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How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have focused on how individual concepts are
processed, but the way in which conceptual representation changes to suit the context is unclear. We parametrically manipulated
the association strength between words, presented in pairs one word at a time using a slow event-related fMRI design. We combined
representational similarity analysis and computational linguistics to probe the neurocomputational content of these trials. Individual
word meaning was maintained in supramarginal gyrus (associated with verbal short-term memory) when items were judged to be
unrelated, but not when a linking context was retrieved. Context-dependent meaning was instead represented in left lateral prefrontal
gyrus (associated with controlled retrieval), angular gyrus, and ventral temporal lobe (regions associated with integrative aspects of
memory). Analyses of informational connectivity, examining the similarity of activation patterns across trials between sites, showed
that control network regions had more similar multivariate responses across trials when association strength was weak, reflecting a
common controlled retrieval state when the task required more unusual associations. These findings indicate that semantic control
and representational sites amplify contextually relevant meanings in trials judged to be related.
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Introduction
The question of how concepts are coded in the brain is
a core issue in cognitive neuroscience. Neuropsycholog-
ical, neuroimaging, and neuromodulation studies have
provided information about how individual concepts are
represented in the brain (Martin 2007; Patterson et al.
2007; Binder and Desai 2011; Pulvermüller 2013; Lambon
Ralph et al. 2017; Jefferies et al. 2020)—yet the brain
produces diverse patterns of semantic retrieval for the
same inputs to suit the context. For example, APPLE
is associated with CAKE when it occurs together with
KITCHEN, but also with LAPTOP when we encounter it
with KEYBOARD. Even though concepts are thought to
be constructed in this dynamic fashion, empirical studies
have, until recently, largely focused on invariant concep-
tual representation—i.e. the features of concepts that
do not vary across contexts (Yee and Thompson-Schill
2016). We therefore presented thematically related word-
pairs which varied from weak to strong associations to
instantiate context-dependent representations of con-
cepts, to investigate the neural basis of flexible semantic
cognition (Yee and Thompson-Schill 2016).

The controlled semantic cognition (CSC) framework
suggests that distributed modality-specific features
(e.g. visual, auditory, motor, and valence features) in
“spoke” systems are integrated within a semantic “hub”
or “convergence zone” in the anterior temporal lobes
(ATL), giving rise to heteromodal concepts (Patterson
et al. 2007; Lambon Ralph et al. 2017). An additional
distributed semantic control network (SCN) manipulates
activation within this conceptual representation system
to generate appropriate patterns of semantic retrieval
that suit the circumstances in which they occur. In well-
practiced contexts, left angular gyrus (AG) and ATL are
thought to support conceptual combination, with the
strongest responses observed when conceptual retrieval
is highly coherent and control demands are minimized
(Bemis and Pylkkänen 2013; Davey et al. 2015; Teige et al.
2019; Lanzoni et al. 2020). In other situations, when
retrieval must be focused on nondominant features
or unusual conceptual combinations, there is greater
engagement of the “SCN,” which includes left inferior
frontal gyrus (IFG; Thompson-Schill et al. 1997; Wagner
et al. 2001; Whitney et al. 2011; Hallam et al. 2016, 2018;
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Gonzalez Alam et al. 2019; Lanzoni et al. 2020; Jackson
2021). These semantic control processes can shape
the interaction between hub and spokes to focus on
the features required by a task (Davey et al. 2016;
Lambon Ralph et al. 2017; Chiou et al. 2018; Zhang
et al. 2021). Stronger connectivity between left IFG
and the semantic “hub” region in left ventral ATL is
associated with better semantic CSC (Chiou and Lambon
Ralph 2019; Jung et al. 2021). Therefore, we reasoned
that the SCN is a neural candidate underlying context-
dependent meaning.

In some situations, there is an explicit goal for
semantic retrieval specified by the task demands: for
example, for the concept “PIANO,” if we want to play this
instrument, our retrieval is focused on the motor fea-
tures that allow us to move our fingers in an appropriate
way, while if we have the goal of finding this instrument
in a warehouse, we will retrieve visual information about
its shape and size. In these situations, semantic control
processes might be able to bias the pattern of semantic
retrieval in task-appropriate ways by facilitating or
inhibiting connections between the heteromodal hub
in ATL and task-relevant and task-irrelevant spokes.
Multivoxel pattern analysis provides us with a powerful
tool to probe how the representation of semantic infor-
mation in the brain varies according to the context; these
studies have started to explore how features combine to
construct concepts and how word meaning is modified
syntactically (Allen et al. 2012; Coutanche and Thomp-
son-Schill 2014; Boylan et al. 2015; Hoffman and Tamm
2020; Solomon and Thompson-Schill 2020). For example,
a recent magnetoencephalography study showed that
neural representations of the noun were modified across
temporal, inferior frontal, and inferior parietal regions
according to the verb it was combined with (Lyu et al.
2019). Yet in many other situations requiring semantic
control—for example, when weak as opposed to strong
thematic associations must be identified—participants
are not required to focus on specific types of features, but
instead to identify a context in which concepts co-occur.
Given that there is no explicit goal or instruction guiding
semantic retrieval, this might require participants to
create an event representation to simulate or construct
a scenario, which can then bias retrieval toward features
of the concept that are consistent with this event and
away from other potentially dominant features which
are inconsistent (Mirman et al. 2017). An understanding
of the neurobiological mechanisms that underpin this
process remains elusive.

