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Abstract 

Background:  Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger 
women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the 
molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs 
from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel 
mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors.

Methods:  Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous 
borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC 
samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing 
(RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed.

Results:  We identified single-nucleotide variants (SNVs) (range: 5688–14,833 per sample), insertion and deletion vari‑
ants (indels) (range: 880–1065), and regions with copy number variants (CNVs) (range: 62–335) among the 14 LGSOC 
samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of 
the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included 
KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in 
LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated 
using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, lead‑
ing to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 
proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling 
pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets.

Conclusions:  This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with 
matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 sam‑
ples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, 

*Correspondence:  kkwong@mdanderson.org

1 Department of Gynecologic Oncology and Reproductive Medicine, The 
University of Texas MD Anderson Cancer Center, Room T4‑3900, Clinical 
Research Building, 1515 Holcombe Boulevard, Houston, TX 77030, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03820-x&domain=pdf
http://orcid.org/0000-0002-0375-6669


Page 2 of 15Wong et al. Journal of Translational Medicine          (2022) 20:606 

and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide 
research into the pathogenesis and treatment of LGSOC.

Keywords:  Low-grade serous ovarian cancer, Whole-genome sequencing, Global proteomics, Global 
phosphoproteomics, RNAseq

Background
Patients with low-grade serous ovarian cancer (LGSOC) 
are usually diagnosed at a younger age and survive 
longer than those with high-grade serous ovarian can-
cer (HGSOC) [1]. In a recent single-institution study, the 
estimated 5-year survival rates were 62.3% for 33 patients 
with LGSOC and 43.9% for 241 patients with HGSOC; 
however, they had similar 10-year survival rates (21.2% 
vs. 22.7%, respectively) [2]. Unfortunately, most LGSOC 
patients eventually die of the disease because they are 
relatively chemoresistant and treatment options are 
still limited [3, 4]. The most common recurrent muta-
tions identified in LGSOC and its putative precursor, 
serous borderline ovarian tumor (SBOT), are BRAF and 
KRAS. BRAF and KRAS mutations have been identified 
in approximately 60% of SBOTs and early stage LGSOCs 
[5–9]. A recently completed clinical trial of trametinib 
(GOG0281), which inhibits the activity of MEK, the 
downstream target of the KRAS/BRAF proteins, pro-
duced an objective response rate of 26%. Patients with 
mutations in KRAS, BRAF, or NRAS in this trial had an 
increased chance of responding to trametinib [10]. How-
ever, other genetic aberrations in the MAPK pathway, or 
those that can bypass the dependence on BRAF/KRAS/
NRAS have not been fully explored by multi-omics 
profiling.

Early exome sequencing analyses of a limited number 
of LGSOCs have revealed very few recurrent mutations 
[11, 12]. Besides BRAF/KRAS/NRAS, novel recurrent 
mutations reported in LGSOC include NF1 (9%, 2/23) 
[13], ERBB2 (5%, 3/57, in serous borderline tumors) [12], 
USP9X (11%, 2/19), and EIF1AX (15%, 3/19) [12]. Other 
mutations of interest were noted in FGFR2, MAP2K1, 
and ESR1 [14]. A recent sequencing analysis targeting 
127 genes in 71 LGSOCs identified additional recurrent 
gene mutations, including MACF1 (11%), ARID1A (9%), 
NF2 (4%), DOT1L (6%), and ASH1L (4%) [15]. Another 
recent targeted sequencing analysis of 215 LGSOCs using 
various platforms identified additional recurrent muta-
tions such as PIK3CA, ATM, CREBBP, MUTYH, and 
NOTCH3 [16]. However, none of these studies included 
corresponding normal DNA to validate whether these 
mutations were true somatic mutations.

To carry out a more comprehensive molecular char-
acterization of LGSOC, we initially performed targeted 
sequencing mutation analyses of 409 cancer-related 

genes in 22 LGSOCs and six SBOTs. Subsequently, 
whole-genome sequencing (WGS) of LGSOC with corre-
sponding normal DNA, RNA sequencing (RNA-seq), and 
global proteomic and phosphoproteomic analyses were 
performed. The goal of this study was to identify novel 
proteogenomic aberrations in LGSOC, especially those 
associated with poor survival, that could be potential 
prognostic markers and therapeutic targets.

Methods
Patients and pathological materials
This study was approved by the Institutional Review 
Board of the University of Texas MD Anderson Cancer 
Center, and all samples were collected after obtaining 
written informed consent from patients. We obtained 
fresh-frozen tumor specimens and blood specimens 
from the MD Anderson Gynecologic Tumor Bank for 
31 patients diagnosed with LGSOC and six patients 
diagnosed with SBOT. The patient demographics and 
clinical characteristics are presented in Additional file 2: 
Table S1. These samples were used for targeted sequenc-
ing, WGS, RNA-seq, and quantitative proteomic and 
phosphoproteomic analyses. Blood samples (lympho-
cytes) were considered as normal tissues for comparison 
with tumor tissues. Patients with an overall survival of 
less than 40 months were defined as short-term survivors, 
and those with an overall survival of > 60  months were 
defined as long-term survivors. This is based on an analy-
sis of the US population-based Surveillance, Epidemiol-
ogy, and End Results (SEER) database, in which patients 
with solid tumors were clustered into six risk groups that 
differed in median survival (0.5–16.2  years) and high-
risk period of death (2.5–12 years). A high-risk period of 
death was defined as excess annual mortality compared 
to the age- and sex-matched control population. After 
the high-risk period (short-term survivors), the mortality 
gap between cancer patients and the control population 
stabilizes (long-term survivors) [17]. Since the reported 
median overall survival of low-grade serous carcinoma 
patients is between group 1 (high-risk period, 2.5 years) 
and group 2 (high-risk period, 6  years), the assumption 
of a high-risk period of approximately 4  years for low-
grade serous carcinoma patients would be somewhat 
arbitrary but reasonable. For the immunostaining study, 
a tissue microarray containing LGSOCs from 62 patients 
was constructed using formalin-fixed paraffin-embedded 
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(FFPE) blocks available from our tumor bank. For the 
“Inova” cohort, as previously described [18], archival 
FFPE tumors were selected from Inova Fairfax hospital, 
and LGSOC patients experiencing ≤ 44.4 months (n = 2) 
or ≥ 93.3 months (n = 4) were prioritized for downstream 
analysis.

