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When acquiring information about choice alternatives, decision makers may have varying levels of control over which and how much
information they sample before making a choice. How does control over information acquisition affect the quality of sample-based
decisions? Here, combining variants of a numerical sampling task with neural recordings, we show that control over when to stop
sampling can enhance (i) behavioral choice accuracy, (ii) the build-up of parietal decision signals, and (iii) the encoding of numerical
sample information in multivariate electroencephalogram patterns. None of these effects were observed when participants could only
control which alternatives to sample, but not when to stop sampling. Furthermore, levels of control had no effect on early sensory
signals or on the extent to which sample information leaked from memory. The results indicate that freedom to stop sampling can
amplify decisional evidence processing from the outset of information acquisition and lead to more accurate choices.
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Introduction
Humans routinely acquire information about choice
alternatives before deciding between them. In many
situations, decision makers can control which and how
much information they sample. For example, when
deciding which of 2 products to buy, a customer may
deliberately study reviews and testimonials before
making a final choice. In other situations, the availability
and amount of relevant information is determined
by external factors. For instance, when selecting job
applicants in an organization that uses standardized
interviews, an employer must decide based on the
applicants’ answers to the same set of predefined
questions. More generally, decision scenarios can differ in
the extent to which an agent has control over sampling,
in terms of which and how much information is sampled
before a choice is made.

One experimental setup suitable for studying how
control over sampling may affect decision-making is
a numerical sampling paradigm (Hertwig et al. 2004;
Hertwig and Erev 2009) in which participants can view
sequential samples of possible choice outcomes before
deciding for one or the other option. The paradigm has
been used extensively in behavioral studies of risky
choice to examine how decision makers choose between
options about which they learned from experience (i.e.
through sampling the payoff distribution; “experience-

based” decisions) as opposed to from formal description
(where participants would be explicitly informed that
there is, e.g. “25% chance to obtain e10, otherwise
e0”; Hertwig 2015; Wulff et al. 2018). Across these
studies, researchers have also varied the extent to
which participants were able to control the sampling
process themselves. While the standard paradigm allows
participants to decide freely which alternatives to sample
and how often (Hertwig and Erev 2009), some studies
have prespecified the total number of samples to be
taken (Hau et al. 2008; Ungemach et al. 2009; Fleischhut
et al. 2014; Gonzalez and Mehlhorn 2016) or included
matched (“yoked”) conditions in which participants
had no control at all over the sampling sequence
(Rakow et al. 2008). However, the latter variants of
the sampling paradigm have been devised primarily to
reduce confounds in comparison with decisions from
description (Rakow and Newell 2010). Therefore, it still
remains unclear how control over sampling may alter
experience-based decision-making itself.

Several lines of evidence suggest that a sense of con-
trol can be beneficial in cognitive tasks (Gureckis and
Markant 2012; Murayama et al. 2016). Agency in informa-
tion acquisition has, for instance, been found to improve
subsequent memory performance (Voss et al. 2011), even
when exposure to the information was held constant
(Murty et al. 2015). Another line of work has shown better
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performance in tasks self-selected by the participant
than when the same tasks were selected by an experi-
menter (Murayama et al. 2015). More generally, various
studies have identified performance benefits associated
with volitional control per se and indicated that such
effects could be mediated by motivational factors (Patall
et al. 2008; Patall 2012). However, the effects of control
cannot easily be generalized across domains. In some
contexts, control does not seem to impact task perfor-
mance (Flowerday and Schraw 2003; Flowerday et al.
2004) or can be detrimental—for instance, when control
is perceived as irrelevant or as too complex (Katz and
Assor 2007; but see Murayama et al. 2015).

In the domain of decisions from experience using the
sampling paradigm (Hertwig et al. 2004; Hertwig and
Erev 2009), understanding of the role of agency in the
sampling process is rather incomplete. In a recent meta-
analysis, Wulff et al. (2018) suggested that control over
sampling appears to alter the temporal weighting of
numerical samples in subsequent choice. Specifically,
when participants were given full control over sampling,
their choices indicated stronger “recency” effects (i.e. a
tendency to overweight the later samples in a sequence,
which is routinely observed in sequential tasks with dis-
crete samples, e.g. Anderson 1964; Weiss and Anderson
1969; Tsetsos et al. 2012; Cheadle et al. 2014; Wyart et al.
2015; Spitzer et al. 2017; Kang and Spitzer 2021). How-
ever, the meta-analysis by Wulff et al. (2018) was limited
to comparisons across studies and did not address the
general performance benefits (or drawbacks) that may be
associated with control over sampling or the neurocogni-
tive processes that might underlie them.

Here, we used specially designed variants of a
numerical sampling paradigm combined with electroen-
cephalogram (EEG) recordings to study how control over
sampling affects experience-based decision-making. We
systematically varied whether participants (i) were free
to decide how much information to sample and from
which option (full control), or (ii) could decide only from
which option to sample but with a prespecified total
number of samples (partial control), or (iii) had no control
over sampling at all (no control). Importantly, our design
controlled for differences in stimulus presentation
by matching the sample sequences in the no-control
conditions with those in the self-controlled tasks (full
or partial control). We found that full, but not partial,
control over sampling had a beneficial effect on choice
accuracy and that this benefit was associated with a
stronger encoding of numerical sample information from
the outset of information acquisition.

Materials and methods
Participants
Forty healthy volunteers took part in the experiment
(20 female, 20 male; mean age 26.3 ± 3.7 years; all right-
handed). All participants provided written informed
consent and received a flat fee of e10 and e10 per

hour as compensation, as well as a performance-
dependent bonus (e9.35 ±e0.48 on average). The study
was approved by the ethics committee of the Max Planck
Institute for Human Development.