In the current study, we used fMRI to identify where
in the brain, noncontextualized meanings of words
are represented as well as to determine how words
are integrated to form context-dependent conceptual
representations. We varied the strength of thematic
relationships between two words presented successively,
from very strong (dog with leash), through intermediate
trials (dog with beach), to very weak pairs (dog with
keyboard). We leveraged word embeddings of natural

language processing (NLP) to establish vectors of simi-
larity for our word stimuli which were either (i) focused
on context-invariant meaning using word2vec (Mikolov
et al. 2013) or (ii) captured vectors of similarity for
words based on the ongoing context (i.e. taking into
account the preceding/following words) using ELMo
(Peters et al. 2018), see example in Fig. 2a. We combined
these computational linguistic approaches with a
slow-event related fMRI design and representational
similarity analysis (RSA) (Kriegeskorte et al. 2006, 2008),
implemented using a searchlight approach, to determine
where in the brain, similarity in multivoxel activity
patterns could be predicted by context-free and context-
sensitive conceptual similarities. Specifically, we asked
whether networks implicated in more automatic and
controlled aspects of semantic cognition in previous
studies (Fedorenko et al. 2013; Humphreys and Lambon
Ralph 2015; Davey et al. 2016; Wang et al. 2020; Gao
et al. 2021; Jackson 2021) would show differential
representation of context-independent and context-
dependent meaning or alternatively whether semantic
regions across these networks would commonly support
the construction of context-dependent meanings but
in different ways (via more automatic vs. controlled
integrative processes, giving rise to context-dependent
meanings of strong and weak associations, respectively).

Materials and methods
Participants
A group of 32 healthy participants aged 19–35 years
(mean age = 21.97 ± 3.47 years; 19 females) was recruited
from the University of York. They were all right-handed,
native English speakers, with normal or corrected-
to-normal vision, and no history of psychiatric or
neurological illness. The study was approved by the
Research Ethics Committee of the York Neuroimaging
Centre. All volunteers provided informed written consent
and received monetary compensation or course credit
for their participation. Data from 4 participants were
excluded due to head motion (translational displace-
ment was greater than 2 mm), resulting in a final sample
of 28 participants for the semantic task. This study
provides a novel analysis of a dataset first reported by
Gao et al. (2021).

Semantic task
The experimental stimuli were 192 English concrete
noun word pairs. We excluded any abstract nouns
and pairs of items drawn from the same taxonomic
category, so that only thematic links were evaluated.
The strength of the thematic link between the items
varied parametrically from trials with no clear link
to highly related trials; in this way, participants were
free to decide based on their own experience if the
words had a discernible semantic link. There were no
“correct” and “incorrect” responses: instead, we expected
slower response times (RTs) and less convergence across
participants for items judged to be “related” when the
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associative strength between the items was weak, and
for items judged to be “unrelated” when the associative
strength between the items was strong. Overall, there
were roughly equal numbers of “related” and “unrelated”
responses across participants.

Each trial began with a visually presented word
(WORD-1) which lasted 1.5 s, followed by a fixation cross
presented at the centre of the screen for 1.5 s. Then, the
second word (WORD-2) was presented for 1.5 s, followed
by a blank screen for 1.5 s. Participants had 3 s from
the onset of WORD-2 to judge whether this word pair
was semantically associated or not by pressing one of
two buttons with their right hand (using their index and
middle fingers). During the intertrial interval (3 s), a red
fixation cross was presented until the next trial began.
Both RT and response choice were recorded. Participants
finished 4 runs of the semantic task, each lasting
7.3 min. Before the scan, they completed a practice
session to familiarize themselves with the task and key
responses.

Neuroimaging data acquisition
Imaging data were acquired on a 3.0 T GE HDx Excite
Magnetic Resonance Imaging (MRI) scanner using an 8-
channel phased array head coil at the York Neuroimaging
Centre. A single-shot T2

∗-weighted gradient-echo, EPI
sequence was used for functional imaging acquisition
with the following parameters: TR/TE/θ = 1500 ms/
15 ms/90◦, FOV = 192 × 192 mm, matrix = 64 × 64, and
slice thickness = 4 mm. Thirty-two contiguous axial
slices, tilted upper to the eye, were obtained to decrease
distortion in the ATL and prefrontal cortex. Anatomical
MRI was acquired using a T1-weighted, 3D, gradient-
echo pulse-sequence (MPRAGE). The parameters for this
sequence were as follows: TR/TE/θ = 7.8 s/2.3 ms/20◦,
FOV = 256 × 256 mm, matrix = 256 × 256, and slice thick-
ness = 1 mm. A total of 176 sagittal slices were acquired
to provide high-resolution structural images of the whole
brain.

Semantic similarity matrices
Using NLP tools, two semantic similarity matrices were
constructed based on two types of word embedding to
investigate different types of semantic information in
neural activity patterns. Embedding vectors extracted
from word2vec and ELMo for all word pairs are available
online: https://osf.io/hwfdp/.

word2vec

The word2vec model represents words as fixed high-
dimensional vectors of embeddings. The vectors of word
embeddings were generated by training the network on
the 100-billion-word Google News corpus. Each time the
network was presented with a word from the corpus, it
was trained to predict the context in which it appeared,
where context was defined as the two words preceding
and following it in the corpus. The model learns to
represent words used in similar contexts with similar

patterns; each word’s vector had 300 dimensions, with
similarity across two words’ vectors indicating that
they appear in similar contexts, and thus have related
meanings. Word2vec embeddings are fixed and unique
for each word; for example, irrespective of whether
“apple” was followed by “bread” or “keyboard,” its word
embeddings were the same. Therefore, using word2vec,
we constructed semantic similarity matrices (word2vec-
based RSM), separately for WORD1 and WORD2; these
reflected the meaning of single words, unmodified by the
context in which these items appeared, by calculating
cosine similarity between words drawn from different
trials.

ELMo

Given that context can change the meaning of individual
words in sentences and phrases, Peters et al. (2018)
proposed a deep contextualized word embedding model
called ELMo (Embeddings from Language Models) to
capture the context-dependent semantic representation
of words. Rather than providing a dictionary of words
and their corresponding vectors, ELMo analyzes words
within their linguistic context, with each token assigned
a representation that is a function of the entire input
sentence. ELMo representations are deep in the sense
that they are a function of all the internal layers of a
deep bidirectional language model: there is a context-
independent fixed input vector for the word in the
lowest layer, with two higher layers capturing backward
and forward context-sensitive aspects of word meaning.
We used the pretrained model released by Allennlp
(Gardner et al. 2018), which was trained on a large
test corpus of 5.5B tokens from Wikipedia and the
English news data from the workshop of machine
translation (WMT) 2008–2012. We selected the top layer
in ELMo to generate context-sensitive embeddings for
WORD2. Each vector representing word meaning had
1024 dimensions. We calculated a context-sensitive
semantic similarity matrix (ELMo-based RSM) for WORD-
2 by correlating the top embedding vectors across words
taken from different trials, regressing out the lowest
layer’s embedding vectors to control the contribution
of more context-independent patterns of representation
(see Xu et al. 2018 for a similar approach), to search
for brain regions where the pattern of responses across
voxels was associated with contextually constrained
semantic cognition.

