China and favorably reflected the non-
stationary characteristic of the production and sales data. In addi-
tion, considering that a single model cannot readily forecast the
trends in the development of a system, some scholars have com-
bined the GM with other models to build hybrid forecasting
models. By combining the residual modification model with ANNs,
Hsu & Chen [41] proposed an improved GM(1,1) model. Combining
the NGBM with the capital intensity model, Zheng et al. [42]
established a hybrid model that can forecast changes of capital
intensity, to forecast the capital intensity of new energy industry in
China. By using the mean GM(1,1) and grey Verhulst model, Katani
[43] forecast the total energy consumption in Ghana. Instead of the
least squares method for parameter estimation in the traditional
GM(1,1) model, Moonchai & Chutsagulprom [44] used Kalman
filtering to estimate parameters of the model. By introducing the
association rules of the machine learning in the multivariable GM
for the first time, Ma et al. [45] studied the linear relationship
3

between each variable and the carbon emission to good effect.
For the forecasting of time series data with the characteristics of

seasonal fluctuation, the traditional GM cannot identify seasonal
variations, showing low accuracy, therefore, some scholars
improved the grey forecastingmodel by using differentmethods, so
that it can forecast seasonal time series: these can be classified into
two categories: one is based on a group modeling method. Wang
et al. [46] firstly proposed a data grouping approach based on the
grey modeling method DGGM (1,1). Based on this, they proved that
the new model is applicable to time series data with the charac-
teristics of seasonal fluctuation based on quarterly data pertaining
to hydropower generation in China. Wang et al. [47] proposed a
grey forecasting model based on data grouping and buffer opera-
tors through the genetic algorithm to optimize the parameters of
the model, which accurately forecasts seasonal fluctuation of resi-
dential solar energy consumption in the United States. The other
category is a new grey forecasting model established by combining
time series with the GM. Wang et al. [48] combined the GM with
seasonal fluctuation in time series and applied the adaptive
learningmechanisms into the newmodel, leading to a high forecast
accuracy. Xu et al. [49] built a GM-autoregressive moving average
(ARMA) model based on the Hodrick-Prescott (HP) filter method to
forecast energy consumption under different application situations.
Due to non-linear and seasonal characteristics of time series data
pertaining to short-term traffic flow, Xiao et al. [50] performed
cyclic truncation and generation on the original series to weaken
the random disturbance of the original series. The empirical results
show that the model has good adaptability and stability for the
traffic volume data with the characteristics of seasonal variations.
Wang et al. [51] constructed a grey forecasting model based on the
cumulative generation operators of seasonal factors, namely a
seasonal grey model (SGM(1,1)), and optimized by using the PSO
algorithm. This model accurately forecasts seasonal fluctuation of
electricity consumption of primary industry in China. In the sub-
sequent studies, Wang et al. introduced seasonal factors with dy-
namic adjustment into the GM. The new model can effectively
identify dynamic changes to such seasonal adjustment factors and
improve forecast accuracy [52]. Carmona-Benítez and Nieto [53]
improved the damp trend grey model (DTGM) and constructed a
grey forecasting model that can obtain dynamic changes and sea-
sonal fluctuations of time series, namely a seasonal damp trend
grey forecasting model (SDTGM). Zhou et al. [54] introduced the
seasonal fluctuation factor into the NGBM(1,1) to build a new SGM
and obtained good forecast results of air quality in Shanghai City,
Hangzhou City (Zhejiang Province), Nanjing City (Jiangsu Province),
and Hefei City (Anhui Province), China.

1.3. Contribution and organization

The main innovations in this study are as follows:

(1) In view of existing problems with traditional statistical
methods, machine learning methods, and grey prediction
models, the present research combined the buffer operators
with the DGGM(1,1) model. In this way, a new DGGM(1,1)
model based on averageweakening buffer operators (AWBO-
DGGM(1,1)) is proposed. The model can accurately predict
seasonal time series and decrease influences of external
impacts on the prediction accuracy. Then, this study simu-
lates and forecasts quarterly data of the electricity con-
sumption, economic output, and electricity usage efficiency
of industrial enterprises in Zhejiang Province using the
DGGM(1,1) model and the AWBO-DGGM(1,1) model. More-
over, the effectiveness and applicability of these grey fore-
casting methods have been verified.
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(2) Previous studies mainly focused on the relationship between
the electricity consumption and economic growth of the
whole society. This study explored the development trends
of the electricity consumption, economic output, and elec-
tricity usage efficiency of industrial enterprises in Zhejiang
Province. This can better reflect the quality of development
of industry and the economy in Zhejiang Province for saving
energy, reducing consumption and product cost, and
increasing profits.

(3) The sudden outbreak of the COVID-19 epidemic in 2020 has
seriously affected the electricity consumption, economic
output, and electricity usage efficiency of industrial enter-
prises in Zhejiang Province and the external impacts weaken
the forecast accuracy of the DGGM(1,1) model. By using the
AWBO-DGGM(1,1) model, we investigate the development of
the electricity consumption, added value and electricity us-
age efficiency of industrial enterprises in Zhejiang Province
from 2020 to 2022 under the impacts of the COVID-19
epidemic. Moreover, their future development trends are
forecast.

The remainder of the research is arranged as follows: Section 2
introduces the method for establishing the AWBO-DGGM(1,1)
model. Section 3 forecasts the quarterly data of the electricity
consumption, added value, and electricity usage efficiency of in-
dustrial enterprises in Zhejiang Province using the GM(1,1) model,
DGGM(1,1) model, SVM model, and AWBO-DGGM(1,1) models. The
conclusions and future work are summarized in Section 4.