Experimental design
The tasks were variants of the classic sampling paradigm
described in Hertwig and Erev (2009). On each trial, in
all experimental conditions, participants were asked
to decide between 2 choice options (left or right), each
of which could return 1 of 2 different reward values
(displayed as an Arabic digit between 1 and 9; Fig. 1a,
green digit). Prior to making a final decision for one
of the options, participants viewed samples from each
option. That is, they could preview potential choice
outcomes (Fig. 1a, white digits). Each option returned
one outcome (e.g. “1”) with probability P, and another
outcome (e.g.” 9′′) with probability 1 − P. The outcome
probability P of the options ranged from 0.1 to 0.9
(in steps of 0.1) and remained constant in the course
of a trial. We constrained the outcome values and
probabilities on each trial such that (i) none of the
4 possible outcome values (2 for each option) were
identical and (ii) the difference in expected value
between the 2 options was always 0.9 (based on piloting
results). Under these constraints, the choice problems
presented on each trial were selected pseudorandomly,
with the additional restriction that each sample value (1,
2, . . . , 9) occurred with approximately equal probability
across the experiment. Participants were instructed to
learn from the observed samples and to finally select the
option that they expected to return the higher reward (i.e.
the larger numerical value). Participants were told that
the reward returned by their final choice would influence
their bonus payout at the end of the experiment.

Half of the participants were assigned to the “full
control” condition, where they were free to sample from
the left or right option as often as they wished before
making a final choice. The only restriction on sampling
in the full control condition was that a sample had to
be taken within 3 s (otherwise the trial was restarted)
and that the total number of samples could not exceed
19. The other half of participants were assigned to the
“partial control” condition, which was identical to the
full control condition except that a fixed number of 12
samples had to be drawn on every trial. The number of
samples was based on pilot data where free-sampling
participants took approximately 12 samples on average.
In other words, participants in the partial control con-
dition were also free to sample from the left or right
option but had no control over when to stop (or continue)
sampling: They were always prompted to make a final
choice after the 12th sample.

In both sampling conditions, the beginning of a new
trial was signaled by a green fixation stimulus (a combi-
nation of bull’s-eye and cross hair; Thaler et al. 2013) that
turned white after 1 s. Upon pressing the left or right but-
ton on a USB response pad (using the left or right hand,
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Fig. 1. Experimental task and behavioral results. a) Schematic illustration of an example trial. Participants were asked to decide which of 2 choice options
(left or right) would yield a larger numerical outcome. Before committing to a choice, participants could draw up to 19 samples (full control group) or
were required to draw a fixed number of 12 samples (partial control group). Samples are shown as white digits; the final choice outcome is shown in
green. The inset table shows the outcome values and probabilities for the 2 choice options in the example trial. In yoked baseline conditions, participants
judged replays of previously recorded sampling streams. b) Mean accuracy (proportion of times the option with the higher mean of samples was chosen)
in each condition. c) Decision weights (see Materials and Methods) of samples occurring early, mid, or late in the sampling sequence, for each sampling
condition. d) Difference in decision weight between late and early samples. Higher values indicate that late samples had a stronger relative influence
on choice than early samples (“recency” effect). Error indicators in all panels show SE.

respectively), participants were shown a black circular
disk (diameter 5◦ visual angle) 4.5◦ to the left (choice
option 1) or right (choice option 2) of fixation after 0.2–
0.4 s (randomly varied). After another delay of 0.8 s, the
number sample was presented in white (font Liberation
Sans, height 4◦) in the disk area for 0.5 s (see Fig. 1 for
a schematic illustration). After this, the disk disappeared
and participants were given 3 s to draw the next sam-
ple. The black disk served as a spatial cue to minimize
differences in surprise about the sample location (left-
/right) in yoked conditions without sampling control (see
below). The sampling procedure was repeated depending
on condition (partial control: 12 samples; full control:

up to 19 samples), and the resulting sample sequences
(including their precise timing) were recorded (see yoked
conditions below). In the full control condition, a third
button on the response pad (above the “right” button) was
available to stop the sampling sequence. In all conditions,
after the sampling was finished, the fixation stimulus
changed color to blue for 1 s and participants were
asked to make a final choice between the left and right
options. The button and display procedure for the final
choice was identical to that for drawing samples, except
that the final choice outcome was displayed in green to
indicate the eventually obtained reward. The rewards (i.e.
the payouts from the final choices) were converted to
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Euros with a factor of 0.005 and added as a bonus to
participant’s reimbursement after the experiment (see
Participants above).

Within both groups (full and partial control), each par-
ticipant additionally performed the task in a “yoked” con-
dition, where they had no control over sampling. Here,
participants made decisions based on replays of previ-
ously recorded sampling streams (without any control
over which and how many samples were shown or their
timing). Accordingly, we refer to the yoked conditions as
the no-control baseline conditions. In each group, half of
the participants first performed the self-controlled sam-
pling task (full or partial) and subsequently performed
the no-control task with a replay of their own sam-
pling sequences. In informal debriefing after the experi-
ment, none of these participants reported to have noticed
that they viewed exact replays of their own sampling
sequences. The other half of the participants in each
group performed the no-control task first (yoked to the
sampling sequences of another participant in the same
group) and the respective self-controlled task second.
Control analysis showed no differences in choice accu-
racy between participants who performed the baseline
task first (yoked to another participant’s sequences) or
second (yoked to their own sequences) (all P > 0.05). Fur-
thermore, in the subset of participants who were yoked
to another participant, the difficulty of active versus
yoked sampling sequences did not differ (all P > 0.05).
Each participant performed 100 trials (5 blocks of 20 trials
with short breaks between blocks) in the self-controlled
and yoked task variant, respectively.

Participants in the full control group drew on average
8.6 samples (SD = 4.2, median = 8), compared with the
12 samples that had to be drawn in the partial control
group. Due to the principled impossibility of matching
full and partial control trials (e.g. with respect to the
precise length and timing of the sampling sequences on
individual trials), all our analyses focus on comparisons
of differences to the yoked baseline condition within
each group. This analysis strategy rules out stimulus con-
founds that may arise, for instance due to “amplification
effects” under full control, where the decision to stop
sampling may be more likely when the momentary dif-
ference between the accumulated option values happens
to be large (Hertwig and Pleskac 2010).