To further validate this approach, we searched for
sentences that included the word pairs used in the
current study (within widely used NLP datasets, such
as Google News) and estimated the context-dependent
meaning of WORD-2 stimuli within these sentence
contexts (see Supplementary Materials). Following the
procedure described above, we constructed a sentence-
based context-dependent meaning similarity matrix. The
two similarity matrices for context-dependent meaning
were strongly correlated: r = 0.81 (P < 0.001), and the
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neuroimaging results are also highly consistent (see
Supplementary Materials).

fMRI data preprocessing analysis
Image preprocessing and statistical analysis were per-
formed using FEAT (FMRI Expert Analysis Tool) version
6.00, part of FSL (FMRIB software library, version 5.0.9,
www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the
task were discarded to allow for T1 equilibrium. The
remaining images were then realigned to correct for head
movement. Translational movement parameters never
exceeded 1 voxel in any direction for any participant or
session. No spatial smoothing was performed. The data
were filtered in the temporal domain using a nonlinear
high-pass filter with a 100-s cutoff. Following Deuker
et al. (2016) and Bellmund et al. (2019), 6 motion parame-
ters were used as predictors in a GLM. The residuals from
this model (which could not be explained by motion)
were then taken into the next analysis step. A 2-step reg-
istration procedure was used whereby EPI images were
first registered to the MPRAGE structural image (Jenkin-
son and Smith 2001). Registration from MPRAGE struc-
tural image to standard space was further refined using
FNIRT nonlinear registration (Andersson et al. 2007a,
2007b). The denoised time series were transformed to
standard space for the multivariate analyses.

Univariate parametric analysis
We examined the effects of semantic control demands
via a parametric manipulation of strength of association
at the network level, following the approach reported by
Gao et al. (2021). We predicted that it would be harder
for participants to decide that items were semantically
related when they were weakly associated (with lower
word2vec values), and it would also be harder for them
to decide that items were semantically unrelated when
in trials with higher word2vec values. Therefore, we
extracted the parametric effect of word2vec on the BOLD
response separately for trials judged to be related and
unrelated. Since association strength was negatively
correlated with control demands for trials judged to
be related, we means-centered and reversed the sign
of word2vec values for these trials in each run before
the next analysis step. This allowed us to compare the
effects of semantic control demands across related and
unrelated trials. We performed this analysis within 4
functional networks involved in more automatic or more
controlled aspects of semantic cognition or executive
control. The networks were taken from previous meta-
analytic studies of the SCN and multiple-demand
network (MDN; Fedorenko et al. 2013; Jackson 2021).
Within these networks, we selected (i) semantic control–
specific areas, which did not overlap with MDN; (ii)
multiple-demand–specific regions, which did not overlap
with SCN; (iii) shared control regions, identified from the
overlap between MDN and SCN; and (iv) semantic regions
not implicated in control; these were identified using
Neurosynth (search term “semantic”; 1031 contributing

studies; http://www.neurosynth.org/analyses/terms/),
removing regions that overlapped with the 2 control
networks to identify regions associated with semantic
representation or more automatic aspects of semantic
retrieval, mostly within DMN (e.g. in lateral temporal
cortex and AG). This process defined 30 ROIs: 4 in
semantic noncontrol areas, 3 in SCN, 6 in the overlap
of MDN and SCN, and 17 in MDN specific areas. These 30
ROIs are available online: https://osf.io/hwfdp/ and were
previously used by Gao et al. (2021). The ROIs within each
network were averaged across all relevant sites for the
network-based analyses presented below.

Pattern similarity analysis
In order to examine how the characteristics of semantic
representation were influenced by the context, we
focused on the decision phase of the task. This period
corresponded to TR 6 and 7 after WORD-1 onset. Second-
order RSA was performed using a searchlight approach;
semantic RSMs (i.e. the word2vec-based RSM and ELMo-
based RSM) were compared with neural pattern simi-
larity matrices (brain-based RSM) to test what semantic
information was represented in different brain regions,
see Fig. 2b. Neural pattern similarity was estimated for
cubic regions of interest (ROIs) containing 125 voxels
surrounding a central voxel, as many previous studies
examining semantic representation used this approach
successfully (Fairhall and Caramazza 2013; Malone et al.
2016; Stolier and Freeman 2016; Leshinskaya et al. 2017;
Wang et al. 2017; Viganò and Piazza 2020). In each
of these ROIs, we compared patterns of brain activity
to derive a neural RSM from the pairwise Pearson
correlations of each pair of trials. We excluded any
pairs presented in the same run from the calculation
of pattern similarity to avoid any autocorrelation issues.
Spearman’s rank correlation was used to measure the
alignment between semantic and brain-based models
during the decision phase. Of note, both semantic models
(word2vec and ELMo-based RSMs) were correlated to
the same neural similarity matrices, which allows us
to examine where and how context-dependent and
context-free meanings of concepts were represented
in the brain, depending on the decision participants
reached (i.e. related vs. unrelated) during the decision
phase. The resulting coefficients were Fisher’s z trans-
formed and statistically inferred across participants. The
searchlight analysis was conducted in standard space.
A random-effects model was used for group analysis.
Since no first-level variance was available, an ordinary
least square model was used.

We also examined neural representations of context-
free and context-dependent meaning within ROIs. As for
the univariate analysis of parametric effects of word2vec,
we focused on four sets of regions: (i) semantic control–
specific (SCN specific) areas, which did not overlap
with MDN; (ii) multiple-demand–specific (MDN specific)
regions, which did not overlap with SCN; (iii) shared
control regions identified from the overlap between
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MDN and SCN; and (iv) regions within the semantic
network not implicated in control. The same 30 ROIs were
used for both univariate and multivariate analyses, with
individual ROIs within each network averaged for
network-based analyses.