DNA extraction, library preparation, and targeted 
sequencing
DNA was isolated from the blood and frozen tissues 
using a DNeasy Blood and Tissue Kit (Qiagen, Hilden, 
Germany). Libraries were made using the Ion AmpliSeq 
Library Kit 2.0 (Thermo Fisher Scientific, Grand Island, 
NY, USA). Targeted sequencing of 409 genes was per-
formed with the Ion AmpliSeq Comprehensive Can-
cer Panel (the gene list is provided in Additional file  2: 
Table  S2). Briefly, four PCRs were performed using 
primers from the panel, which were provided in four dif-
ferent pools with 10 ng of DNA for each PCR multiplex-
ing reaction. The PCR products were partially digested, 
ligated to adaptors, amplified for five cycles, and purified 
using Agencourt AMPure XP beads (Beckman Coulter, 
Indianapolis, IN, USA). The PCR products were then 
quantified using an Agilent High Sensitivity DNA Kit and 
Agilent 2100 Bioanalyzer system (Agilent Technologies, 
Santa Clara, CA, USA) and pooled together in equimo-
lar quantities. The pooled amplified library was subse-
quently used as a template for emulsion PCR, a process 
by which DNA was clonally amplified onto beads (Ion 
Sphere Particles, ISPs) using an Ion PGM Template OT2 
200 Kit and Ion OneTouch 2 instrument (Thermo Fisher 
Scientific). DNA containing ISPs was enriched using Ion 
PGM Enrichment Beads (Thermo Fisher Scientific) and 
Ion OneTouch ES instrument. Sequencing primers and 
polymerase from the Ion PGM Sequencing 200 Kit v2 
(Thermo Fisher Scientific) were added to the enriched 
DNA-positive ISPs before they were placed in an Ion 318 
Chip v2 (Thermo Fisher Scientific) for sequencing on an 
Ion Personal Genome Machine (PGM; Thermo Fisher 
Scientific).

Identification of somatic variants from targeted 
sequencing
For targeted sequencing of the 409 genes, FASTQ files 
were imported and analyzed using CLC Genomics Work-
bench software (version 20), as described previously [5] 
and aligned to the human genome assembly GRCh38 to 
detect variants. Somatic variants were obtained by filter-
ing variants from tumor DNA from those detected in the 
matched normal lymphocyte DNA. Six of the 22 LGSOC 
samples had no matched normal lymphocyte DNA, 
and the pooled normal variants from the 16 available 
matched lymphocyte DNA samples were used to detect 

somatic mutations. Identified somatic mutations were 
filtered for (a) a variant read count in the tumor sample 
of ≥ 2, (b) a variant allele frequency (VAF) of ≥ 0.15 in the 
tumor sample and 0 in the matched normal sample, and 
(c) common variants in the population with a frequency 
threshold of 1% in dbSNP129 [19], 1000 Genomes Pro-
ject [20], Exome Aggregation Consortium [21], and 
ESP6500 [21]. Somatic variants were confirmed through 
visual inspection of sequence alignment in the BAM files 
using CLC Genomics Workbench software (version 20).

Whole‑genome sequencing
We performed WGS as described in a previous publica-
tion by our group [22]. Briefly, genomic DNA extracted 
from frozen tissues and matched blood samples from 14 
patients with LGSOC was quantified using the Quant-
iT PicoGreen dsDNA reagent and a kit with a Qubit 3.0 
fluorometer (Invitrogen). Sequencing libraries were pre-
pared using the TruSeq DNA PCR-Free Library Prep Kit 
(Illumina), and sequenced on the Illumina HiSeq X plat-
form using the HiSeq X HD Paired-End Cluster Genera-
tion Kit v2 (Illumina).

WGS data analysis and somatic mutation detection
BAM files were generated by aligning WGS reads to 
the hg19 human reference genome using the BWA soft-
ware package [23]. Subsequently, duplicate reads were 
removed using Picard tools (http://​broad​insti​tute.​github.​
io/​picard/) and local realignments were performed 
using the GATK toolkit [24]. Paired tumor and normal 
BAM files were then used for somatic variant detec-
tion. Somatic point mutations and insertions/deletions 
were identified using MuTect [25] and Pindel tools [26], 
respectively. The identified somatic mutations were fil-
tered for (a) a total read count in the tumor sample 
of ≥ 20, (b) a total read count in the germline (blood 
DNA) sample of ≥ 10, (c) a variant allele frequency (VAF) 
of ≥ 0.15 in the tumor sample and 0 in the matched nor-
mal sample, and (d) common variants in the population 
with a frequency threshold of 1% in dbSNP129 [19], 1000 
Genomes Project [20], Exome Aggregation Consortium 
[21], and ESP6500 [21]. Oncoplots were generated using 
MafTools version 2.12 R [27].

Copy number variant detection
Copy number variations were predicted using the HMM-
copy software package [28]. Circular binary segmenta-
tion was used to identify regions with copy losses or 
gains from the copy number log2 ratios of tumor versus 
matched normal samples [29]. A log2 ratio <  − 0.4 was 
considered, copy loss, and a log2 ratio ≥ 0.4 was consid-
ered copy gain.