The experiment was programmed in Python using the
Psychopy package (Peirce et al. 2019) and run on a Win-
dows 10 PC. The experiment code is available on Zen-
odo (https://doi.org/10.5281/zenodo.3354368). Behavioral
responses were recorded using a USB response pad (The
Black Box ToolKit Ltd, United Kingdom). Throughout the
experiment, eye movements were recorded using a Tobii
4C Eye-Tracker (Tobii Technology, Sweden; sampling rate
90 Hz). To reduce eye movements, participants’ gaze
position was analyzed online while the experiment was
run in all sampling conditions. The program displayed
a warning message and restarted the trial whenever
the gaze left an elliptical area centered on the central

fixation stimulus (width 5◦ visual angle, height 2.85◦

visual angle) more than 4 times during a trial. Saccades
towards the outcome samples were robustly detected
with these settings. On average, 3% of trials per partic-
ipant were restarted due to a lack of fixation or failure
to draw a sample within 3 s (see above). Offline analyses
confirmed that participants generally held fixation in the
remaining trials.

Supplementary tasks
After the main experiment, participants performed an
additional short task on the same choice problems,
where the options were not explored through sampling
but described formally on screen (e.g. “8 with 60% or
4 with 40%?”). Due to a coding error, much of the data
(84%) from this task was incorrectly recorded and the
results are thus not reported here. Participants further
completed a brief numeracy questionnaire (Berlin
Numeracy Test, BNT; Cokely et al. 2012). Exploratory
analysis showed no significant correlations of the effects
reported in our main analysis with BNT scores.

EEG recording
The experiment was performed in an electrically
shielded and soundproof cabin. Scalp EEG was recorded
with 64 active electrodes (actiCap, Brain Products
GmbH Munich, Germany) positioned according to the
international 10% system. Electrode FCz was used as
the recording reference. We additionally recorded the
horizontal and vertical electrooculogram (EOG) and
electrocardiogram (ECG) using passive electrode pairs
with bipolar referencing. All electrodes were prepared to
have an impedance of less than 10 kΩ. The data were
recorded using a BrainAmp DC amplifier (Brain Products
GmbH Munich, Germany) at a sampling rate of 1,000 Hz,
with an RC high-pass filter with a half-amplitude cutoff
at 0.016 Hz (roll-off: 6 dB/octave) and low-pass filtered
with an anti-aliasing filter of half-amplitude cutoff
450 Hz (roll-off: 24 dB/octave). The dataset is organized in
Brain Imaging Data Structure format (BIDS; Gorgolewski
et al. 2016) according to the EEG extension (Pernet et al.
2019) and is available on GIN (https://doi.org/10.12751/
g-node.dtyh14).

Behavioral data analysis
We quantified choice accuracy in each condition as the
proportion of trials on which participants chose the
option in which the observed samples were on average
larger. A choice was thus defined as correct when the
experienced samples of the chosen option had the higher
arithmetic mean. This choice corresponds to that of a
noiseless ideal observer in the task, given the presented
samples. Differences in accuracy between sampling
conditions were analyzed using a mixed 2 × 2 analysis
of variance (ANOVA, self-controlled/yoked; full/partial),
followed up with Bonferroni-corrected pairwise t-tests.
All statistical tests reported (including in the EEG
analyses, see below) are 2-tailed.
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Based on previous work, we expected participants to
show a recency effect, that is, a relative overweighting of
later samples. To quantify recency effects in the behav-
ioral data, we used a reverse correlation approach (Neri
et al. 1999; Spitzer et al. 2016) based on logistic regression.
We first divided the samples in a trial into early, mid,
and late samples. The first and last 2 samples in a trial
were defined as early and late samples, respectively, and
the remaining samples as “mid” samples. Trials with
fewer than 5 samples overall were discarded in this
analysis (between 1% and 41.5% of trials per participant,
mean = 13.3%). For each participant, task condition, and
time window, we regressed the participant’s final choices
(left: 0, right: 1) onto the numerical sample values (num-
bers 1, 2, . . . , 9 rescaled to −4, −3,..., 4), where the values
for the left option were sign-flipped to reflect their oppo-
site impact on the probability of choosing the right option
(Spitzer et al. 2017). The regression coefficients resulting
from this analysis provide a measure of “decision weight,”
that is, of the influence that number samples (early,
mid, or late) had on choice. We quantified recency as
the difference in weight between late and early samples
(Fig. 1d). Differences in recency between conditions were
assessed with a 2 × 2 ANOVA specified analogously as
above.

EEG preprocessing
The EEG recordings were visually inspected for noisy
segments and bad channels. Ocular and cardiac artifacts
were corrected using independent component analysis
(ICA). To this end, we high-pass filtered a copy of the
raw data at 1 Hz and downsampled it to 250 Hz. We
then ran an extended infomax ICA on all EEG chan-
nels and time points that were not marked as bad in
the prior inspection. Using the EOG and ECG recordings,
we identified stereotypical eyeblink, eye movement, and
heartbeat artifact components through correlation with
the independent component time courses. We visually
inspected and rejected the artifact components before
applying the ICA solution to the original raw data (Win-
kler et al. 2015). We then filtered the ICA-cleaned data
between 0.1 and 40 Hz, interpolated bad channels, and re-
referenced each channel to the average of all channels.
Next, the data were epoched from −0.2 to 0.8 s relative
to each individual number sample onset. Remaining bad
epochs were rejected using a thresholding approach from
the FASTER pipeline (Step 2; Nolan et al. 2010). On aver-
age, n = 1,925 clean epochs (93.85%) per participant were
retained for analysis. The epochs were downsampled
to 250 Hz and baseline corrected relative to the period
from −0.2 to 0 s before stimulus onset. All EEG analyses
were performed in Python using MNE-Python (Gramfort
et al. 2013), MNE-BIDS (Appelhoff et al. 2019), and custom
code. All analysis code is available on Zenodo (https://doi.
org/10.5281/zenodo.5929222).