Informational connectivity between networks as
a function of association strength
Even when multiple networks show similar representa-
tion of context-dependent meanings based on second-
order RSA (ELMo to neural alignment), this does not
establish that they represent similar information across
trials. In order to examine whether neural activity pat-
terns between regions belonging to specific functional
networks capture similar semantic representations, and
to investigate how this similarity in the multivariate
response across trials might change as a function of
the strength of association between the words being
linked, we performed a novel informational connectivity
analysis. In contrast to functional connectivity analysis
using global BOLD signals averaged across voxels in each
region, this analysis assessed the similarity of the mul-
tivariate patterns between pairs of brain regions across
trials (Aly and Turk-Browne 2016; Xiao et al. 2017; Anzel-
lotti and Coutanche 2018), within sliding windows cap-
turing trials of different associative strengths. First, we
sorted all the word-pairs from weakly to strongly asso-
ciated according to their semantic association strength
(word2vec value) for the related and unrelated conditions
separately. Next, we grouped every 16 trials into one win-
dow; adjacent windows partially overlapped with each
other by 4 trials. We then computed second-order RSAs
by correlating the neural similarity matrices between
ROIs within each window. The next step of this analysis
established how this informational connectivity metric
changed as a function of the association strength of
the words being linked, using Spearman correlation. The
resulting correlation coefficients were transformed into
Fisher’s z-scores and then averaged across ROIs within
each network. We performed several variants of this
analysis, using window sizes and overlapping step sizes
of 16,4; 12,4; 20,4, respectively (window sizes, i.e. the
number of trials in each window varying in associative
strength; step sizes, i.e. the number of overlapping trials
across adjacent windows), to ensure the robustness of
our conclusions.

Mixed-effects modeling analysis of behavioral
performance
Since participants judged different numbers of items
to be semantically related and unrelated, mixed-effects
modeling was used for the analysis of the behavioral
data. This approach is particularly suitable when
the number of trials in each condition differs across
participants (Mumford and Poldrack 2007; Ward et al.
2013). Mixed-effects modeling was implemented with
lme4 in R (Bates et al. 2014). We used the likelihood
ratio test (i.e. Chi-Square test) to compare models, in
order to determine whether the inclusion of predictor

variables significantly improved the model fit. Semantic
association strength was used as a predictor of the
decision participants made (judgments about whether
the words were related or unrelated) and, in a separate
model, the reaction time (RT) this decision took. Partici-
pant identity was included as a random effect. By com-
paring models with and without the association strength
predictor, we were able to establish whether semantic
association strength predicted semantic performance.

Results
Behavioral results
Since we used a continuous manipulation of associative
strength, and there is no categorical boundary of
word2vec values which can capture the trials reliably
judged to be related and unrelated, traditional error
scores were not calculated. Chi-square was conducted
to examine whether equal numbers of word pairs were
judged to be related or unrelated by the participants
(mean ratio for the related and unrelated trials: 0.491
vs. 0.495, χ2(1) = 0.00021, P > 0.995). Linear mixed-effects
model analysis revealed that the strength of the semantic
association (word2vec value for each pair) was positively
associated with a higher probability that participants
would identify a semantic relationship between the
words (χ2(1) = 2505.4, P < 0.001). The percentage of trials
judged to be related varied from 34.9% to 60.9% with
a standard deviation of 6.16%, while the percentage
of trials judged to unrelated ranged from 39.1% to
63.5% with a standard deviation of 6.16%. There were
no outliers in these judgments of relatedness (no
participants were more than 3 standard deviations from
the mean).

Linear mixed-effects models also examined how
association strength modulated RT for trials judged to
be related and unrelated. There was a significant effect
of strength of semantic association (word2vec) for both
related and unrelated decisions: association strength
was negatively associated with RT for related trials
(χ2(1) = 156.55, P = 2.2e–16) and positively associated
with RT for trials judged to be unrelated (χ2(1) = 52.415,
P = 4.5e–13), Fig. 1b. It was more difficult for participants
to retrieve a semantic connection between 2 words when
the strength of association was lower; on the contrary,
it was easier for them to decide that there was no
semantic connection between word pairs with when
word2vec was low. The average RT for trials judged to
be related was 1.12 s (standard deviation = 0.48 s), while
the average time for unrelated judgments was 1.17 s
(standard deviation = 0.47 s); 0.9% and 0.7% of related
and unrelated decisions, respectively, were outliers (more
than 3 standard deviations from the mean).

fMRI results
Neural representation of context-free meaning

Whole-brain analysis was performed using a search-
light approach. First, we examined context-free semantic
representation of the original or unmodified meaning of
individual words during the decision phase, using the
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Fig. 1. Experiment paradigm and behavioral results. a) Left-hand panel: Semantic association task; participants were asked to decide if word pairs were
semantically related or not. Right-hand panel: Word pair examples for both related and unrelated decisions from one participant, with association
strength increasing from weak to strong. Trials were assigned to related and unrelated sets on an individual basis for each participant, depending on
their decisions. b) The semantic association strength (word2vec) was negatively associated with RTs for related trials and positively associated with RT
for trials judged to be unrelated. People were faster to discern a relationship between words when they had high semantic overlap, and slower to decide
that the words were unrelated when they had high semantic overlap.

word2vec model to assess semantic similarity across tri-
als—since word similarity in this model is fixed, and not
dependent on the context in which words are presented.
The strongest responses reflecting context-free meaning
are expected for WORD-1, since retrieval of the meaning
of this item commenced in the absence of any semantic
context (while for WORD-2, the context established by
the first word in the pair is likely to influence the pattern
of retrieval). We also expect context-free meaning to be
most relevant during trials judged to be unrelated, since
on these trials, participants did not identify a linking
context.

For WORD-1, on those trials judged to be seman-
tically unrelated (i.e. when no linking context was
retrieved), a significant positive association between neu-
ral pattern similarity and semantic similarity based on
word2vec was seen in the left supramarginal gyrus; see

Fig. 3a (left-hand panel). This site showed more similar
neural patterns during semantic decision-making when
the context-free meaning of WORD-1 was more similar.
For word pairs that were judged to be semantically
related, there was no relationship between neural
pattern similarity and semantic similarity for WORD-1.