2. Models and methods

2.1. AWBO-DGGM(1,1) model

The traditional GM(1,1) model is suitable for the time series data
with exponential growth and little fluctuation, however, for vari-
able data including the electricity consumption, added value, and
electricity usage efficiency of industrial enterprises characterized
by seasonal fluctuations, the relative forecasting error is large.
Based on the group modeling, the DGGM(1,1) model can better
simulate and forecast time series data with seasonal fluctuations
[46]. Furthermore, the outbreak of the COVID-19 epidemic has
affected the electricity consumption and economic output of in-
dustrial enterprises in China. It is difficult to forecast the external
impacts on the system itself using the DGGM(1,1)model, the data of
the system cannot reflect the real changes therein. The AWBO-
DGGM(1,1) model can eliminate the interference of shock waves
on behavior series of the system to some extent, restore the original
data and improve the forecast accuracy, therefore, the AWBO-
DGGM(1,1) model is established as follows:

Firstly, the original time series data are grouped according to
seasonal characteristics, that is, the original data are divided into
four groups by quarters:

xð0ÞðsÞ¼
�
xð0Þðs;1Þ; xð0Þðs;2Þ;…; xð0Þðs;nÞ

�
s¼1;2;3;4 (1)

By introducing the first-order weakening buffering operator
into the grouped data, the series of the first-order weakening
buffering operator can be obtained:

Xð0ÞD¼xð0ÞðsÞd¼
�
xð0Þðs;1Þd;xð0Þðs;2Þd;…;xð0Þðs;nÞd

�
;s¼1;2;3;4

(2)

where, D denotes the AWBO and its series can act many times.Xð0ÞD
represents the first-order weakening buffer operator;Xð0ÞD2 ¼
4

Xð0ÞDD denotes the second-order weakening buffer operator [55].

xð0Þðs; kÞd¼ 1
n� kþ 1

�
xð0Þðs;1Þþ xð0Þðs;2Þþ ;…; xð0Þðs;nÞ

�
;

k¼1;2;…;n; s¼1;2;3;4

Thereafter, the grouped data in the buffer series are used as basic
data upon which to build the GM(1,1) model, that is, an accumu-
lated generating operation (AGO) is performed on the new basic
data xð0ÞðsÞd ¼ ðxð0Þðs; 1Þd; xð0Þðs; 2Þd;…; xð0Þðs; nÞdÞto generate an
AGO series xð1ÞðsÞd.

xð1ÞðsÞd¼
�
xð1Þðs;1Þd; xð1Þðs;2Þd;…; xð1Þðs; kÞd

�
(3)

where, xð1Þðs;kÞd ¼ Pk
i¼1x

ð0Þðs; iÞd;k ¼ 1;2;…;n; s ¼ 1;2;3;4.
Therefore, the grey differential equation of the established

AWBO-DGGM(1,1) model is expressed as follows:

xð0Þðs; kÞdþ azð1Þðs; kÞd ¼ b; k ¼ 2;3;…n; s ¼ 1;2;3;4 (4)

where, the mean series is zð1Þðs; kÞd ¼ 0:5xð1Þðs;kÞdþ 0:5xð1Þðs;k �
1Þd.

In accordance with the grey differential equation, the corre-
sponding whitening differential equation can be obtained as
follows:

dxð1ÞðsÞd
dt

þ axð1Þðs; tÞd ¼ b (5)

where, t, a, and bindicate the time series, development coefficient,
and grey action quantity, respectively.

According to the least squares method, two parameters a; b can
be obtained and expressed as follows:

ba¼
�
a
b

�
¼
�
BTB

��1
BTY (6)

where, Band Yare separately expressed as follows:

B¼

2
6666666664

�1
2

h
xð1Þðs;1Þdþ xð1Þðs;2Þd

i
1

�1
2

h
xð1Þðs;2Þdþ xð1Þðs;3Þd

i
1

« «

�1
2

h
xð1Þðs;n� 1Þdþ xð1Þðs;nÞd

i
1

3
7777777775
;Y ¼

2
664
xð0Þðs;2Þd
xð0Þðs;3Þd
«
xð0Þðs;nÞd

3
775

(7)

Finally, the time response formula of themodel can be obtained:

bxð1Þðs; tþ1Þd¼
�
xð0Þðs;1Þd� b

a

�
e�at þ b

a
; s¼1;2;3;4 (8)

After an inverse accumulated generating operation (IAGO), the
forecast value of the basic series xð0ÞðsÞd can be obtained:

bxð0Þðs; tþ1Þd¼ bxð1Þðs; tþ1Þd� bxð1Þðs; tÞd; t ¼ 1;2;…;n� 1; s

¼ 1;2;3;4

(9)

Finally, the forecast values attained bymodeling the four groups
of quarterly data are integrated into a continuous time series,
namely,
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Fig. 3. Modeling process of the AWBO-DGGM(1,1).

Table 1
The MAPE criterion for model examination.

MAPE (%) Forecasting ability MAPE (%) Forecasting ability

<10 Excellent 20e50 Reasonable
10e20 Good >50 Incorrect
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bxð0Þðs; tþ 1Þd¼
0
@bxð0Þð1;1Þd; bxð0Þð2;1Þd; bxð0Þð3;1Þd; bxð0Þð4;1Þd

«bxð0Þð1;nÞd; bxð0Þð2;nÞd; bxð0Þð3;nÞd; bxð0Þð4;nÞd
1
A

(10)
5

It is worth noting that it is the classic average weakening buffer
operator that is used in the research, however, in the case that the
system is impacted by other events, buffer operators in other forms,
such as the variable weight buffer operator, can be constructed to
weaken or eliminate influences of external disturbance on the
system. By using buffer operators in different forms, the model can
always predict changes to the system under different impacts.