Event-related potential analysis
EEG analyses are reported for the epochs around the
onset of the individual number samples. We first

examined lateralized visual event-related potential (ERP)
components to test whether early visual processing
differed between the sampling conditions. To this end,
we subtracted the ERP for stimuli presented on the right
from the ERP for stimuli presented on the left and then
subtracted the mean signal of right-hemispheric (O2,
PO4, PO8, PO10) occipitoparietal channels of interest
(based on previous literature; Eimer 1998) from the
corresponding left-hemispheric (O1, PO3, PO7, PO9)
channels. Mean amplitudes of the lateralized evoked
potential were extracted from prototypical time windows
(P1 ERP component: 80–130 ms, N1 ERP component: 140–
200 ms) for each sampling condition and analyzed in a
mixed 2 × 2 ANOVA (self-controlled/yoked; full/partial).

We further examined centro-parietal evoked responses
(CPP/P3, averaged over the early, mid, and late samples in
each trial) as a potential correlate of decisional evidence
accumulation (O’Connell et al. 2012; Twomey et al. 2015;
Pisauro et al. 2017). To this end, we averaged the signal
over centro-parietal channels (Cz, C1, C2, CPz, CP1, CP2,
CP3, CP4, Pz, P1, P2) and focused on a time window from
300 to 600 ms, based on previous analyses of CPP/P3
responses during visual stimulus sequences (Polich 2007;
Wyart et al. 2015; Spitzer et al. 2017).

Representational similarity analysis
To examine the encoding of numerical sample value in
multivariate ERP patterns, we used an approach based on
representational similarity analysis (RSA; Kriegeskorte
and Kievit 2013). For RSA, the ERPs were additionally
smoothed (Grootswagers et al. 2016) with a Gaussian
kernel (35 ms half duration at half maximum). We used
a conventional ERP-RSA approach (e.g. Spitzer et al. 2017;
Luyckx et al. 2019), where the representational geometry
of a stimulus space (here, sample values 1–9) is charac-
terized by the multivariate (dis-)similarity between the
ERP topographies (comprising all 64 channels) associated
with each sample value. Representational dissimilarity
was computed at each time point of the ERP, between
each pair of stimuli (using Euclidean distance as dissimi-
larity measure), yielding a 9 × 9 representational dissimi-
larity matrix (RDM; see Fig. 3a, lower) at each time point.
We refer to the RDMs computed from the ERP data as
“ERP-RDMs.”

To the extent that multivariate ERP patterns encode
numerical sample information, they should show a
“numerical distance” effect (e.g. Spitzer et al. 2017;
Teichmann et al. 2018; Luyckx et al. 2019). That is, the
representational dissimilarity between, for example,
numbers “2” and “3” should be smaller than that between
“2” and “4,” which, in turn, should be smaller than that
between “1” and “4,” and so forth, for any pairing of
numbers. To assess numerical distance effects in our
ERP-RDMs, we created a theoretical model RDM (Fig. 3a
upper) where each cell reflects the actual numerical
difference between sample values (i.e. the numerical
distance between “3” and “7” is 4, and that between “4”
and “6” is 2). We then quantified the match between
the model RDM and the ERP-RDM at each time point

https://doi.org/10.5281/zenodo.5929222
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by computing the correlation (Pearson’s r) between
the two, with stronger correlation indicating stronger
encoding of numerical magnitude in multivariate ERP
patterns (see also Spitzer et al. 2017; Teichmann et al.
2018). Correlations between model- and ERP-RDMs were
restricted to the lower triangle (excluding the diagonal)
to omit redundant matrix entries.

In addition to numerical distance, we examined the
extent to which ERP patterns encoded the “extremity” of
a sample value (i.e. its absolute difference from the mid-
point of the sample range, 5; Fig. 3d). To avoid confounds
by potential deviations from a uniform distribution of
sample values across the experiment, we additionally
orthogonalized each model RDM to an RDM reflecting
the relative frequency of numerical sample occurrences
(see also Spitzer et al. 2017). However, qualitatively sim-
ilar results were obtained when this orthogonalization
step was omitted.

For statistical analysis, we used t-tests against zero
with cluster-based permutation testing (Maris and Oost-
enveld 2007) to control for multiple comparisons over
time points (10,000 iterations, cluster-defining threshold
P = 0.05). We then recomputed the ERP-RSA separately for
each sampling condition to test for differences in number
encoding. Differences between conditions were exam-
ined using mixed 2 × 2 ANOVAs (self-controlled/yoked;
full/partial), again using cluster-based permutation test-
ing to control for multiple comparisons over time points.
Analogous RSA analyses were performed separately on
the first and second half of samples from each trial
(Fig. 3c).

Analysis of neurometric distortions
Our basic RSA of numerical distance and extremity
assumes a linear representation of numerical mag-
nitude, where the representational distance between,
for example, “3” and “5” is the same as that between
e.g. “7” and “9.” However, based on previous work (e.g.
Nieder 2016; Spitzer et al. 2017; Luyckx et al. 2019), the
neural representation of numbers might be nonlinearly
distorted. That is, the neural number representation
might be compressed (such that the representational
distance between e.g. “8” and “9” is smaller than that
between “5” and “6”) or anti-compressed (such that
the distance between “8” and “9” is larger). To examine
such potential distortions (see also Spitzer et al. 2017),
we transformed the numerical sample values using a
parameterized power function v = sign(x + b) |x + b|k,
where x are the numerical sample values (1–9 nor-
malized to the range [−1, 1]), exponent k determines
the shape of the transformation (k < 1 compression,
k = 1 linear, k > 1 anti-compression; see inset plot in
Fig. 4b for illustration of the resulting distortions), and
b reflects an overall bias towards smaller (b < 0) or
larger numbers (b > 0). We then created model RDMs
(analogously as above) from the thus transformed values
(v), for different values of k (varied between 0.5 and 10)
and b (varied between −0.75 and 0.75; where k=1 and

b= 0 corresponds to linear/unbiased transformation). For
each parameter combination, we correlated the resulting
model RDM with the ERP-RDM (analogously as above). In
each participant, the parameter combination for which
the model RDM correlated most strongly with the ERP-
RDM was used as the estimate of the participant’s neuro-
metric distortion. Statistical analysis of the neurometric
parameters proceeded with conventional statistical tests
on the group level.