Next, we examined the representation of original
word meaning for WORD-2. The meaning of this item
was retrieved in a semantic context established by
the presentation of WORD-1, and consequently, we
did not expect to see an association between neural
pattern similarity and context-free meaning across trials.
In line with our expectations, there were no positive
correlations between the word2vec and neural models
for WORD-2; instead, there were negative correlations
between these models in visual cortex; see Fig. 3b. These
negative associations suggest that the prior presentation
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Fig. 2. a) Example association strength values produced by ELMo and word2vec. The word2vec value between word-pairs was fixed and not dependent
on the context the words were presented in, in contrast to ELMo. b) Semantic-to-neural similarity computed via second-order RSAs: these analyses
characterized the semantic similarity between words on different trials and examined the association with neural pattern similarity across trials. Left-
hand panel: word2vec-based RSM for unmodified word meanings across trials—this matrix captured the semantic similarity of individual words used
across trials; right-hand panel: ELMo-based RSM for context-dependent meaning—this matrix captured the semantic similarity of contextually modified
meanings across trials.

of WORD-1 pushed the visual representations of seman-
tically similar WORD-2 items further apart. Semantically
similar items often have similar visual features—for
example animals typically have legs and eyes; vehicles
often have wheels; fruits are often brightly colored. Our
results suggest that when participants retrieve word
meaning in a context established by the presentation
of a previous item, they focus less on these shared visual
features of semantically similar concepts.

In summary, evidence for the neural representation of
context-free word meaning was only found for WORD-
1 in unrelated trials. There was no evidence that par-
ticipants represented context-free meanings either for
WORD-2 (when participants were attempting to retrieve
a semantic link with the previous word) or for trials in
which the words were judged to be related in meaning,
indicating that a linking context was retrieved.

Neural representation of context-dependent meaning

The preceding results demonstrated that activity pat-
terns in the brain represented the original or unmodified
meaning of words presented in the absence of a context,
but not when a linking context was retrieved. Motivated
by the theory that a concept cannot be meaningfully
separated from the context in which it occurs (Yee
and Thompson-Schill 2016), we next tested whether
neural similarity across trials was related to contextually
derived word meaning, especially for word pairs judged
to be related. We focused this analysis on WORD-2,
since the meaning of this item was processed in the

context of the preceding item (in contrast, no semantic
context was available when the meaning of WORD-1 was
first retrieved). We used ELMo to estimate the context-
dependent semantic similarity between the WORD-2
items across trials, separately for words presented in
trials judged to be related and unrelated. For trials judged
to be semantically related, a positive correlation between
neural similarity and ELMo-based semantic similarity
was found in left lateral frontal cortex and AG; see Fig. 4a
(right-hand panel). No correlations between context-
dependent semantic similarity and neural similarity
were found for trials judged to be unrelated. Additional
analyses were conducted using a sentences-based
context-dependent meaning estimation, which produced
highly similar results showing a positive correlation
between neural similarity and ELMo-based semantic
similarity in left lateral frontal cortex and AG, see
Supplementary Fig. 1a.

Left ventral anterior temporal lobe (lvATL) has been
suggested to be a semantic “hub” (Binney et al. 2016;
Lambon Ralph et al. 2017), playing a crucial role in repre-
senting strong associations and semantic combinations
in long-term memory (Bemis and Pylkkänen 2013; Teige
et al. 2019). However, distortion and signal loss occur in
this area due to magnetic inhomogeneities close to air-
tissue boundaries, causing a lower signal-to-noise ratio
and weaker effects of interest (Weiskopf et al. 2006;
Binney et al. 2010); see Supplementary Fig. 4. Given we
did not observe effects in ventral ATL in whole-brain
analyses, the neural representation of context-free and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac058#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac058#supplementary-data
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Fig. 3. a) Positive correlation was found for the neural representation of original meaning of WORD-1 (before context is presented) on trials judged to be
unrelated (Z > 2.6, corrected). b) Decoding of this cluster-corrected spatial map a) using Neurosynth revealed terms linked to attention control and task
demands. c) Negative correlations were found for the neural representation of original meaning of WORD-1 (before context is presented) and WORD-2
(after context is presented) for items judged to be related. d) Positive correlation was found for the neural representation of context-dependent meaning
of WORD-2 for trials judged to be related (Z > 2.6, corrected). e) Decoding of this cluster-corrected spatial map d) using Neurosynth revealed terms linked
to semantic and language processing. f) Negative correlation was found for the neural representation of context-dependent meaning of WORD-2 for
the trials judged to be unrelated (Z > 2.6, corrected). g) Region of interest analysis: a spherical ROI (117 voxels, right top panel) was created for the lvATL
around the peak voxel at MNI coordinate (x = −36, y = −18, z = −30) reported by Binney et al. (2016). Significant positive correlation was found for the
neural representation of context-dependent meaning of WORD-2 in trials judged to be related. ∗P < 0.05.

context-dependent meaning at this site was assessed
using ROI-based analysis. We created a sphere ROI (117
voxels) for lvATL around the peak voxel implicated in
semantic cognition at MNI coordinate (x = −36, y = −18,
z = −30) (Binney et al. 2016). Only neural representa-
tion of context-dependent meaning for related trials was
found, see Fig. 3f. To check the robustness of our results,
additional analyses were conducted using both larger
(179 voxels) and smaller spheres (81 voxels) centered on

lvATL; highly similar results were found, see Supplemen-
tary Fig. 1b.

What dominates the semantic response within functional
networks?