The DGGM(1,1) model based on the first-order AWBO is known
as the 1-AWBO-DGGM(1,1) model, while that based on the second-
order AWBO is called the 2-AWBO-DGGM(1,1) model. The
modeling process is shown in Fig. 3.
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2.2. Model-performance metrics

In this study, the root-mean-square error (RMSE), mean abso-
lute error (MAE), average percent error (APE), and mean absolute
percentage error (MAPE) are selected to compare accuracies of
different models. The smaller the values thereof, the greater the
accuracy [46,48].

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
Yreal � Yforecast

�2vuut (11)

MAE¼1
n

Xn
i¼1

���Yreal �Yforecast
��� (12)

APE¼
����Yreal � Yforecast

Yreal

����� 100% (13)

MAPE¼1
n

Xn
i¼1

����Yreal � Yforecast
Yreal

����� 100% (14)

where, Yrealand Yforecastdenote the real values and forecast values,
respectively. The equivalent evaluation criteria for forecast with the
MAPE are listed in Table 1.
Industrial electricity consumption a b Time response formula

Group 1 �0.053 470.089 bxð1Þð1; t þ 1Þ ¼ 9426:415e0:0527ðt�1Þ � 8919:58
Group 2 �0.053 604.269 bxð1Þð2; t þ 1Þ ¼ 11916:92e0:053ðt�1Þ � 11410:1
Group 3 �0.067 593.963 bxð1Þð3; t þ 1Þ ¼ 9306:312e0:0675ðt�1Þ � 8799:48
Group 4 �0.050 631.050 bxð1Þð4; t þ 1Þ ¼ 13009:43e0:05ðt�1Þ � 12502:6
3. Empirical analysis

Accurate forecast of the electricity consumption, economic
output, and electricity usage efficiency of industrial enterprises
have great practical significance for optimizing industrial layout,
improving energy efficiency and building an environmentally
friendly and resource-conserving society. Based on the quarterly
data pertaining to electricity consumption and added value of in-
dustrial enterprises in Zhejiang Province from 2013 to 2020, we
forecast the electricity consumption, economic output, and elec-
tricity usage efficiency of industrial enterprises. Firstly, the original
data are divided into a training set and a test set, that is, the data
from the first quarter of 2013 to the fourth quarter of 2018 are
regarded as the training set, while those from the first quarter of
2019 to the first quarter of 2020 are used as the test set. Based on
this, the traditional GM(1,1) model, DGGM(1,1) model and SVM
model are built, analyzed, and compared. Secondly, considering the
external impacts and influences caused by the COVID-19 epidemic,
the AWBOs are introduced into the original data to generate new
basic data and then the 1-AWBO-DGGM(1,1) and 2-AWBO-
DGGM(1,1) models are separately established. Finally, by using the
DGGM(1,1) model and AWBO-DGGM(1,1) models, an out-of-sample
forecast is conducted on the electricity consumption, economic
6

output, and electricity usage efficiency of industrial enterprises
from 2020 to 2022.

3.1. Forecasting the electricity consumption of industrial enterprises

According to the modeling, the traditional GM(1,1) model is
directly built using the quarterly data of the electricity consump-
tion of industrial enterprises from 2013 to 2018 as the training set,
to forecast the electricity consumption from the first quarter of
2019 to the first quarter of 2020. The forecast values are compared
with the actual data. The parameters and time response function of
the GM model are demonstrated as follows:

The parameters and time response function for the electricity
consumption of industrial enterprises are shown as follows:

ba¼
�
a
b

�
¼ ½�0:0124;600:036� (15)

bxð1ÞðtÞ¼48860:23e0:0124ðt�1Þ � 48353:4 (16)

Based on the modeling at the core of the DGGM(1,1) model, data
in the training set are divided into four groups according to the
seasonal characteristics. By using the least squares method, the
parameters and time response function of the model are calculated
as follows:
The SVM is a learning algorithm based on the statistical learning
theory. It was first applied to supervised classification problems
and then popularized to include use in prediction problems
involving regression. At present, the SVM has become an important
means of predicting non-linear time series and features high
robustness and accuracy in prediction of small sample data [18]. In
the current research, the SVM is used as a comparative model for
prediction. The SVM model is debugged and then used for simu-
lation and prediction adopting the LIBSVM toolbox in the MAT-
LAB™ R2016b. The embedded dimension of the SVM model is four
and the radial basis is used as the kernel.

The actual values and forecast values obtained by the GM(1,1),
DGGM(1,1), and SVM models and comparison of errors are illus-
trated in Table 2 and Fig. 4.

As shown in Table 2 and Fig. 4, compared with the traditional
GM(1,1) and SVM model, the DGGM(1,1) model can better forecast
seasonal fluctuation of the electricity consumption of industrial
enterprises, with a small error therein. The maximum absolute
percentage error, maximum APE of the GM(1,1), DGGM(1,1) and
SVM models in the training set separately are 27.06%, 5.42%, and
10.34%; however, in the test set, the errors of three models for the
first quarter of 2020 are 62.77%, 33.56%, and 50.22%, respectively.

The DGGM(1,1) model has achieved good forecast results,



Table 2
Forecast results of the electricity consumption using the GM(1,1), DGGM(1,1), and SVM models.