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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RNAseq analysis and identification of differentially 
expressed genes
RNA-seq was performed at the MD Anderson Cancer 
Center Advanced Technology Genomics Core Labora-
tory as previously described [22, 30]. Total RNA from 
the same 14 frozen WGS samples was prepared using an 
RNeasy Mini Kit (Qiagen). However, two RNA samples 
had RIN values less than 6 and were not used for RNA-
seq analysis. Sequencing libraries were prepared using a 
KAPA Stranded RNA-Seq Kit (Roche Diagnostics) and 
sequencing was performed on an Illumina HiSeq 4000 
system. FASTQ files from RNA-seq were analyzed using 
CLC Genomics Workbench (version 20) to identify dif-
ferentially expressed genes. Reads were mapped to the 
human reference genome GRCh38 and gene expression 
was estimated using the expectation–maximization (EM) 
estimation algorithm and reported as transcripts per mil-
lion (TPM).

Specimen preparation and tandem mass spectrometry 
proteomics
Quantitative proteomic analysis was performed on 14 
LGSOC tissue samples as described previously [22]. 
Quantitative proteomic analysis was also performed on 
an independent cohort of LGSOC tumors, i.e. the “Inova” 
cohort, previously described [18]. Briefly, laser microdis-
section was used to collect the whole tumor (combined 
cancer and stromal cells), and the samples were sub-
jected to pressure-assisted digestion using a barocycler 
(2320EXT Pressure BioSciences, Inc.) and heat-stable 
trypsin (SMART Trypsin; Thermo Fisher Scientific, 
Inc.). Peptide digestion concentrations were determined 
using a bicinchoninic acid (BCA) assay, and 50 µg of the 
total peptide was labelled per tandem mass tag channel 
(TMTpro 11-plex, Thermo Fisher Scientific, Inc.). Sample 
multiplexes were separated offline using basic reversed-
phase liquid chromatography fractionation on a 1260 
Infinity II liquid chromatograph (Agilent) into 96 frac-
tions using a linear gradient of acetonitrile (0.69% min) 
and concatenated into 36 fractions. Ten percent (by vol-
ume) of each fraction was removed using liquid chroma-
tography-tandem mass spectrometry (LC–MS/MS). The 
remaining 90% (volume) was pooled into 12 fractions 
for serial phosphopeptide TiO2 enrichment followed by 
iron-immobilized metal ion affinity chromatography (Fe-
IMAC). Briefly, the peptide fractions were vacuum-dried, 
resuspended in TiO2 binding/equilibration buffer, and 
bound to TiO2 affinity spin tips (High-Select TiO2 Phos-
phopeptide Enrichment Kit; Thermo Fisher Scientific). 
The sample flow-through and washes were reserved for 
subsequent enrichment using ferric nitrilotriacetic acid 
(Fe-NTA) affinity chromatography (High-Select Fe-NTA 
Phosphopeptide Enrichment Kit). Each pooled fraction 

was resuspended in 100  mM NH4HCO3 and analyzed 
by LC–MS/MS using a nanoflow LC system (EASY-
nLC 1200, Thermo Fisher Scientific) coupled online 
with an Orbitrap Fusion Lumos Tribrid mass spectrom-
eter (Thermo Fisher Scientific). Briefly, each sample was 
loaded into a nanoflow high-performance LC system fit-
ted with a reversed-phase trap column (Acclaim™ Pep-
Map™ 100 C18, 2  cm length, nanoViper Trap column, 
Thermo Fisher Scientific) and a heated (50 °C) reversed-
phase analytical column (Acclaim™ PepMap™ RSLC 
C18, 2 μm, 100 Å, 75 μm × 500 mm, nanoViper, Thermo 
Fisher Scientific) connected online to an Orbitrap mass 
spectrometer. The peptides were eluted using a linear 
gradient of 2% mobile phase B (95% acetonitrile with 
0.1% formic acid) to 32% mobile phase B within 120 min 
at a constant flow rate of 250 nL/min. High-resolution 
(R = 60,000 at m/z 200) broadband (m/z 400–1600) mass 
spectra (MS) were acquired, from which the top 12 most 
intense molecular ions in each MS scan were selected 
for high-energy collisional dissociation (HCD, normal-
ized collision energy of 38%) acquisition in the Orbitrap 
at high resolution (R = 50,000 at m/z 200). The monoiso-
topic precursor selection mode was set to “Peptide,” and 
the MS1 peptide molecular ions selected for HCD were 
restricted to z =  + 2, + 3, and + 4. The radio frequency 
(RF) lens was set to 30%, and both MS1 and MS2 spectra 
were collected in the profile mode. Dynamic exclusion 
(t = 20 s at a mass tolerance of 10 ppm) was used to mini-
mize the redundant selection of peptide molecular ions 
for HCD. Global protein- and phosphosite-level identifi-
cations were generated by searching raw data files with 
a publicly available, non-redundant human proteome 
database (Swiss-Prot, Homo sapiens [http://​www.​unipr​
ot.​org/]) using Mascot (Matrix Science), Proteome Dis-
coverer (Thermo Fisher Scientific), and in-house tools 
with identical parameters, as previously described [22]. 
Differential analyses of the global proteome and phos-
phoproteome data were performed using the LIMMA 
package (version 3.8) [31] in R (version 3.5.2), and path-
way analysis was performed using Ingenuity Pathway 
Analysis (Qiagen) and Metascape Analysis [32] (https://​
metas​cape.​org).

Results
Identification of somatic mutations by targeted 
sequencing
The sequences from all exons of 409 genes generated 
with the Ion AmpliSeq Comprehensive Cancer Panel 
from our 22 LGSOC and six SBOT samples had an 
average coverage of 115′ for each nucleotide. The SNV 
and indel variants are presented in Additional file  2: 
Table  S3. A total of 176 somatic variants were identi-
fied. Six LGSOCs (LGS102, LGS103, LGS116, LGS117, 