To examine how context-free and context-dependent
meaning is represented in functional networks relevant
to semantic representation and control, we conducted
second-order RSA analyses for each ROI within 4
networks, reporting averages across the ROIs for each

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac058#supplementary-data
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Fig. 4. a) Functional networks: (i) semantic not control, (ii) within the SCN but outside multiple-demand cortex (DMN), (iii) within both SCN and MDN, and
(iv) falling in MDN regions not implicated in semantic cognition. b) Neural representation of context-free and context-dependent meaning in functional
networks. Positive correlations were found for context-dependent meaning of WORD-2 for trials judged to be related in all four networks. c) Univariate
parametric effects in four functional networks showing modulation of the BOLD response according to control demands: the weaker associative strength
for trials judged to be related was associated with the higher activation, while the stronger associative strength for trials judged to be unrelated was
associated higher activation. SCN and regions falling within both SCN and MDN showed significantly higher activation for those trials with weaker
associations and consequently higher controlled retrieval demands. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. Bonferroni correction was applied.

network. These functional networks included semantic
not control areas (which are implicated in semantic
processing but not in semantic or domain-general
control), semantic control areas (i.e. cortical regions
specifically implicated in semantic control and not
domain-general control), and areas shared by semantic
control and MDN areas as well as areas specific to
MDN that are not typically activated by semantic
tasks (see more details in Materials and methods). The
results showed that there was no significant neural
representation of context-free meaning in any of these
networks, but there was significant representation of
context-dependent meaning for WORD-2 for those trials
judged to be related in all 4 networks. Moreover, there
was no significant difference between networks in
the representation of context-dependent meaning and
context-free meaning for WORD-1 and WORD-2 for trials
either judged to be related or unrelated (student’s t-test
between any two pairs, all Ps > 0.45, after Bonferroni
correction), suggesting all 4 functional networks track
the way that words are being used, instead of long-term
invariant semantic knowledge.

We further examined whether the representation
of context-dependent meaning was dependent on
association strength across networks. We sorted trials
by strength of association and grouped those trials
judged to be related into small analysis “windows”

containing 16 trials (window length). Adjacent windows
were overlapping by 4 trials (step size). We measured
neural representations of context-dependent meaning in
each window and correlated the neural representation
with association strength using spearman correlation.
The above procedure was conducted for each ROI and
averaged across ROIs within each network. No significant
linear relationship between association strength and the
neural representation of context-dependent meaning
was found in any of these functional networks (all
Ps > 0.85, after Bonferroni correction).

Even though context-dependent meaning was repre-
sented irrespective of associative strength across these
different networks, previous studies suggest that they
are differently sensitive to semantic control demands
(Fedorenko et al. 2013; Humphreys and Lambon Ralph
2015; Davey et al. 2016; Jackson 2021). To confirm this
pattern in the current dataset, we characterized the
parametric effects of associative strength (inverted for
related trials such that higher scores denote greater
activation for more difficult decisions, for both related
and unrelated judgments). We conducted a 2-way
repeated ANOVA, with the factors of network (4 lev-
els) and trial type (related vs. unrelated) as within-
participant variables. We found a significant main effect
of network (F(1.429, 38.591) = 30.737, P < 0.001) but no
main effect of trial type (F(1, 27) = 0.477, P = 0.496) and no
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interaction (F(1.995, 53.861) = 0.877, P = 0.422); see Fig. 4c.
Direct comparisons between networks using t-tests
revealed significantly stronger responses to the semantic
difficulty manipulation in SCN than in both “semantic
not control” regions (P < 0.001) and MDN regions that
were outside those areas activated by semantic control
manipulations (P < 0.001). There was no significant dif-
ference between SCN and SCN + MDN regions (P = 0.47);
SCN + MDN areas also showed significantly stronger
responses to difficulty than “semantic not control”
regions (P < 0.001) and MDN (P < 0.001). All P-values were
Bonferroni corrected. These results suggest that different
brain networks play distinct roles in semantic retrieval.

Neural representation between networks was more
differentiated as association strength increased
for related trials

While there were no differences between networks in the
neural representation of context-dependent meaning
and context-free meaning in the analysis above, this
does not demonstrate that these networks represent
conceptual information in the same way, especially
given that our univariate analysis shows different
responses across these networks to the parametric
manipulation of association strength. In order to assess
the degree to which neural representation was similar
across networks, and how this similarity in neural
patterns changed as a function of association strength,
we conducted a novel “sliding window” analysis of
informational connectivity. We firstly measured the
overall informational connectivity between networks
when all trials were included for related and unrelated
decisions separately. No significant differences were
found overall for informational connectivity between
related and unrelated trials (all Ps > 0.5 after FDR
correction; see Supplementary Fig. 2a). Next, we sorted
trials judged to be related according to their associative
strength, from weak to strong (based on word2vec
between the words in each pair), and grouped every
16 trials into 1 window; we then constructed neural
similarity matrices in each window by calculating the
Spearman’s correlation of neural similarity matrices
between pairs of ROIs, taking an average across ROIs
belonging to each network. This allowed us to calculate
Spearman correlation between association strength
and informational connectivity at the network level.
All correlation values were Fisher’s Z transformed.
There was a significant effect of associative strength
on informational connectivity between networks for
related trials; the multivariate pattern similarity between
related trials was increased when strength of association
was low for the SCN + MDN regions (Fig. 5b). This
finding suggests that these regions take on a pattern of
connectivity that supports controlled semantic retrieval;
these connections are more similar across trials that are
weakly related. No such effects were found for those
trials judged to be unrelated. Further direct comparisons
of the influence of associative strength on informational
connectivity between related and unrelated trials

revealed significantly faster decreases in informational
connectivity for related trials as association strength
increased: this pattern was observed when SCN + MDN
regions were compared with SCN (P = 0.004), MDN
(P = 0.008), and other SCN + MDN parcels (P = 0.005), this
effect was not significant within or between any other
networks. All P-values were Bonferroni corrected.

To check the robustness of these results, we gener-
ated different window sizes containing different num-
bers of trials along the continuous dimension of associa-
tion strength and changed the extent to which adjacent
windows overlapped with each other (i.e. the overlap step
size). We confirmed that the results were robust across
a range of window sizes and overlap step sizes (window
sizes and overlapping step sizes of 16,4; 12,4; 20,4, respec-
tively). Informational connectivity between SCN + MDN
regions and other networks was negatively correlated
with association strength in related trials across these
analyses (see Supplementary Fig. 2b and c).