Results
Participants (n = 40) observed sequential samples (Arabic
digits 1–9) of the potential rewards of choice options
(left/right) before deciding on one of them (Fig. 1a). In dif-
ferent conditions, participants (i) could determine from
which option(s) to sample and when to stop sampling
(“full control,” 1–19 samples/trial, n = 20 participants) or
(ii) could determine only from which option to sample for
a fixed number of samples (“partial control,” 12 samples/-
trial, n = 20 participants). Each participant additionally
performed the task in a “yoked” condition with matched
sample sequences (see Materials and Methods) that they
could not control. Our behavioral and EEG analyses focus
on the effects of control (full or partial) relative to the
respective matched (yoked) no-control conditions.

Behavior
Mean choice accuracy (i.e. the percentage of trials on
which participants chose the option in which the average
of the sampled values was larger, see Methods) was
83.8% under full control (SE = 1.4%, yoked baseline:
80.3%, SE = 1.2%) and 79.6% under partial control
(SE = 1.6%, yoked baseline: 80.3%, SE = 1.6%). A mixed
2 × 2 ANOVA with the factors control over sampling (self-
controlled or yoked; within participants) and control
type (full or partial; between participants) showed
no main effects [self-controlled/yoked: F(1,38) = 2.143,
P = 0.151, ηp

2 = 0.053; full/partial: F(1,38) = 1.321, P = 0.258,
ηp

2 = 0.034], but a significant interaction of the 2 factors
[F(1,38) = 5.108, P = 0.03, ηp

2 = 0.118]. Post hoc tests showed
significantly higher accuracy under full control than
in the yoked baseline [t(19) = 2.644, P = 0.032, d = 0.605,
Bonferroni corrected], but no such effect under partial
control [t(19) = −0.561, P > 0.9, d = −0.108]. Thus, relative
to matched baseline conditions, we found an accuracy
benefit of control over sampling under full control but
not under partial control.

We next examined whether and how the temporal
weighting of sample information differed between
conditions. To this end, we examined the samples’
decision weights (see Materials and Methods, Behavioral
data analysis) separately for early, mid-, and late portions
of the sampling sequence (Fig. 1c). As expected based on
previous work (Anderson 1964; Weiss and Anderson 1969;
Tsetsos et al. 2012; Cheadle et al. 2014; Wyart et al. 2015;
Spitzer et al. 2017; Kang and Spitzer 2021), we found
a pronounced recency pattern, with decision weight
generally increasing over the course of the trial. In other
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words, later samples had a higher impact on the final
choice than earlier samples. For comparison between
sampling conditions, we quantified recency as the differ-
ence in decision weight between late and early samples
(Fig. 1d). A mixed 2 × 2 ANOVA, specified analogously as
for accuracy above, showed no significant main effects
[self-controlled/yoked: F(1,38) = 0.8, P = 0.377, ηp

2 = 0.021;
full/partial: F(1,38) = 3.363, P = 0.075, ηp

2 = 0.081] and
no interaction between the 2 factors [F(1,38) = 1.483,
P = 0.231, ηp

2 = 0.038]. Thus, we found no impact of control
over sampling on recency. To summarize the behavioral
results, full control over sampling was characterized by
increased choice accuracy but was not distinguished in
the extent to which sample information “leaked” (Usher
and McClelland 2001), or was forgotten, in the course of
a trial.

Visual evoked responses
Turning to the EEG data, we first examined visual evoked
responses to test whether the sampling conditions dif-
fered in terms of early sensory processing of the sample
stimuli (e.g. due to potential differences in stimulus-
directed visual attention; Luck et al. 2000). Figure 2a
shows the occipitoparietal ERP difference between stim-
uli occurring in the right and left visual fields, subtracted
between contralateral channels (see Materials and Meth-
ods, ERP analysis). Statistical analysis showed no differ-
ences between sampling conditions in the time window
of either the P1 (80–130 ms) or the N1 component (140–
200 ms) of the visual ERP [all F(1,38) < 1.71, all P > 0.20,
all ηp

2 < 0.044; mixed 2 × 2 ANOVAs specified as in the
behavioral analysis above]. We thus found no evidence
for differences in early visual processing between the
sampling conditions.

Centro-parietal positivity/P3
We next examined centro-parietal positivity (CPP)
responses over centro-parietal channels between 300
and 600 ms after stimulus onset. The amplitude of
the CPP response to a sample generally increased in
the course of the trial (Fig. 2b–d), which is in line
with previous studies implicating the CPP in decision
formation (O’Connell et al. 2012; Twomey et al. 2015).
Figure 2c and d illustrates the monotonic ramping up
of CPP across samples occurring early, mid, and late in
the trial (see Materials and Methods) under partial and
full control. Descriptively, the build-up of CPP appeared
stronger under full control. For statistical analysis, we
examined the increase in CPP amplitude from early
to late samples in the individual sampling conditions
(Fig. 2b). A significant increase in amplitude was evi-
dent in each condition (including yoked; Fig. 2b, all
P < 0.02, t-tests against zero, uncorrected). A mixed 2 × 2
ANOVA comparing the amplitude difference between
conditions showed no significant main effects [self-
controlled/yoked: F(1,38) = 1.579, P = 0.217 ηp

2 = 0.04; full/-
partial: F(1,38) = 1.534, P = 0.223, ηp

2 = 0.039], but a signif-
icant interaction [F(1,38) = 11.408, P = 0.002, ηp

2 = 0.231].

Post hoc t-tests showed that the CPP increased more
steeply in the full control condition than in the yoked
baseline [t(19) = 2.772, P = 0.024, d = 0.687, paired t-test,
corrected], whereas no such effect was evident under
partial control [t(19) = −1.932, P = 0.137, d = −0.355]. Thus,
the increased choice accuracy under full control was
accompanied by a steeper increase of centro-parietal
decision signals within trials (O’Connell et al. 2012;
Twomey et al. 2015; Wyart et al. 2015; Spitzer et al. 2016).
Importantly, these effects were observed in comparison
against matched (yoked) baseline, ruling out that they
were attributable to any specific characteristics of the
self-sampled stimulus sequences.