http://www.uniprot.org/
http://www.uniprot.org/
https://metascape.org
https://metascape.org
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LGS120, and LGS122) had no matched normal tissues 
and pooled normal reads were used as surrogate con-
trols for these samples to identify somatic variants. 
Next, we selected 14 missense mutations with a VAF 
of at least 25% for validation using Sanger sequenc-
ing. Table  1 lists the seven gene mutations validated 
by Sanger sequencing. However, we were unable to 
validate the other seven mutations (CTNNB1, EP300, 
MET, MLH1, PDGFB, PTCH1, and TET2) (data not 
shown). Sanger sequencing chromatograms for the 
validated somatic gene mutations are shown in Addi-
tional file  1: Fig. S1. Similar to previous reports 
[7, 16], BRAF (4/6 SBOT, 66.7%) and KRAS (3/22 
LGSOC, 13.6%) mutations had the highest frequen-
cies in our cohort. Two novel mutations identified in 
this analysis, UBR5 (c.935A > C; p.E312A) and EPHA3 
(c.2283G > T; p.K761N), have not been previously 

reported in LGSOC. However, the same UBR5 muta-
tion (c.935A > C; p.E312A) was reported as a veri-
fied somatic mutation in HGSOC (COSMIC database 
sample ID: COSS1475074). Patient LGS119 had two 
detected mutations (EPHA3 and ATRX) in her ini-
tial tumor, and these mutations were also detected in 
tumor samples obtained when the patient had a recur-
rence 17  months after the initial surgery. Previous 
studies have found that the EPHA3 mutation K761N 
is within a highly conserved kinase domain analogous 
to that of FGFR2 (K641) [33] and that this mutant pro-
tein is likely to function as an oncoprotein by consti-
tutively activating the downstream kinase pathway 
[34]. Although TP53 mutations are rare in LGSOC, we 
detected and validated a TP53 mutation (c.1025G > C; 
p.R342P) in exon 10, in contrast to frequently detected 
TP53 mutations in exon 5–8. BRAF mutations were 

Table 1  Validated somatic mutations detected by targeted sequencing of all exons in 409 cancer-related genes for 22 patients with 
LGSOC and 6 patients with SBOT

a NED no evidence of disease

Patient ID Diagnosis Stage Vital status at last follow-upa Age at 
diagnosis 
(years)

Overall survival or 
length of follow-up 
(years)

Mutation(s) detected

LGS101 LGSOC IIIC Deceased 54 5.1 BRAF p.V600E

LGS102 LGSOC IIIC Alive with disease 51 14.3 KRAS p.G12A

LGS103 LGSOC IIIC Alive (NED) 66 8.3 KRAS p.Q61H

LGS104 LGSOC lllB Deceased 59 4.5 KRAS p.Q61L

LGS105 LGSOC IIIC Deceased 52 4.4 TP53 p.R342P

LGS106 LGSOC lllC Deceased 66 6.9 UBR5 p.E312A

LGS107 LGSOC IIIB Deceased 56 1.4

LGS108 LGSOC lllC Deceased 72 1.9

LGS109 LGSOC lllC Deceased 26 12.0

LGS110 LGSOC lllC Deceased 59 0.2

LGS111 LGSOC IV Deceased 21 2.1

LGS112 LGSOC IIIC Alive with disease 63 15.2

LGS113 LGSOC IIIC Deceased 41 7.3

LGS114 LGSOC IIIC Deceased 70 1.9

LGS115 LGSOC IIIC Deceased 22 4.3

LGS116 LGSOC IIIC Alive (NED) 73 11.6

LGS117 LGSOC IIIC Alive with disease 45 14.9

LGS118 LGSOC IIIC Deceased 64 11.2

LGS119 LGSOC IIIC Deceased 20 17.1 EPHA3 p.K761N; ATRX p. E481D

LGS120 LGSOC IIIC Alive with disease 41 9.4

LGS121 LGSOC IIIC Deceased 40 5.5

LGS122 LGSOC IIIA Deceased 38 8.3

SBOT101 SBOT IIC Alive (NED) 48 6.0

SBOT102 SBOT IB Alive (NED) 49 5.6 BRAF p.V600E

SBOT103 SBOT IIB Alive (NED) 48 5.3 BRAF p.V600E

SBOT104 SBOT IA Alive (NED) 65 5.4 BRAF p.V600E

SBOT105 SBOT IIIC Alive (NED) 19 5.2 BRAF p.V600E

SBOT106 SBOT IIIC Deceased 59 6.6 FBXW7 p.R505C
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detected in 4 SBOTs, and FBXW7 mutations were 
detected in another SBOT. Mutations in FBXW7 have 
previously been detected in SBOT using whole-exome 
sequencing [35].

Whole‑genome sequencing
As only a few mutations were detected by sequencing 
the exons of targeted 409 cancer-related genes, WGS 
was performed to investigate any single-nucleotide vari-
ants, insertions/deletions, copy number changes, or large 
structural variants on a genomic scale. We retrieved 14 
LGSOC samples with matched normal lymphocytes, 
which was sufficient for WGS, RNA-seq, and quantita-
tive proteomic analyses. DNA extracted from 14 LGSOC 
tumor tissues with corresponding matched normal 
lymphocytes was sequenced to a depth of 100′ with the 
matched blood DNA at a depth of 30′. An average of 
2792 million and 936 million sequencing reads were gen-
erated for each tumor DNA sample and normal blood 
DNA sample, respectively. The numbers of SNVs, indels, 
and regions with CNVs detected for each sample ranged 
from 5688 to 14,833, 880 to 1065, and 62 to 335, respec-
tively (Additional file 2: Table S4). The calculated tumor 
mutation burden (TMB) is considered low (2.2–5.3 

mutations per Mb) (Additional file  2: Table  S4) but is 
higher than previous reported TMB (0.5–2 mutations 
per Mb) in LGSOC based on whole exome sequenc-
ing [13]. A previous study on colon cancer identified 
17 mutations per Mb as the optimal threshold of TMB 
for predicting MSI status [36]. Thus, these LGSOC are 
unlikely to be microsatellite instable tumors. Patient 
LGS126 had the highest number of detected SNVs in 
the recurrent tumors (n = 14,833). The patient LGS126 
had received multiple therapies. Most of the detected 
variants had a low VAF. There were 546 SNVs or indels 
within the exon regions, with a VAF ≥ 15% and read 
counts ≥ 3 (Additional file  2: Table  S5). Figure  1A sum-
marizes the types of mutations, variants per sample, SNV 
classes, and top 10 mutated genes. Frameshift deletion 
and the transition change C > T were the two most com-
mon mutational events in the exonic regions. This finding 
is similar to that previously reported for cancers [37]. In 
total, 174 single-nucleotide substitution mutations (non-
synonymous mutations, n = 124; synonymous mutations, 
n = 50) were identified in the coding regions (Additional 
file 2: Table S5). Figure 1B compares the total number of 
mutations and types between long- and short-term sur-
vivors. Only mutations that appeared in two or more 