Time Actual value GM(1,1) DGGM(1,1) SVM

Training set Forecast value APE (%) Forecast value APE (%) Forecast value APE (%)

2013Q1 506.83 506.83 0.00 506.83 0.00 e e

2013Q2 665.76 610.10 8.36 665.76 0.00 e e

2013Q3 705.79 617.72 12.48 705.79 0.00 e e

2013Q4 666.98 625.43 6.23 666.98 0.00 e e

2014Q1 526.39 633.24 20.30 510.13 3.09 516.72 1.84
2014Q2 674.18 641.15 4.90 656.76 2.58 683.85 1.43
2014Q3 701.81 649.16 7.50 663.75 5.42 723.23 3.05
2014Q4 694.90 657.26 5.42 681.78 1.89 666.14 4.14
2015Q1 526.96 665.47 26.28 537.73 2.04 540.59 2.59
2015Q2 688.14 673.78 2.09 692.48 0.63 693.43 0.77
2015Q3 683.20 682.19 0.15 710.10 3.94 724.45 6.04
2015Q4 686.00 690.71 0.69 717.07 4.53 695.67 1.41
2016Q1 550.38 699.34 27.06 566.83 2.99 542.21 1.48
2016Q2 713.08 708.07 0.70 730.15 2.39 706.34 0.95
2016Q3 724.39 716.91 1.03 759.69 4.87 705.48 2.61
2016Q4 773.51 725.86 6.16 754.19 2.50 693.50 10.34
2017Q1 603.72 734.93 21.73 597.51 1.03 578.40 4.19
2017Q2 756.44 744.10 1.63 769.86 1.77 746.77 1.28
2017Q3 828.44 753.39 9.06 812.74 1.90 768.99 7.18
2017Q4 797.19 762.80 4.31 793.24 0.50 804.22 0.88
2018Q1 635.59 772.33 21.51 629.84 0.90 648.58 2.04
2018Q2 830.51 781.97 5.84 811.73 2.26 813.42 2.06
2018Q3 880.60 791.73 10.09 869.49 1.26 890.27 1.10
2018Q4 829.90 801.62 3.41 834.30 0.53 841.12 1.35

Test set

2019Q1 651.10 811.63 24.66 663.93 1.97 699.19 7.39
2019Q2 821.00 821.76 0.09 855.87 4.25 906.68 10.44
2019Q3 891.20 832.03 6.64 930.21 4.38 958.84 7.59
2019Q4 880.20 842.41 4.29 877.49 0.31 894.60 1.64
2020Q1 524.00 852.93 62.77 699.86 33.56 787.17 50.22

Fig. 4. The forecast results and error of the electricity consumption of industrial enterprises: (a) the results using the GM(1,1), (b) the error using the GM(1,1), (c) the results using
the DGGM(1,1), (d) the error using the DGGM(1,1), (e) the results using the SVM, (f) the error using the SVM.
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Table 3
Forecast results of the electricity consumption using the 1-AWBO-DGGM(1,1) and 2-AWBO-DGGM(1,1) models.

Time Actual value 1-AWBO-DGGM(1,1) 2-AWBO-DGGM(1,1)

Training set Xð0ÞD Forecast
Value

APE (%) Xð0ÞD2 Forecast value\ APE (%)

2013Q1 506.83 558.31 558.31 0.00 592.98 592.98 0.00
2013Q2 665.76 721.35 721.35 0.00 765.25 765.25 0.00
2013Q3 705.79 754.04 754.04 0.00 807.19 807.19 0.00
2013Q4 666.98 741.41 741.41 0.00 785.50 785.50 0.00
2014Q1 526.39 568.61 565.41 0.56 599.92 599.51 0.07
2014Q2 674.18 732.47 725.93 0.89 774.03 771.63 0.31
2014Q3 701.81 763.69 756.87 0.89 817.82 817.15 0.08
2014Q4 694.90 756.30 756.99 0.09 794.32 795.16 0.11
2015Q1 526.96 579.16 582.14 0.51 607.74 608.43 0.11
2015Q2 688.14 747.04 749.19 0.29 784.43 785.34 0.12
2015Q3 683.20 779.16 786.14 0.90 831.36 832.87 0.18
2015Q4 686.00 771.65 775.19 0.46 803.82 803.91 0.01
2016Q1 550.38 596.56 599.36 0.47 617.27 617.48 0.03
2016Q2 713.08 766.68 773.19 0.85 796.89 799.30 0.30
2016Q3 724.39 811.14 816.53 0.66 848.75 848.88 0.02
2016Q4 773.51 800.20 793.83 0.80 814.55 812.76 0.22
2017Q1 603.72 619.66 617.09 0.41 627.62 626.67 0.15
2017Q2 756.44 793.48 797.96 0.56 811.99 813.50 0.19
2017Q3 828.44 854.52 848.10 0.75 867.56 865.21 0.27
2017Q4 797.19 813.55 812.92 0.08 821.72 821.70 0.00
2018Q1 635.59 635.59 635.34 0.04 635.59 636.00 0.06
2018Q2 830.51 830.51 823.52 0.84 830.51 827.96 0.31
2018Q3 880.60 880.60 880.89 0.03 880.60 881.84 0.14
2018Q4 829.90 829.90 832.47 0.31 829.90 830.75 0.10

Test set

2019Q1 651.10 654.13 0.47 645.46 0.87
2019Q2 821.00 849.90 3.52 842.67 2.64
2019Q3 891.20 914.95 2.67 898.80 0.85
2019Q4 880.20 852.49 3.15 839.89 4.58
2020Q1 524.00 673.48 28.53 655.07 25.01

Fig. 5. The forecast results of the electricity consumption of industrial enterprises: (a) the results using the 1-AWBO-DGGM(1,1), (b) the error using the 1-AWBO-DGGM(1,1), (c) the
results using the 2-AWBO-DGGM(1,1), (d) the error using the 2-AWBO-DGGM(1,1).
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however, due to the impact of the COVID-19 epidemic on the
electricity consumption of industrial enterprises in the first quarter
of 2020, the year-on-year growth rate of the electricity consump-
tion in the first quarter of 2020 is�19.52%. Both the GM(1,1) model,
DGGM(1,1) model and SVM model cannot obtain good forecast
results, with a large error therein, therefore, using the quarterly
data of the electricity consumption of industrial enterprises in
8

Zhejiang Province from 2013 to 2018 as the basic data, this study
acquires new basic data by introducing the first-order and second-
order AWBOs. The series of first and second-order AWBOs and
forecast results are summarized in Table 3 and a comparison of
their errors is given in Fig. 5.