Representational similarity analysis
Our results so far show that decisions made with full
control over sampling were more accurate and accom-
panied by a stronger build-up of parietal choice signals
(Fig. 2c–d), whereas there were no differences in early
visual processing (Fig. 2a) or in the extent to which sam-
ple information “leaked” over time (i.e. no difference in
recency effects; Fig. 1b–c). One possibility is that a benefit
of full control may have arisen at the stage of numerical
processing, in encoding a sample’s abstract value (i.e. its
numerical magnitude, which is to be integrated into the
subjectively perceived value of the choice option). We
used an RSA-based approach (see Materials and Meth-
ods) to examine the neural encoding of the samples’
numerical magnitude, building on previous findings of
numerical distance effects in multivariate ERP patterns
(Spitzer et al. 2017; Teichmann et al. 2018; Luyckx et al.
2019; Sheahan et al. 2021). Specifically, we correlated the
multivariate similarity structure of samples (1–9) in our
ERP data with theoretical models reflecting (i) numerical
distance and (ii) extremity of the sample values (see
Materials and Methods).

Numerical distance

We found robust encoding of numerical magnitude in
terms of a numerical distance effect in multivariate
ERP signals between approximately 160 and 800 ms
after sample onset (Fig. 3b, Pcluster < 0.001, t-test against
zero), which replicates and extends previous findings
in tasks without sampling control (Spitzer et al. 2017;
Teichmann et al. 2018; Luyckx et al. 2019; Sheahan
et al. 2021). To test whether the strength of this effect
differed between levels of sampling control, we examined
its time course in the various conditions (full, partial,
yoked baselines) using mixed 2 × 2 ANOVAs (specified
analogously as above). The analysis showed no main
effects (all Pcluster > 0.05) but a significant interaction
cluster between 320 and 580 ms (Pcluster = 0.009). We next
compared the average numerical distance effects in the
time window of this cluster. We found the effect to be
significantly larger (relative to yoked baseline) under full
control [t(19) = 3.65, P = 0.003, d = 1.05, corrected] but not
under partial control [t(19) = −1.065, P = 0.6, d = −0.340,
corrected]. In other words, the encoding of numerical
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Fig. 2. Univariate EEG results with ERPs time-locked to number sample onset. a) Early visual ERPs (left − right stimuli, right channels subtracted from
left channels) in each sampling condition. Gray shadings indicate time windows of the P1 and N1 components, respectively (80–130 ms and 140–200 ms).
b) The difference in centro-parietal (CPP) amplitudes between samples occurring late versus early in the trial (see panels c and d), plotted separately
for each sampling condition (including yoked). c) The “ramping up” of CPP amplitudes (0.3–0.6 s) over early, mid, and late samples in the partial control
condition. Gray shadings indicate the time window from which average amplitudes were extracted in panel b. d) Same as c, for the full control condition.
Error indicators in all panels show SE.

magnitude in sample-level neural signals was enhanced
under full control, mirroring the pattern of findings for
CPP build-up (Fig. 2b) and choice accuracy (Fig. 1b).

We next asked whether the enhanced number encod-
ing under full control was driven only by late samples
occurring near the time of the decision to stop sam-
pling. To this end, we repeated the RSA analysis sepa-
rately for the first (Fig. 3c, left) and second (Fig. 3c, right)
half of the samples in a trial. Importantly, a significant
enhancement under full control relative to yoked base-

line was already evident in the first half of samples
[t(19) = 2.279, P = 0.034, d = 0.707], that is, long before par-
ticipants stopped sampling. The effect in the second half
of samples was similar [t(19) = 2.237, P = 0.037, d = 0.673;
partial control: both P > 0.24]. In sum, we found no indica-
tion that enhanced number encoding under full control
occurred only near the time of deliberate (vs. forced)
stopping. Rather, the effect appeared to emerge early
in the sampling sequence. We note again that we only
interpret effects in relation to the respective matched
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Fig. 3. RSA results. a) Upper: Model RDM reflecting the pairwise numerical distance between sample values. Lower: Grand mean ERP-RDM averaged
across participants and sampling conditions in a representative time window between 300 and 600 ms after sample onset. b) Time course of numerical
distance effects in multivariate ERP patterns, plotted separately for each sampling condition. Black bar indicates time windows of significant numerical
distance encoding (collapsed across sampling conditions). Purple bar indicates the time window of significant differences between sampling conditions
(interaction effect, see Results). c) Mean numerical distance effects by condition. Left: First half of samples in each choice trial. Right: Second half. d)
Model RDM reflecting the sample values’ extremity in terms of their absolute distance from the midpoint of the sample range (i.e. 5). e) Time course of
extremity encoding in multivariate ERPs, plotted separately for each sampling condition. All error bars and shadings show SE.

(yoked) control conditions, as other comparisons may
suffer from nontrivial stimulus confounds (see Materials
and Methods, Experimental design).

Extremity

Inspection of the empirically observed ERP-RDM (Fig. 3a,
lower) suggests that besides numerical distance, the

multivariate ERP patterns also encoded the extremity of
the sample values (i.e. their absolute distance from the
midpoint of the sample range, see also Spitzer et al. 2017;
Luyckx et al. 2019). Using a model RDM of numerical
extremity (Fig. 3d; note that the model is orthogonal
to the numerical distance RDM in Fig. 3a, upper), we
found a significant effect between approximately 260
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and 800 ms (t-test against zero, Pcluster < 0.001) in the
ERP data collapsed across conditions. However, testing
for differences between sampling conditions yielded
no significant results (all Pcluster > 0.05). Together, while
both numerical distance and numerical extremity were
reflected in the multivariate ERP data, only numerical
distance mirrored the enhancement under full control
that was observed in CPP build-up and in behavior.