Fig. 1  Summary plot of mutational changes. A Variant type, SNV class, variants per sample, variant classification summary and the top10 mutated 
genes detected among all 14 LGSOC samples. Frame_Shift_Del, frameshift deletion; In_Frame_Del, in-frame deletion; In_Frame_Ins, in-frame 
insertion; Frame_Shift_Ins, frameshift insertion; SNP, single nucleotide polymorphism; INS, insertion; DEL, deletion; SNV, single nucleotide variant. 
B Comparison of total number of mutations and types detected between long-term survivors (n = 7) and short-term survivors (n = 7). Mutations 
appeared in 2 or more samples were shown. Blue, frameshift deletion; purple, frameshift insertion; yellow, in-frame deletion; red, in-frame insertion; 
green, missense mutation; orange-red, nonsense mutation
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samples are shown. There was no significant difference 
in the number of mutational changes between the long-
term and short-term survivors (Fig. 1B; Additional file 2: 
Table S4). The most frequently detected mutations were 
frameshift deletions or in-frame insertions, such as those 
in CACNA1B, PDE4DIP, CCDC40, MAN1B1, KRTAP5-
7, SMC1B, AP3S, and AP3S1. A previous whole-exome 
sequencing analysis of 13 SBOTs and 10 LGSOC identi-
fied 396 somatic variants [12], which was less than the 
number of somatic variants (n = 546) detected in this 
study. Moreover, the number of indels from the previ-
ous exome sequencing (1314/7579; 17.3%) of the 22 
LGSOC samples was much lower than that in our study 
(350/524, 66.7%). This could be because of the different 
methods used for genome sequencing, different methods 
for variant calling, and the criteria used for filtering vari-
ants. Whole genome sequencing has been shown to be 
superior to whole exome sequencing for the detection of 
high-quality coding variants [38].

The tumor DNA purity of each sample was estimated 
based on the frequency of variants detected in both the 
tumor and corresponding blood DNA using the CLC 
Genomics Workbench (Additional file  2: Table  S1). 
By correcting for tumor purity, 2637 somatic variants 
(missense or indel in exonic regions) with at least three 
read counts were identified (Additional file 2: Table S6), 
with VAF ranging from 1 to 100%. Even after adjust-
ing for tumor purity, only 860 somatic variants had a 
VAF of ≥ 20%. There were 178 nonsynonymous variants 
in 170 genes, and seven genes had synonymous muta-
tions detected in two or more of the 14 samples. These 
genes include KRAS, FCGBP, NRAS, DNM3, SSC5D, 
TCHH, and ZNF99. Because tumor samples with DNM3 
mutations had higher tumor DNA purity and VAF, 
we validated these mutations using Sanger sequenc-
ing (Additional file  1: Fig. S2). Using Sanger sequenc-
ing, we also detected another UBR5 mutation (c.G953A; 
p.R318H) in sample LGS129 in addition to the UBR5 
mutation detected by targeted sequencing (Table 1). The 
UBR5 mutation (c.G953A; p.R318H) has been previously 
detected and validated as a somatic mutation in two 
large intestinal adenocarcinomas (COSMIC sample IDs: 
COSS1565439 and COSS1650962). Previously reported 
recurrent mutations in LGSOC, such as USP9X and 
EIF1AX, were also detected in two and three of our WGS 
samples, respectively (Additional file 2: Tables S1, S5, and 
S6).

Next, we compared the mutational landscapes of the 
long- and short-term survivors. Figure  2 shows the 30 
gene mutations that were preferentially observed in the 
long- or short-term survivors. Most mutations were 
indels, except for four genes (FCGBP, TUBB4Q, UBC, 
and PRB3) with missense mutations. All the FCGBP 

variants were nonsynonymous missense mutations; how-
ever, only one of the TUBB4Q and PRB3 variants had a 
nonsynonymous missense mutation. The remaining vari-
ants were synonymous missense mutations, which did 
not cause amino acid changes.

Copy number changes in LGSOC
Figure  3 compares the CNVs between the long- and 
short-term survivors across all chromosomes detected 
in the WGS. Details of the regions with CNVs among 
the 14 LGSOC samples are listed in Additional file  2: 
Table S7. Regions with copy number gain or loss in each 
sample ranged from 62 to 335 in each LGSOC sample, 
and there was no significant difference in the number of 
CNVs between the long- and short-term survivors. Chro-
mosomal region (> 100,000  bp) with the most frequent 
chromosome gain was chromosome 21, and those with 
the most frequent chromosome loss were chromosomes 
1p (n = 6), 6q (n = 5), 9p (n = 6), and 22 (n = 6). These 
results are similar to those previously reported [6, 39]. As 
CDK2NA is frequently deleted in LGSOC [16], we per-
formed immunostaining for p16 (encoded by CDK2NA) 
on an LGSOC tissue microarray (Fig.  3B). We found 
that 40 of 62 patient samples had no detectable  p16 
expression.