According to Table 3 and Fig. 5, the 1-AWBO-DGGM(1,1) and 2-
AWBO-DGGM(1,1) models have a smaller error. In the training set,



Fig. 6. Comparison of performance evaluation of the five models: (a) Training set (b) Test set.

Table 4
Accuracy comparison of models for electricity consumption of industrial enterprises.

Training set RMSE MAE MAPE (%)

GM(1,1) 72.79 55.77 8.62
DGGM(1,1) 17.32 13.56 1.96
SVM 27.71 20.28 2.84
1-AWBO-DGGM(1,1) 4.17 3.26 0.43
2-AWBO-DGGM(1,1) 1.25 0.91 0.12

Test set

GM(1,1) 166.67 117.44 19.69
DGGM(1,1) 82.26 53.05 8.89
SVM 129.38 95.80 15.45
1-AWBO-DGGM(1,1) 70.03 46.58 7.67
2-AWBO-DGGM(1,1) 62.23 41.26 6.79

H.-B. Chen, L.-L. Pei and Y.-F. Zhao Energy 222 (2021) 119952
the error is less than, or equal to 5%, however, in the test set, the
maximum absolute percentage errors incurred by the 1-AWBO-
Added value of industrial enterprises a b Time response formula

Group 1 �0.077 2274.742 bxð1Þð1; t þ 1Þ ¼ 31900:05e�0:077ðtÞ � 29471:1
Group 2 �0.092 2676.692 bxð1Þð2; t þ 1Þ ¼ 31675:37e0:092ðtÞ � 29246:4
Group 3 �0.092 2670.327 bxð1Þð3; t þ 1Þ ¼ 31583:47e0:092ðtÞ � 29154:5
Group 4 �0.076 3098.954 bxð1Þð4; t þ 1Þ ¼ 43392:49e0:076ðtÞ � 40963:5
DGGM(1,1) and 2-AWBO-DGGM(1,1) models for data in the first
quarter of 2020 separately are 28.53% and 25.01%, which are
smaller than that of the DGGM(1,1) model, so their forecast accu-
racy is higher.

As shown in Table 4 and Fig. 6, the RMSE, MAE and MAPE of the
2-AWBO-DGGM(1,1) model are the smallest in the training and test
sets, representing the highest forecast accuracy. MAPEs are 0.12%
and 6.79%, respectively. MPAEs of the GM(1,1), DGGM(1,1), SVM,
and 1-AWBO-DGGM(1,1) models separately are 8.62%, 1.96%, 2.84%,
and 0.43% in the training set, while those in the test set are 19.69%,
8.89%, 15.45%, and 7.67%, respectively.

3.2. Forecasting the added value of industrial enterprises

Similar to the modeling process for the electricity consumption
of industrial enterprises in Section 4.1, the GM(1,1), DGGM(1,1), and
9

SVMmodels are built using the quarterly data of the added value of
industrial enterprises from 2013 to 2018 as the training set. The
models are used to forecast the added value from the first quarter of
2019 to the first quarter of 2020 and the forecast values are
compared with the actual data. The parameters and the time
response functions of the GM model are shown as follows:

① GM(1,1) forecasting

� �
ba¼ a
b ¼ ½�0:0211;2713:859� (17)

ð1Þ
bx ðkÞ¼131033:2e0:0211ðk�1Þ � 128604 (18)

② DGGM(1,1) forecasting
③ The SVM model

The SVM model is debugged and then used for simulation and
prediction using the LIBSVM toolbox in the MATLAB™ R2016B. The
embedded dimension of the SVM model is four and the kernel is a
radial basis, respectively (see Fig. 7).

The actual values and predicted values obtained using the
GM(1,1), DGGM(1,1), and SVM models established based on the
quarterly data of the added value of industrial enterprises and
comparison results of errors are demonstrated in Table 5 and Fig. 7,
respectively.

It can be seen from Table 5 and Fig. 7 that the DGGM(1,1) model
can better identify the seasonal fluctuation of the added value of
industrial enterprises, with small errors therein. The maximum



Fig. 7. Forecast results of the added value of industrial enterprises: (a) the results using the GM(1,1), (b) the error using the GM(1,1), (c) the results using the DGGM(1,1), (d) the error
using the DGGM(1,1), (e) the results using the SVM, (f) the error using the SVM.

H.-B. Chen, L.-L. Pei and Y.-F. Zhao Energy 222 (2021) 119952
absolute percentage errors of the GM(1,1), DGGM(1,1) and SVM
models separately are 22.24%, 4.99%, and 9.02% in the training set.
In the test set, the errors of the three models for data in the first
quarter of 2020 are 43.90%, 18.48%, and 22.64%, respectively.