Neurometric distortions

Recent studies of sequential number comparisons
(without participant control over sampling) have shown
that neural number representations can be distorted (e.g.
compressed or anti-compressed) away from the perfectly
linear distance structure of our idealized model RDMs
(Fig. 3a; see Methods). We used a “neurometric” approach
(Spitzer et al. 2017) to test (i) whether such distortions
were replicated in our task and (ii) whether they differed
between levels of control. To this end, we parameterized
our model RDMs to reflect the distance structure of
transformed values v = sign(x + b) |x + b|k, where x
are the numerical sample values (1–9 normalized to
the range [−1, 1]), exponent k determines the shape
of the transformation (k < 1 compression; k = 1
linear; k > 1 anti-compression), and b reflects a bias
towards smaller (b < 0) or larger numbers (b > 0).
Our ERP data, averaged across all conditions, were
best explained by parameterizations k > 1 and b > 0
(Fig. 4a; both P < 0.003, t-tests of individual subject
maxima against 1 and 0, respectively, averaged over
parameterized distance and extremity). Thus, the neural
number representation was anti-compressed and biased
towards larger magnitudes (Fig. 4b), strongly resembling
the distortions observed in previous work (Spitzer et al.
2017; Luyckx et al. 2019). In comparisons between
levels of control, however, we found no evidence for
differences in the degree of anti-compression (Fig. 4c,
left; both P > 0.545, t-tests of k against yoked baselines
or bias; Fig. 4c, right; both P > 0.131, t-tests of b against
yoked baselines). In other words, under full control,
the encoding of numerical sample information was
amplified (Fig. 3b and c) without any notable changes
in its general representational geometry.

Lastly, we examined whether our neurometric findings
were also reflected in participants’ sampling behavior.
Stronger neural encoding of larger sample values (as sug-
gested by the neurometric bias towards large numbers,
cf. Fig. 4b) may imply that these values (e.g. “9” or “8”) may
drive behavior more strongly than small numbers (e.g. “1”
to “2”), despite their nominally identical diagnosticity for
the options’ mean values. If that was the case, partici-
pants in the full control condition should have been more
likely to stop sampling after large numbers. Empirically,
this should register in a relatively later mean position of
large numbers (on average across trials) within the self-
terminated sequences under full control, compared to
the fixed-length sequences under partial control (where
number values are expected to be uniformly distributed

across the sequence by design). Indeed, we found that
the mean relative position (relative to the sequence’s
length) of a sample increased with its numerical magni-
tude (1–9) in the full control conditions (P = 0.005, linear
trend analysis) but not in the partial control condition
(P > 0.78). In other words, participants showed a tendency
to stop sampling after larger numbers, consistent with
the finding of a neurometric bias towards larger num-
bers. We report this additional aspect of self-terminated
sampling for the sake of completeness; our yoked design
warrants that our findings about the effects of control
over sampling are unaffected by it.

Discussion
Using variants of a numerical sampling paradigm
and controlling for stimulus confounds, we observed
increased choice accuracy when participants had control
over the sampling process before committing to a
choice. On the neural level, the behavioral benefit
was reflected in a stronger encoding of the numeri-
cal sample information in multivariate EEG patterns
and in a steeper build-up of centro-parietal choice
signals. The key determinant of these effects was
participants’ control over “how much” information to
sample. Freedom to decide only which options to sample,
but not when to stop sampling, did not bring about
the same effects, neither in behavior nor in neural
signals.

Drawing on a well-established sequential sampling
framework (Gold and Shadlen 2007; Ratcliff and McK-
oon 2008; O’Connell et al. 2012), our behavioral and
neural findings provide a neurocognitive perspective on
how control over sampling may boost choice accuracy.
We observed no differences in early visual ERPs known
to be modulated by top-down visual attention (Man-
gun and Hillyard 1991; Luck et al. 1994, 2000), but a
robust enhancement further downstream in the process-
ing hierarchy, at the level of symbolic number encoding
(Ansari et al. 2005; Nieder and Dehaene 2009). Our results
replicate recent findings of a “neuronal numberline” in
multivariate ERP patterns, where the neural representa-
tion of, for example, number “6” is more similar to that of
“7” than to that of “9” (Spitzer et al. 2017; Teichmann et al.
2018; Luyckx et al. 2019; Sheahan et al. 2021). We found
this multivariate encoding of numerical magnitude to
be amplified under full control, mirroring the pattern
observed in behavioral performance. Importantly, num-
ber encoding was already enhanced for samples occur-
ring early in the trial, long before participants stopped
sampling to make a final choice. Likewise, the behavioral
benefit appeared driven by early and late samples alike,
as indicated by the absence of differences in tempo-
ral weighting. Consistent with these findings, we also
observed a steeper rise in parietal indices of evidence
accumulation (CPP/P3; O’Connell et al. 2012; Twomey
et al. 2015) “across” samples, as if each individual sample
contributed stronger evidence to the ongoing decision
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Fig. 4. Neurometric distortions. a) Grand mean neurometric map, combined across all task conditions. Color scale indicates increase of encoding strength
in multivariate ERPs (Δ r, averaged over distance- and extremity models) as a function of nonlinear distortions of numerical value (k < 1: compression;
k > 1: anti-compression, b: bias). Dashed lines indicate linear (k = 1) and unbiased (b = 0) models. Parts of the map that are not overlaid with an opaque
mask contain values with a significant increase relative to unbiased linear encoding (P < 0.001, corrected using false discovery rate). White markers
show maxima (diamond: mean; dots, individual participants). b) Neurometric function, parameterized according to the maximum mean correlation
identified in a. Inset plots illustrate exemplary compressive (k < 1), linear (k = 1), and anti-compressive (k > 1) distortions. c) Neurometric parameter
estimates in the individual sampling conditions, left: exponent (k); right: bias (b); see Methods and Results for details. Error bars show SE.

formation. In a sequential sampling framework where
evidence is accumulated into a running decision variable
(Gold and Shadlen 2007; Kiani et al. 2008; Ratcliff and
McKoon 2008; O’Connell et al. 2012; Glickman and Usher
2019), our EEG and behavioral findings may thus both be
attributable to an improvement in numerical evidence
processing.