RNAseq analysis
RNA-seq data were generated from 12 LGSOC samples 
(five long-term and seven short-term survivors) with 
an average of 66 million reads (range: 54–73 million 
reads). All patients were initially treated with chemo-
therapy (taxol plus carboplatin) followed by hormonal 
therapy, except for one patient, LGS122, who received 
only hormonal therapies. The gene expression profiles 
(reported as TPM) of the 12 LGSOC samples are listed 
in Additional file 2: Table S8. For 117 genes, we observed 
a differential expression between long- and short-term 
survivors of > 1.5-fold, with a p-value of ≤ 0.01. Ingenu-
ity pathway analysis indicated that five of these genes 
(MKNK1, PPP1R11, PPP2CA, PRKCG, and RPS6KA1) 
were involved in the canonical ERK/MAPK signaling 
pathway (Z-score = 2.24; p = 2.28E−03), which was more 
active in short-term survivors. Table 2 shows a list of dif-
ferentially associated with potentially targeted drugs. A 
negative fold-change value indicates higher gene expres-
sion in short-term survivors. The greatest difference was 
observed for PRKCG, which was expressed at a 4.82-fold 
higher level in the short-term survivors. Protein activity 
of PRKCG can be inhibited by Go6983, a pan–protein 
kinase C inhibitor. In contrast, HIF1A expression was 
higher in long-term survivors. Overexpression of the 
associated protein HIF1-alpha has been associated with 
better survival in early stage squamous cell carcinoma 
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of the oral floor [40]. SLC1A1 also has higher expres-
sion in long-term survivors and is a high-affinity gluta-
mate transporter [41]. However, the role of SLC1A1 in 
the development of cancer remains unclear. Upstream 
regulator analysis indicated that two upstream regulator 

networks (BHLHE40 and HNRNPK) were activated in 
long-term survivors compared with short-term survi-
vors. In contrast, three regulator networks (TCF4, USP4, 
and USP9X) were inhibited in long-term survivors com-
pared with short-term survivors (Table 3).

Fig. 2  Gene mutations that preferentially occurred in low-grade ovarian serous carcinomas in short-term survivors or long-term survivors

Fig. 3  CNVs across all chromosomes from whole-genome sequencing (WGS) data. A Comparison of CNVs between short-term and long-term 
survivors. B Immunostaining of p16 protein in LGSOC tissue microarray
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We also compared the gene expression profiles of 
LGSOC with and without major recurrent mutations 
(KRAS, NRAS, DNM3, and EIF1AX), and identified a set 
of differentially expressed genes (Fig. 4). CCL11 expres-
sion was more than fourfold higher in LGSOCs without 
mutations than in those with mutations. The CCL11 pro-
tein can be targeted by bertilimumab. In contrast, PTK6 
expression was more than eightfold higher in LGSOCs 

with mutations than in those without. PTK6 kinase activ-
ity can be targeted by everolimus/vandetanib.

Global proteomic analysis
We measured the expression of 7754 proteins from 14 
LGSOC samples (Additional file  2: Table  S9). By com-
paring the proteomic profiles of seven short-term sur-
vivors and seven long-term survivors, we identified 60 

Table 2  Differentially expressed genes between long- and short-term survivors with potential therapeutic targeted drugs

Symbol Entrez gene 
name

Fold Change 
(long/short)

p-value Short-
term mean 
expression 
(TPM)

Long-term 
mean 
expression 
(TPM)

Location Type(s) Drug(s)

RKCG Protein kinase C 
gamma

− 4.82 0.01 3.86 0.77 Cytoplasm Kinase Go6983, ingenol 
mebutate, Ro31-
8220

VAMP1 Vesicle associ‑
ated membrane 
protein 1

− 1.97 0.00017 15.31 7.77 Cytoplasm Transporter Botulinum toxin 
type B

PER1 Period circadian 
regulator 1

− 1.82 0.0087 79.62 43.96 Nucleus Transcription 
regulator

Avibactam

MKNK1 MAPK interacting 
serine/threonine 
kinase 1

− 1.75 0.0081 10.27 5.89 Cytoplasm Kinase BAY1143269, 
dacomitinib, 
ETC-1907206, 
QL-X-138, SEL201, 
tomivosertib

RPS6KA1 Ribosomal pro‑
tein S6 kinase A1

− 1.7 0.0022 25.9 15.24 Cytoplasm Kinase LJH685, PMD-026

POLE DNA polymerase 
epsilon, catalytic 
subunit

− 1.59 0.01 11.9 7.53 Nucleus Enzyme Bortezomib/clad‑
ribine/rituxima‑
bcin interferon

HIF1A Hypoxia induc‑
ible factor 1 
subunit alpha

1.96 0.0083 62.38 122.14 Nucleus Transcription 
regulator

EZN 2968, PX 478

SLC1A1 Solute carrier 
family 1 member 
1

3.86 0.01 1.18 4.54 Plasma Mem‑
brane

Transporter Riluzole

Table 3  Significant upstream regulator networks represented by differentially expressed genes between long-term and short-term 
survivors with absolute Z-score ≥ 2

Master regulator Molecule type Participating 
regulators

Predicted 
activation

Activation 
z-score

p-value of 
overlap

Target molecules in 
dataset

BHLHE40 Transcription 
regulator

BHLHE40 Activated 2.236 0.0129 HIF1A, LPAR1, PER1, PNRC1, 
SLC7A2

HNRNPK Other CEBPB, ERK1/2, 
HNRNPK, 
MAP2K1/2, SRC

Activated 2.333 0.00606 CTSV, FOXO1, HIF1A, HMGB2, 
KLF5, MKNK1, MXD3, NASP, 
POLE

TCF4 Transcription 
regulator

TCF4 Inhibited − 2 0.0333 FOXO1, HIF1A, PPIH, RPS6KA1

USP4 Peptidase Akt, JINK1/2, P38 
MAPK, SMAD4, 
USP4

Inhibited − 2.121 0.0119 FOXO1, HIF3A, KLF5, LPAR1, 
NRP2,PPP1R1B,SMAD3,TPM2

USP9X Peptidase ITCH, PRKCB, 
SMAD4, USP9X, 
ZAP70

Inhibited − 2.646 0.00801 ELOVL5, FOXO1, HIF1A, 
LPAR1, NASP, SMAD3,TPM2
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differentially expressed proteins with a p-value < 0.01, 
FC ± 1.5 (Fig. 5A, Additional file 2: Table S10). The long-
term and short-term survivors were well separated by 

principal component analysis (Fig.  5B). Several proteins 
with higher expression in short-term survivors can be 
targeted by available drugs (Additional file 2: Table S11). 