Discussion
This study parametrically modulated the association
strength between pairs of words to delineate the neural
representation of context-free and context-dependent
meanings. We related the multivariate neural responses
on these trials to 2 classes of computational linguistic
models, representing concepts as either independent
or dependent on their linguistic context. Using RSA, we
found brain activity patterns in the left supramarginal
gyrus reflected context-independent conceptual infor-
mation—but only for the first word that was presented
and for trials judged to be semantically unrelated, when
there was no linking context to modify the meanings
of words. For the second word presented in each pair,
there were negative correlations between context-
independent semantic models and neural similarity
in visual cortex, suggesting that less similar visual
features were retrieved for words with similar meanings
when participants attempted to retrieve meanings in
context. At the same time, context-dependent meanings
were represented in regions implicated in semantic
control and semantic representation, including left
lateral prefrontal cortex and AG as well as lvATL,
on trials judged to be thematically related, when a
linking context was retrieved. All large-scale networks
implicated in semantic cognition showed this pattern,
confirming that the neural response during semantic
retrieval tracks the way that words are being interpreted
currently (irrespective of associative strength). Despite
this network-level similarity, informational connectivity
analyses examining multivariate neural similarity across
trials found that semantic control regions (defined by
the overlap of SCN and MDN) showed more similar
patterns across trials to other networks when the
words being related were weakly associated. For weak
thematic relations, networks were more aligned with
control regions, while for strong thematic relations, the
responses across networks were more divergent.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac058#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac058#supplementary-data
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Fig. 5. a) Schematic of sliding window analysis of informational connectivity. Trials were sorted according to their association strength from weak to
strong associations (based on a word2vec score for each word-pair) and every 16 trials were grouped into one window. We then constructed a neural
similarity matrix in each ROI and each window. We measured the informational connectivity within each window by calculating Spearman’s correlation
for the neural similarity matrices between ROIs, and then averaged across ROIs according to which functional network each site belonged to. Lastly, we
calculated a Spearman correlation between association strength and informational connectivity at the network level. b) There was a significant effect
of associative strength on informational connectivity between networks for related trials; the multivariate pattern similarity between related trials
was increased when strength of association is low for the SCN + MDN regions (left panel), but not for unrelated trials (right panel). ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001. Bonferroni correction was applied.

Past studies have often compared activation patterns
elicited by stimuli from different categories, for instance,
faces, objects, places, and tools; these studies have
significantly advanced our understanding of the neural
substrates of “individual” (i.e. static) concepts (Binder
et al. 2009; Price 2012). Nevertheless, previous behavioral
work on conceptual integration has revealed that the
conceptual representation of word meaning is context
sensitive; for instance, when “red” is paired with fire,
apple, or sky, the magnitude of the representation of
“red” is modulated by the following noun (Halff et al.
1976; Coutanche et al. 2019). Previous investigations of
dynamic conceptual representation are limited because
it is challenging to know how representations of mean-
ing will change between contexts—this information
cannot be easily gleaned from participants’ reports.

However, ELMo, a recently developed NLP algorithm
(Peters et al. 2018), allows contextualized conceptual
representations to be investigated in the brain. We
found context-dependent meaning in all the networks
implicated in semantic cognition. Whole-brain analyses
also identified distinct clusters in left IFG within the
SCN (implicated in controlled semantic retrieval) and
left AG within the default mode network (implicated
in more integrative or automatic aspects of semantic
retrieval). These effects were only found when semantic
links were identified by participants and not when trials
were judged to be unrelated. Three recent studies that
also employed ELMo and topic modeling techniques to
study context-dependent semantic cognition similarly
identified left inferior prefrontal and lateral ante-
rior temporal cortex in context-dependent conceptual
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representation (Lyu et al. 2019; Lopopolo et al. 2020;
Toneva et al. 2020). These studies examined the brain’s
response to stories and sentences, while our study used
a more constrained experimental context which has
advantages in terms of experimental control, allowing us
to compare neural representations of different decision
types and to assess the parametric modulation effect of
associative strength on neural representations in a direct
and well-controlled fashion.

In a meta-analysis (Binder et al. 2009), left inferior pari-
etal cortex was the region most consistently activated by
semantic tasks, but its precise role in semantic cognition
is still elusive: it comprises several functionally dissocia-
ble areas (Ruschel et al. 2014) and may contribute to both
semantic representation and control (Noonan et al. 2013;
Humphreys and Lambon Ralph 2015). Our searchlight
analysis revealed 2 clusters in left anterior and posterior
lateral parietal cortex, representing context-free and
context-dependent meaning, respectively. Left SMG
showed a positive correlation between neural similarity
and context-independent meaning estimated from
computational linguistic models. Similarly, a recent RSA
study observed that activation patterns in left SMG
reflected the semantic similarities of inferred objects
(Kivisaari et al. 2019). The anterior cluster within the
supramarginal gyrus largely fell within salience and
ventral attention networks which support bottom-up
attentional processes (Vossel et al. 2014) and respond to
unexpected but salient stimuli (Menon and Uddin 2010;
Cai et al. 2019). Decoding using Neurosynth revealed
terms linked to attention and cognitive demands. Since
left SMG is associated with verbal short-term memory
(Buchsbaum and D’Esposito 2009; Baldo et al. 2012), our
findings might reflect participants’ need to maintain
information about WORD-1 to support the subsequent
semantic decision. In contrast, the posterior AG cluster
implicated in context-dependent meaning fell within
DMN. Decoding using Neurosynth revealed terms linked
to semantic memory and language. AG has been linked
to the retrieval of thematic knowledge; moreover, this
site consistently shows stronger activation to strong
than weak associations, implying that it might support
more automatic (as well as potentially more controlled)
aspects of retrieval (Binder et al. 2009; Humphreys and
Lambon Ralph 2015; Jefferies et al. 2020; Humphreys
et al. 2021). In line with this, Humphreys and Lambon
Ralph (2015) proposed that the inferior parietal lobe
(IPL) buffers inputs and learns relations over time,
supporting retrieval and integration; however; the time-
scales over which it operates may vary from relatively
short in anterior IPL (SMG) to longer in posterior IPL
(AG). This account might provide an explanation of the
functional dissociation we observed in IPL, since SMG
might buffer single word inputs (drawing on familiar
sequences of phonemes or letters over time), while AG
can track semantic contexts given its buffering of more
extensive inputs over a long time-period (Lerner et al.
2011; Baldassano et al. 2017).