However, due to the influences of the COVID-19 epidemic on the
economic output of industrial enterprises in the first quarter of
2020, the year-on-year growth rate of the added value in the first
quarter is �10.20%. The GM(1,1), DGGM(1,1), and SVM models
cannot obtain good forecast results and show large errors. As a
result, we use quarterly data pertaining to the added value of in-
dustrial enterprises in Zhejiang Province from 2013 to 2018 as the
basic data and introduced first and second-order AWBOs, thus
obtaining new basic data. The series of first and second-order
AWBOs and forecast results are shown in Table 6 and the com-
parison of errors is demonstrated in Fig. 8.

As shown in Fig. 8, the 1-AWBO-DGGM (1, 1) and 2-AWBO-
DGGM(1, 1) models have smaller errors and the errors in the
training set are smaller than 1%. In the test set, the maximum ab-
solute percentage errors of the two models for data in the first
quarter of 2020 are 11.1% and 6.68%, which are significantly smaller
than those of the GM (1, 1), DGGM (1, 1), and SVM models, indi-
cating a higher forecast accuracy.

In Table 7, the RMSE, MAE, and MAPE of the 2-AWBO-DGGM (1,
1) model are the smallest in the training set. Its MAPE is 0.1%, while
those of the other four models are 7.36%, 1.79%, 2.70%, and 0.38%,
respectively. In the test set, the 1-AWBO-DGGM (1, 1) model shows
the highest forecast accuracy and the smallest RMSE, MAE, and
MAPE. Its MAPE is 4.09%, while those of the GM (1, 1), DGGM (1, 1),
SVM, and 2-AWBO-DGGM (1, 1) models are 13.70%, 5.72%, 6.05%,
and 4.55%, respectively (see Fig. 9).
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3.3. Forecasting the electricity usage efficiency of industrial
enterprises

The electricity usage efficiency of industrial enterprises, a single
general element, is defined as the ratio of the added value to the
electricity consumption of industrial enterprises. In accordance
with Sections 3.1 and 3.2, the forecast values of quarterly data of the
electricity consumption and added value of industrial enterprises
can be calculated using the GM(1,1), DGGM(1,1), SVM, 1-AWBO-
DGGM(1,1), and 2-AWBO-DGGM(1,1) models, thus obtaining the
forecast value of the electricity usage efficiency. As shown in
Fig. 10(a), compared with the GM(1,1) model, the DGGM(1,1) model
and the SVM model can more accurately identify the seasonal
fluctuations in electricity efficiency. It can be observed from
Fig. 10(b) and (c) that the 1-AWBO-DGGM(1,1) and 2-AWBO-
DGGM(1,1) models can better fit the seasonal growth trends of the
electrical efficiency. It can be seen from Fig.10(d) that, theMAPEs of
the five models in the training set are 3.67%, 3.44%, 2.69%, 3.02%,
and 3.01%, respectively, while those in the test set are 5.03%, 2.25%,
7.25%, 2.91%, and 2.93%, respectively. Although the SVM model has
the highest prediction accuracy in the training set, its prediction
accuracy in the test set is much lower than that of the other models.
The rates of growth of electricity consumption and added value of
industrial enterprises did not follow the internal growth trend due
to the epidemic in the first quarter of 2020. The actual value of
electricity usage efficiency increased in the first quarter of 2020.
3.4. Out-of-sample forecast

Based on the test results of the models in Sections 3.1, 3.2, and



Table 5
Forecast results of the added value of industrial enterprises using the three models.

Time Actual value GM(1,1) DGGM(1,1) SVM

Training set Forecast value APE (%) Forecast value APE (%) Forecast value APE (%)

2013Q1 2428.96 2428.96 0.00 2428.96 0.00 e e

2013Q2 2958.88 2794.50 5.56 2958.88 0.00 e e

2013Q3 2983.91 2854.09 4.35 2983.91 0.00 e e

2013Q4 3212.48 2914.96 9.26 3212.48 0.00 e e

2014Q1 2669.25 2977.13 11.53 2559.74 4.10 2603.42 2.47
2014Q2 3196.24 3040.62 4.87 3086.59 3.43 3134.27 1.94
2014Q3 3226.98 3105.47 3.77 3082.65 4.47 3161.11 2.04
2014Q4 3490.51 3171.70 9.13 3471.65 0.54 3465.12 0.73
2015Q1 2690.35 3239.34 20.41 2765.14 2.78 2875.63 6.89
2015Q2 3319.84 3308.42 0.34 3382.41 1.88 3385.24 1.97
2015Q3 3301.72 3378.98 2.34 3378.33 2.32 3411.86 3.34
2015Q4 3728.02 3451.04 7.43 3744.47 0.44 3770.43 1.14
2016Q1 2883.41 3524.64 22.24 2987.02 3.59 2911.49 0.97
2016Q2 3590.70 3599.81 0.25 3706.58 3.23 3537.21 1.49
2016Q3 3526.39 3676.58 4.26 3702.37 4.99 3505.36 0.60
2016Q4 3994.08 3754.99 5.99 4038.74 1.12 4039.78 1.14
2017Q1 3280.13 3835.07 16.92 3226.71 1.63 3129.65 4.59
2017Q2 4124.39 3916.86 5.03 4061.82 1.52 3852.72 6.59
2017Q3 4161.00 4000.39 3.86 4057.50 2.49 3785.48 9.02
2017Q4 4438.94 4085.71 7.96 4356.13 1.87 4369.41 1.57
2018Q1 3513.65 4172.84 18.76 3485.63 0.80 3579.64 1.88
2018Q2 4478.84 4261.84 4.85 4451.11 0.62 4417.14 1.38
2018Q3 4474.62 4352.73 2.72 4446.68 0.62 4468.67 0.13
2018Q4 4669.50 4445.56 4.80 4698.46 0.62 4866.98 4.23

Test set

2019Q1 3823.00 4540.37 18.76 3765.32 1.51 3836.84 0.36
2019Q2 4655.03 4637.20 0.38 4877.71 4.78 4808.60 3.30
2019Q3 4696.89 4736.09 0.83 4873.20 3.75 4826.79 2.77
2019Q4 5071.74 4837.10 4.63 5067.70 0.08 5132.94 1.21
2020Q1 3433.06 4940.26 43.90 4067.46 18.48 4210.21 22.64

Table 6
Forecast results of the added value of industrial enterprises using the two models.