Fig. 4  Differentially expressed genes between tumor samples with and without specific mutations (KRAS, NRAS, EIF1AX, and DNM3)

Fig. 5  Differentially expressed proteins between long-term and short-term survivors. A Heatmap of differentially expressed proteins between 
long-term and short-term survivors; LIMMA p < 0.01, fold-change ± 1.5. B Long-term and short-term survivors were separated by principal 
component analysis (PCA) with differentially expressed proteins; PCA of protein alterations shown in A served to explain 56.7% and 7.5% of the 
variance between short and long-term survivors
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Metascape analysis showed that protein alterations were 
correlated with the enrichment of pathways regulating 
RNA processing in long-term survivors and intercellu-
lar interactions in short-term survivors [32] (Additional 
file 2: Table S12). Twenty of these differentially expressed 
proteins were common in both the MDACC discovery 
and INOVA validation LGSOC samples (Additional file 2: 
Table  S13), with a Spearman’s rank correlation coeffi-
cient of rho = 0.48 for protein abundance (Table 4; Addi-
tional file 1: Fig. S3). The GTF2F1 and TRIM27 proteins 
are associated with long-term survival. The transcripts 
of these two proteins were also associated with a bet-
ter prognosis based on KMplot analysis [42] (Additional 
file 1: Fig. S4). HBA1 protein is upregulated in short-term 
survivors. HBA1 transcript levels also correlated with 
poor survival (Additional file 1: Fig. S4).

Global phosphosite analysis
For phosphoproteomic analysis, 10,286 phosphosites 
were quantified in 10 of the 14 LGSOC protein samples. 
However, 553 of these phosphosites were not registered 
in the PhosphoSitePlus database (v6.6.0.4; Cell Signaling 
Technology, https://​www.​phosp​hosite.​org). The expres-
sion levels of 9733 registered phosphosites in the 1327 
proteins are provided in Additional file 2: Table S14. By 
comparing the phosphosite profiles of five short-term and 
five long-term survivors, we identified 42 phosphosites of 

specific proteins (with p < 0.01, FC ± 1.5, present in more 
than 50% of the samples) that were significantly differen-
tially expressed between LGSOC tumors from long- and 
short-term survivors (Additional file  1: Fig. S5, Addi-
tional file  2: Table  S15). In long-term survivors, phos-
phosite alterations correlated with pathways regulating 
Rho GTPase signaling. In contrast, for short-term sur-
vivors, phosphosite alterations correlated with pathways 
regulating post-translational modifications and diverse 
kinase-regulated signaling pathways (Additional file  2: 
Table S16).

Correlation of significantly differentially expressed genes 
with co‑quantified proteins
Among the 11 samples that had both RNA-seq and 
quantitative proteomics data, 7680 proteins and tran-
scripts were co-quantified. Only sixty-two significantly 
differentially expressed genes between short- and long-
term survivors from RNA-seq data were co-quantified 
at the protein level. In general, the protein and tran-
script expression ratios of short- and long-term survi-
vors shared similar abundance trends. The correlation 
plot between the transcript ratios of short-term and 
long-term survivors and the corresponding proteins 
had a Spearman Rho of 0.352 with a p-value of 0.005 
(Additional file  1: Fig. S6). However, the corresponding 
expressed proteins were largely not significantly altered 

Table 4  Twenty co-altered in MDACC discovery and INOVA validation samples, Spearman Rho = 0.48 for protein abundance

Accession Protein Gene MDACC long VS short 
(Log2 fold-change)

INOVA long VS short 
(Log2 fold-change)

P02144 MYG_HUMAN Myoglobin MB 1.28 − 1.11

Q9Y617 SERC_HUMAN Phosphoserine aminotransferase PSAT1 0.93 1.66

Q969H8 MYDGF_HUMAN Myeloid-derived growth factor MYDGF 0.83 0.89

Q15645 PCH2_HUMAN Pachytene checkpoint protein 2 homolog TRIP13 0.66 1.14

Q9UBP6 TRMB_HUMAN tRNA (guanine-N(7)-)-methyltransferase METTL1 0.56 0.76

Q9Y657 SPIN1_HUMAN Spindlin-1 SPIN1 0.49 0.56

Q9Y4Z0 LSM4_HUMAN U6 snRNA-associated Sm-like protein LSm4 LSM4 0.48 0.79

Q9H0H5 RGAP1_HUMAN Rac GTPase-activating protein 1 RACGAP1 0.48 1.10

Q9ULW3 ABT1_HUMAN Activator of basal transcription 1 ABT1 0.45 0.67

P35269 T2FA_HUMAN General transcription factor IIF subunit 1 GTF2F1 0.41 0.66

Q9UBD5 ORC3_HUMAN Origin recognition complex subunit 3 ORC3 0.40 0.89

Q5T749 KPRP_HUMAN Keratinocyte proline-rich protein KPRP 0.36 − 1.57

P14373 TRI27_HUMAN Zinc finger protein RFP TRIM27 0.36 0.86

P25205 MCM3_HUMAN DNA replication licensing factor MCM3 MCM3 0.34 1.20

Q8NBM8 PCYXL_HUMAN Prenylcysteine oxidase-like PCYOX1L − 0.54 0.79

O75506 HSBP1_HUMAN Heat shock factor-binding protein 1 HSBP1 − 0.56 − 0.85

P25445 TNR6_HUMAN Tumor necrosis factor receptor superfamily member 6 FAS − 0.71 − 0.85

Q9BQE5 APOL2_HUMAN Apolipoprotein L2 APOL2 − 0.81 − 0.96

P69905 HBA_HUMAN Hemoglobin subunit alpha HBA1 − 0.95 − 0.99

P68871 HBB_HUMAN Hemoglobin subunit beta HBB − 1.03 − 1.27

https://www.phosphosite.org
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between short- and long-term survivors. This could be 
due to that fact that many proteins were not detected in 
some of the samples. Moreover, Cross-tissue analysis of 
gene and protein expression in normal and cancerous tis-
sues has shown that the correlation between mRNA and 
protein abundance is relatively low [43].