One possible explanation for our findings relates to
motivational factors. Previous work has shown that
the ability to actively control the environment and/or
one’s subjective experiences can have beneficial effects,

for example, on memory (Voss et al. 2011; Murty et al.
2015), self-regulation, and error monitoring (Legault and
Inzlicht 2013), learning and inductive inference (Gureckis
and Markant 2012; Markant and Gureckis 2014), and
various other aspects of cognition and behavior (Patall
et al. 2008; Leotti et al. 2010; Leotti and Delgado 2011;
Patall 2012; Murayama et al. 2016). Our findings add to
these literature by showing that control can also confer
benefits in sample-based decision-making, specifically
when participants can control when to stop sampling.
While the extrinsic rewards for choice accuracy were
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identical across our task conditions, control over stop-
ping can add an incentive to optimize the time spent on
a trial (Ostwald et al. 2015; Tickle et al. 2020). There is
typically a trade-off between speed and accuracy of task
execution (Heitz 2014), such that faster decisions come at
the cost of lower accuracy (but see Gigerenzer et al. 2011).
However, the present findings under full control cannot
be explained by such a trade-off, given that we observed
benefits relative to yoked trials of identical length. As
we used exact copies of participant-generated sampling
sequences in our baseline conditions, we can also rule
out the possibility that the results are attributable to
amplification effects (Hertwig and Pleskac 2010), where
participants tend to stop sampling when the cumulative
difference between options happens to be large (leading
to objectively easier trials; see below). With these simpler
explanations ruled out, our findings suggest that control
per se may lead to more efficient sample encoding,
potentially through increased task engagement when
decision time can be optimized on a trial-by-trial basis.

We found no differences between conditions in
the temporal weighting of sample information over
the course of a trial. A clear recency effect (relative
overweighting of late samples) was evident in all task
conditions, including yoked baselines. This pattern
appears to be at odds with a previous meta-analysis of
numerical sampling studies (Wulff et al. 2018), where
recency effects were observed solely in conditions with
full agency over sampling. However, the present findings
are consistent with routine observations of recency
effects in other sequential integration tasks where
sample presentation is entirely experimenter-controlled
(Anderson 1964; Weiss and Anderson 1969; Tsetsos et al.
2012; Cheadle et al. 2014; Wyart et al. 2015; Spitzer et al.
2017; Luyckx et al. 2019; Kang and Spitzer 2021). Here,
using carefully designed yoked control conditions, we
found no evidence that the strength of recency effects
(which may arise, e.g. by forgetting, or leakage of sample
information over time; Usher and McClelland 2001)
would depend on the level of control over sampling.
We also found no differences in the representational
geometry of the sampled information in neural signals.
Neurometric analysis showed an anti-compression of
numerical values (Spitzer et al. 2017; Luyckx et al.
2019) in all conditions, regardless of the level of control.
The absence of differences in these more qualitative
aspects of information processing in our tasks suggests
that the cognitive benefits of full control may best be
described as an overall increase in the gain of neural
processing (Donner and Nieuwenhuis 2013; Eldar et al.
2013; Murphy et al. 2016), which may amplify the critical
decisional information in a sample (here, numerical
magnitude).

None of the benefits observed under full control were
evident in the partial control condition, where partici-
pants could only decide which option to sample next,
but not when to terminate sampling. Although this con-
dition gave participants some level of agency (relative

to the yoked conditions without control; Chambon et al.
2020; Weiss et al. 2021), we suspect that it may not
have induced a strong sense of control over the task.
It even seems possible that participants may have per-
ceived the requirement to perform a prescribed number
of sampling actions as externally controlled and a cogni-
tive burden (see also Sullivan-Toole et al. 2017). Indeed,
post hoc examination of left/right sampling patterns
showed that our participants resorted to stereotypical
sampling routines (either alternating between options:
“a-b-a-b- . . . ” or sampling first one option and then the
other: “a-a-a- . . . -b-b-b”) in 67.61% of trials (relative to
the yoked conditions without control; for related find-
ings, see Hills and Hertwig 2010). In other words, par-
ticipants made little use of the freedom to vary their
left/right sampling strategy trial by trial (and/or sample
by sample), potentially due to a lack of perceived benefits
(Dixon and Christoff 2012). In this light, it is perhaps
not surprising that we found no processing enhance-
ments under partial control, in either behavior or neural
signals.

Numerical sampling tasks similar to ours have been
used extensively in the past to study decisions from
experience (Hertwig et al. 2004) in complement to the
common use of symbolic descriptions to study risky
choice (Kahneman and Tversky 1979; Juechems et al.
2021). Experience-based choices can differ systemati-
cally from description-based choice, especially in terms
of probability weighting (Hertwig and Erev 2009; Wulff
et al. 2018). A much-discussed aspect of this “description–
experience gap” is that participants in experience-based
tasks tend to rely on relatively few samples (Hau et al.
2010; Plonsky et al. 2015; Wulff et al. 2018). Also in our
experiment, participants in the full control condition
chose to sample less than they could have (Furl and
Averbeck 2011). Although one explanation is that small
samples can render choices objectively simpler (Hertwig
and Pleskac 2008, 2010), our findings suggest that small
samples may also defy typical accuracy trade-offs if the
decision to stop sampling lies in the autonomy of the
sampling agent (see also Petitet et al. 2021). Granting
participants’ full control over sampling may thus not
only enable but directly promote reliance on small sam-
ples through more efficient processing of the sample
evidence.

Finally, our multivariate EEG analysis also showed a
neural signature of the samples’ “extremity” (Fig. 3d and e),
which did not differ between levels of control over
sampling. Future work may investigate the potential
significance of this finding with respect to the role
of extreme events in experience-based decisions (e.g.
Ludvig and Spetch 2011; Ludvig et al. 2014, 2018).

In summary, we found that control over sampling can
enhance the neural encoding of decision information and
improve choice accuracy. The results add to a growing
collection of findings that exercising agency can benefit
performance in cognitive tasks and shed light on the
neural processes that may support such benefits.
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