Time Actual value 1-AWBO-DGGM(1,1) 2-AWBO-DGGM(1,1)

Training set Xð0ÞD Forecast value APE (%) Xð0ÞD2 Forecast value APE (%)

2013Q1 2428.96 2910.96 2910.96 0.00 3191.08 3191.08 0.00
2013Q2 2958.88 3611.48 3611.48 0.00 4012.84 4012.84 0.00
2013Q3 2983.91 3612.44 3612.44 0.00 4010.49 4010.49 0.00
2013Q4 3212.48 3922.25 3922.25 0.00 4297.55 4297.55 0.00
2014Q1 2669.25 3007.36 2987.96 0.65 3247.10 3245.39 0.05
2014Q2 3196.24 3742.00 3721.13 0.56 4093.11 4090.88 0.05
2014Q3 3226.98 3738.14 3712.78 0.68 4090.10 4089.00 0.03
2014Q4 3490.51 4064.21 4066.75 0.06 4372.61 4376.95 0.10
2015Q1 2690.35 3091.89 3112.02 0.65 3307.04 3311.46 0.13
2015Q2 3319.84 3878.44 3898.07 0.51 4180.89 4185.60 0.11
2015Q3 3301.72 3865.93 3892.12 0.68 4178.09 4184.27 0.15
2015Q4 3728.02 4207.63 4214.01 0.15 4449.71 4450.58 0.02
2016Q1 2883.41 3225.73 3241.22 0.48 3378.76 3378.87 0.00
2016Q2 3590.70 4064.64 4083.43 0.46 4281.70 4282.51 0.02
2016Q3 3526.39 4054.00 4080.13 0.64 4282.15 4281.77 0.01
2016Q4 3994.08 4367.51 4366.60 0.02 4530.41 4525.45 0.11
2017Q1 3280.13 3396.89 3375.79 0.62 3455.27 3447.66 0.22
2017Q2 4124.39 4301.62 4277.61 0.56 4390.23 4381.67 0.19
2017Q3 4161.00 4317.81 4277.22 0.94 4396.22 4381.53 0.33
2017Q4 4438.94 4554.22 4524.72 0.65 4611.86 4601.58 0.22
2018Q1 3513.65 3513.65 3515.95 0.07 3513.65 3517.85 0.12
2018Q2 4478.84 4478.84 4481.01 0.05 4478.84 4483.12 0.10
2018Q3 4474.62 4474.62 4483.83 0.21 4474.62 4483.62 0.20
2018Q4 4669.50 4669.50 4688.57 0.41 4669.50 4678.99 0.20

Test set

2019Q1 3823.00 3661.92 4.21 3589.47 6.11
2019Q2 4655.03 4694.09 0.84 4586.93 1.46
2019Q3 4696.89 4700.43 0.08 4588.08 2.32
2019Q4 5071.74 4858.35 4.21 4757.71 6.19
2020Q1 3433.06 3813.96 11.10 3662.54 6.68
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Fig. 8. Forecast results of the added value of industrial enterprises: (a) the results using the 1-AWBO-DGGM(1,1), (b) the error using the 1-AWBO-DGGM(1,1), (c) the results using
the 2-AWBO-DGGM(1,1), (d) the error using the 2-AWBO-DGGM(1,1).

Fig. 9. Comparison of performance evaluation of the models: (a) Training set (b) Test set.

Table 7
Accuracy comparison of the models for the added value of industrial enterprises.

Training set RMSE MAE MAPE (%)

GM(1,1) 308.98 247.84 7.36
DGGM(1,1) 77.86 61.16 1.79
SVM 134.42 98.45 2.70
1-AWBO-DGGM(1,1) 18.54 14.57 0.38
2-AWBO-DGGM(1,1) 5.75 4.16 0.10

Test set

GM(1,1) 754.08 503.25 13.70
DGGM(1,1) 311.92 219.03 5.72
SVM 360.10 227.13 6.05
1-AWBO-DGGM(1,1) 208.86 159.60 4.09
2-AWBO-DGGM(1,1) 210.85 190.79 4.55
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3.3, we forecast the electricity consumption, added value, and
electricity usage efficiency of industrial enterprises by selecting the
1-AWBO-DGGM(1,1) and 2-AWBO-DGGM(1,1) models. By taking
the quarterly electricity consumption and added value of industrial
enterprises data from 2013 to 2019 as the in-sample data, the data
from 2020 to 2022 are forecast. Table 8 and Fig.11 show the forecast
and actual values and comparison of results. Model-1 and Model-2
separately represent the 1-AWBO-DGGM(1,1) and 2-AWBO-
DGGM(1,1) models.