Discussion
LGSOC is a rare disease, with limited therapeutic 
options. This is the first report of WGS and global pro-
teomic analyses of this tumor. Using paired normal and 
tumor DNA from the same patients, we identified and 
validated a few novel recurrent somatic mutations in 
LGSOC, in addition to KRAS, BRAF, USP9X, and EIF1AX 
mutations that have been identified in previous studies. 
One of the most frequently mutated genes in our cohort 
was DNM3 (3/14, 21%), which encodes dynamin 3. 
Dynamin 3 is a member of a family of guanosine triphos-
phate (GTP)-binding proteins associated with micro-
tubules and involved in vesicular transport. DNM3 has 
been shown to play a tumor-suppressive role in cervical 
cancer, colon cancer, lung cancer, and hepatocellular car-
cinoma [44–47]. Mechanistic studies in lung cancer have 
revealed that DNM3 interacts with growth factor recep-
tor–bound protein 2 (GBR2), thereby interrupting the 
formation of a complex between tyrosine-protein kinase 
Met (c-MET), GBR2, and signal transducer and activa-
tor of transcription 3 (STAT3), which in turn suppresses 
STAT3 activation [46]. As a result, the loss of DNM3 
function leads to the activation of c-MET and STAT3. 
This suggests that inhibition of c-MET/STAT3 signal-
ing may be a targeted therapy for LGSOC patients with 
mutated DNM3. DNM3 was also co-mutated with NRAS 
in 2 of both LGSOC samples. It is possible that DNM3 
mutations promote tumor cell growth through the acti-
vation of the c-MET/STAT3 pathway. Thus, tumor cells 
may become less dependent on NRAS-activating muta-
tions. It has been shown in melanoma cells that upregula-
tion of c-MET could reduce the dependence on MAPK 
addiction and lead to MAPK inhibitor resistance [48]. 
The dependence on NRAS- or KRAS-mutated LGSOC 
may be bypassed by additional co-mutations, such as 
DNM3 and EIF1AX. Further functional analyses on the 
role of DNM3 in LGSOC pathogenesis are required.

In this study, recurrent UBR5 mutations were 
detected in two LGSOC samples. UBR5 is an E3 ubiq-
uitin ligase that is essential for embryonic development 
[49]. A previous study showed that high expression of 
UBR5 is associated with worse prognosis in ovarian 
cancer [50]. Tumor-derived UBR5 promotes ovarian 
cancer growth and metastasis by inducing immuno-
suppressive macrophages [51]. In contrast, UBR5 is 

recurrently mutated in mantle cell lymphoma [52]. 
Whether the two UBR5 mutated proteins that we 
detected were functional requires further investigation.

In the current and previous studies, loss of 9p and 
homozygous deletions of the CDKN2A/2B locus are 
common [12, 15, 16]. We further validated the frequent 
downregulation of p16 protein expression in LGSOC 
using tissue microarray. A previous in  vitro study 
showed that ovarian cancer cell lines with p16 loss but 
with intact pRB were more sensitive to CDK4/6 inhibi-
tors [53]. This observation has implications for the cur-
rent clinical trial of letrozole plus a CDK4/6 inhibitor 
(ribociclib) in LGSOC (NCT03673124), in that LGSOC 
may be more responsive to CDK4/6 inhibition when 
pRB is intact.

From RNA-seq analysis, we identified several dif-
ferentially expressed genes (with potential targeted 
therapeutic drugs) between short-term and long-term 
survivors. The USP9X upstream regulator gene network 
was activated in short-term survivors (Table 4). USP9X 
is frequently mutated and linked to the mTOR pathway 
[12, 15]. Short-term survivors with an activated USP9X 
gene network may be candidates for therapeutic inter-
ventions targeting mTOR. In addition, we identified 
differentially expressed genes between LGSOC with 
recurrent mutations and LGSOC without recurrent 
mutations (Fig. 4). CCL11 is highly expressed in short-
term survivors and can be bound by a fully human 
neutralizing monoclonal antibody, bertilimumab [54]. 
CCL11 is a cytokine that induces MEK-1, ERK1/2, and 
STAT3 phosphoproteins as a mechanism for confer-
ring anti-apoptotic and cisplatin-resistance potential in 
ovarian carcinoma [55].

By comparing proteogenomic differences between 
short- and long-term survivors, we identified proteins 
associated with short-term survivors. Proteins such 
as TBXAS1 and BST1 can also be targeted by the cur-
rently available drugs. In the phosphoproteomic analy-
sis, 42 phosphosites were significantly altered between 
the long-term and short-term survivors. The kinases 
upstream of these phosphosites are potential targets. 
Phosphorylated ASAP1 was detected at levels more 
than fourfold higher in short-term than in long-term 
survivors. One of the upstream kinases that phos-
phorylate ASAP1 is Src [56]. Targeting Src could be a 
potential therapeutic intervention for LGSOC with a 
high expression of phosphorylated ASAP1. Multiple 
phosphorylated proteins involved in MAPK pathways 
were also detected but were expressed at different 
levels in all LGSOC samples. These proteins include 
RAF1, BRAF, MAPK1, MAPK3, NF1, and other mito-
gen-activated protein kinase kinases (Additional file 2: 
Table S11).
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Conclusions
This is the first study to use WGS of LGSOCs with 
matched normal tissue to detect somatic mutations. 
We detected and validated novel recurrent mutations in 
DNM3 and UBR5 that have not been previously reported. 
In addition, we identified novel indels, CNV regions, 
dysregulated proteins, and phosphosites that were more 
prevalent in short- and long-term survivors. These prote-
ogenomic data can guide future research into the patho-
genesis and treatment of LGSOC.
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