The control demands of context-dependent meaning
retrieval are variable: when words are strongly associated
in long-term memory, little control is needed to recover
a relevant relationship, since this information is highly
accessible. For weak associations, however, recovering
a linking context requires controlled retrieval since
dominant features and associations not relevant to the
linking context must be inhibited. This may help to
explain why we observed context-dependent meaning
in both left IFG (a control site) and AG/lvATL (sites which
support more automatic as well as controlled patterns
of retrieval). These automatic and controlled aspects
of conceptual integration were outside the scope of
previous studies using naturalistic stimuli to explore
context-dependent meaning (Lyu et al. 2019; Lopopolo
et al. 2020; Toneva et al. 2020). Although RSA showed
that both control and DMN networks could represent
context-dependent meaning irrespective of associative
strength, this analysis was blind to potential similarities
and differences in the way that context-dependent
meaning is represented across trials. Informational
connectivity analysis, therefore, provided complemen-
tary evidence. When trials were judged to unrelated,
informational connectivity between brain networks was
not dependent on the strength of association, remaining
relatively stable across windows. A different pattern was
found for trials judged to be related: the informational
connectivity between networks was more diverse for
strong associations as opposed to weak associations,
providing evidence that semantic representations coded
among regions and networks were different even for
the same concepts. Moreover, the multivariate pattern
similarity between related trials was higher for weakly
associated items for the SCN + MDN regions, indicating
these regions adopt a pattern of connections that
supports controlled semantic retrieval. Our results
are broadly consistent with the CSC framework that
suggests that while a semantic “hub” in ATL might
integrate diverse features to form concepts in long-term
memory, semantic control regions (both outside and
within MDN) might be responsible for supporting the
retrieval of nondominant information required by the
context or task instructions (Lambon Ralph et al. 2017).
The informational connectivity analysis provided clear
evidence that distinct networks played different roles in
context-appropriate semantic retrieval.

In previous studies of semantic control, participants
have often been asked to focus conceptual retrieval
on aspects of knowledge required by the task. For
instance, task requirements can gate the recruitment
of “spoke” systems (Zhang et al. 2021); participants can
retrieve specific unimodal features when they have
task instructions providing a clear goal for conceptual
processing and/or suppress the activation of nonrelevant
spoke representations (Coutanche and Thompson-Schill
2014; Martin et al. 2018). In contrast, in the current study,
the task instructions did not change between trials:
participants were always judging whether two words
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were thematically related. The meaning of the words
themselves defined the nature of the linking context
and established which features should be the focus
of subsequent retrieval. In this situation, “stimulus-
driven” semantic control appears to be supported by the
SCN, which maintains semantic contexts in a controlled
fashion, even when these are nondominant, to modulate
the flow of activation through semantic space. To our
best knowledge, this is the first study to compare
context-independent and context-dependent meaning
representation in the brain during this kind of thematic
decision task, which requires meaning-based contexts to
drive retrieval.

Left IFG has long been linked to semantic selection and
control processes (Thompson-Schill et al. 1997; Jefferies
2013; Noonan et al. 2013; Jackson 2021) and is activated
during the retrieval of weak semantic associations (Lam-
bon Ralph et al. 2017; Jefferies et al. 2020). Additional
univariate analyses of this dataset focusing on control
demands also found higher activation for harder deci-
sions in left IFG and pMTG as well as preSMA (Gao et al.
2021). All of these regions showed successful decoding
accuracy of task difficulty, providing strong evidence
for their roles in controlled semantic retrieval; however,
the contribution of these sites to the representation of
conceptual combinations has barely been investigated.
One recent study found that left IFG is sensitive to feature
uncertainty during the comprehension of combined con-
cepts, while ATL reflects the integration of conceptual
features (Solomon and Thompson-Schill 2020). Another
recent study investigated how the brain resolves seman-
tic ambiguity in homonym comprehension and found
that IFG supports context-appropriate meaning (Hoff-
man and Tamm 2020). The current study identifies left
IFG as one of the sites that supports context-dependent
meaning for trials judged to be related—as opposed to
context-free meaning for trials judged to be unrelated—
implying that left IFG might only represent information
suitable for the current context, while inputs that are
unable to generate coherent conceptual retrieval might
be stored and manipulated in MDN regions, such as left
SMG in the current study.

One limitation of the current study was that our
measure of context-sensitive conceptual representation
(from ELMo) was derived across trials and participants
and was unable to detect individual-specific understand-
ing of each word pair. Moreover, the weaker associations
are, the more variance in semantic representation
there is likely to be across participants. Future studies
could collect subjective reports of context-dependent
understanding of word pairs for each participant,
and then leverage ELMo to create individual-specific
semantic models. More detailed and precise ELMo-
based semantic models might result in further neural-
semantic alignment results, extending beyond the
regions identified here. In addition, we did not find
evidence that left ventral ATL represented context-
free word meaning in the searchlight analysis, even

though this region is thought to provide a heteromodal
conceptual “hub” that extracts invariant semantic
features across different learning episodes. This site has
been shown to decode both the meanings of individual
words (Murphy et al. 2017) and context-dependent
meaning in previous studies (Lyu et al. 2019; Lopopolo
et al. 2020; Toneva et al. 2020). However, ventral parts of
ATL are affected by magnetic susceptibility artifacts and
our neuroimaging protocol had poorer signal-to-noise
in these regions, which may have impacted our ability
to resolve neural patterns relating to word meaning.
The ROI-based analysis focusing on the lvATL provided
evidence for a role of this site in the representation
of context-dependent meaning, suggesting that future
studies using distortion-corrected fMRI techniques may
detect stronger effects.

In conclusion, this study leverages natural language
models and RSA, to compare context-independent
and context-dependent meaning representation in
the brain during sematic decisions for the first time.
Our study demonstrates that different brain regions
support context-independent and context-dependent
meaning, with a functional dissociation within left IPL
between SMG (context-independent representation) and
AG (context-dependent representation). In addition,
while both regions implicated in relatively automatic
(left AG and vATL) and more controlled (left IFG)
patterns of semantic retrieval represented context-
dependent meaning, the synchronization of neural
representation coded in brain networks depended on
associative strength, with networks more differentiated
from each other as associative strength increased. These
findings clarify the roles of distinct brain networks in the
computation of coherent meanings across inputs.
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