Based on the forecast results using the models in Table 8 and
Fig. 11, the electricity consumption, added value, and electricity
usage efficiency of industrial enterprises are predicted to continue a
seasonal growth trend in 2020-2022. The annual growth rates of
electricity consumption from 2020 to 2022 using the 1-AWBO-
DGGM(1,1) model are, separately, �1.26%, 7.18%. and 2.47%, while
those obtained through the 2-AWBO-DGGM(1,1) model are�2.74%,
5.44%, and 1.08%, respectively. Similarly, the annual growth rates of
the added value of industrial enterprises forecast by the 1-AWBO-
DGGM(1,1) model are 1.37%, 6.92%, and 3.86%. Moreover, the annual
growth rates obtained by the 2-AWBO-DGGM(1,1) model
are �0.57%, 4.40%, and 1.79%, respectively. The electricity usage
efficiency of industrial enterprises in Zhejiang Province grows
12
constantly and it is at its highest in the first quarter, followed by
that in the fourth quarter, while it is lowest in the third quarter.
According to the prediction results of the 1-AWBO-DGGM(1,1)
model, the annual average electricity usage efficiency of industrial
enterprises in the province in 2020, 2021, and 2022 is predicted to
be 5.7, 5.78, and 5.86; while that predicted using the 2-AWBO-



Fig. 10. Forecast results of the electricity efficiency: (a) the results using the GM(1,1), DGGM(1,1) and SVM models; (b) the results using the 1-AWBO-DGGM(1,1) model; (c) the
results using the 1-AWBO-DGGM(1,1) model; (d) RMSE, MAE and MAPE using the models.

Table 8
Forecast results of industrial enterprises from the second quarter of 2020 to the
fourth quarter of 2022 using the two models.

Time Forecast value

Industrial electricity
consumption

Industrial added
value

Electricity usage
efficiency

Model-1 Model-2 Model-1 Model-2 Model-1 Model-2

2020Q2 849.47 833.62 4883.27 4754.20 5.75 5.70
2020Q3 928.16 906.90 4928.77 4798.83 5.31 5.29
2020Q4 900.98 890.13 5251.18 5157.39 5.83 5.79
2021Q1 687.30 667.16 4139.32 3976.42 6.02 5.96
2021Q2 867.50 840.70 5068.11 4832.51 5.84 5.75
2021Q3 954.17 917.34 5124.10 4882.98 5.37 5.32
2021Q4 923.58 901.17 5444.11 5249.89 5.89 5.83
2022Q1 703.75 674.25 4308.70 4055.86 6.12 6.02
2022Q2 885.92 847.84 5259.95 4912.11 5.94 5.79
2022Q3 980.90 927.90 5327.16 4968.61 5.43 5.35
2022Q4 946.75 912.35 5644.14 5344.05 5.96 5.86
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DGGM(1,1) model is 5.67, 5.71, and 5.76, respectively.
4. Conclusion and future work

4.1. Conclusion

This study uses the 1-AWBO-DGGM(1,1) model and the 2-
AWBO-DGGM(1,1) model to the forecast for industrial enterprises.
Based on the quarterly data of relevant variables in Zhejiang
Province, the seasonal variations in the electricity consumption,
added value, and electricity usage efficiency of industrial
13
enterprises are simulated and forecast. The results demonstrate
that these two models can identify seasonal variations in such data
and accurately forecast the impacts of the COVID-19 epidemic on
industry and economy, thus obtaining a high forecast accuracy
overall.

(1) Either the electricity consumption or the added value of in-
dustrial enterprises shows significant characteristics of sea-
sonal fluctuation, which increases the difficulties in forecast.
Compared with the traditional GM(1,1) model and machine
learning method (SVM model), the DGGM(1,1) model
established based on grouping has better predictability, and
can forecast seasonal fluctuations in electricity consumption
and the added value of industrial enterprises.

(2) Affected by the COVID-19 epidemic, indices including the
electricity consumption and economic output of industrial
enterprises show an abnormal tendency to decline. Due to
the decrease of forecast accuracy, it is difficult for the tradi-
tional DGGM(1,1) model to reveal accurately those changes
to the added value and electricity consumption: however, the
1-AWBO-DGGM(1,1) and 2-AWBO-DGGM(1,1) models
established by introducing AWBOs into the original data
effectively weaken the impacts of the external events on the
system, strengthen adaptability to the data, and improve
forecast accuracy. When forecasting the electricity con-
sumption, the 2-AWBO-DGGM(1,1) model presents an
extremely high forecast accuracy. When forecasting the
added value, the 1-AWBO-DGGM(1,1) model shows better
adaptability.



Fig. 11. Forecast results of industrial enterprises from the second quarter of 2020 to the fourth quarter of 2022 using the two models: (a) Industrial electricity consumption; (b)
Industrial added value; (c) Electricity usage efficiency.
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(3) Based on the forecast of the electricity consumption, added
value, and electricity usage efficiency of industrial enter-
prises in Zhejiang Province in the short-term using these
models, theymaintain stable seasonal growth trends and the
added value rises the fastest. As the energy industry in
Zhejiang Province enters the period of structural optimiza-
tion and adjustment, the proportion of traditional fossil en-
ergy continues to decline, while that of clean energy
consumption constantly increases. The forecast results show
that when the impact of the COVID-19 epidemic is taken into
consideration, the electricity consumption of industrial en-
terprises in Zhejiang Province will reach 3.36234 � 1011 to
3.51732 � 1011 kW h, with a year-on-year increase of 1.08%e
2.47%.
4.2. Future work

Just like the grey prediction model, the traditional statistical
methods assume that the variable system to be predicted is stable,
therefore, when the system is subject to external impact, it inevi-
tably, and significantly, influences the accuracy of predictions made
using the model. The proposed mechanism will be introduced into
14
the multiple regressionmodel in future research to solve prediction
problems in areas related to energy consumption.
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