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Abstract
SARS-CoV-2 and its variants cause serious health concerns throughout the world. The alarming increase in the daily number 
of cases has become a nightmare in many low-income countries; although some vaccines are available, their high cost and 
low vaccine production make them unreachable to ordinary people in developing countries. Other treatment strategies are 
required for novel therapeutic options. The peptide-based drug is one of the alternatives with low toxicity, more specificity, 
and ease of synthesis. Herein, we have applied structure-based virtual screening to identify potential peptides targeting the 
critical proteins of SARS-CoV-2. Non-toxic natural antiviral peptides were selected from the enormous number of peptides. 
Comparative modeling was applied to prepare a 3D structure of selected peptides. 3D models of the peptides were docked 
using the ClusPro docking server to determine their binding affinity and peptide-protein interaction. The high-scoring peptides 
were docked with other crucial proteins to analyze multiple targeting peptides. The two best peptides were subjected to MD 
simulations to validate the structure stability and evaluated RMSD, RMSF, Rg, SASA, and H-bonding from the trajectory 
analysis of 100 ns. The proposed lead peptides can be used as a broad-spectrum drug and potentially develop as a therapeutic 
to combat SARS-CoV-2, positively impacting the current pandemic.
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Introduction

Coronaviruses are a group of viruses consisting of RNA as 
genetic material. To date, a total of four subgroups of coronavi-
rus, namely alpha, beta, gamma, and delta, have been reported, 
but human-affecting coronaviruses mainly belong to the first 
two subgroups. The severity of coronavirus infections ranged 
from the common cold to acute respiratory syndrome, named 
Middle East Respiratory Syndrome (MERS-CoV) and severe 
acute respiratory syndrome (SARS-CoV). As evidenced by its 

quick spread from Wuhan, China, to every country in the world, 
the 2019 novel coronavirus (SARS-CoV-2) is a new strain of 
the currently known coronavirus that has not been previously 
reported and has been found to be highly contagious [1]. The 
World Health Organization recorded 608 million confirmed cases 
of COVID-19 as of October 2, 2022, with 6.5 million fatalities 
(https://​www.​who.​int/​health-​topics/​coron​avirus). COVID-19 is 
a zoonotic disease indicating its spread from animal to human 
and further from human to human. This condition’s basic signs 
and symptoms are similar to those of a regular cold, including 
fever, dry cough, and weariness. Other less prevalent symptoms 
include sore throat, headache, diarrhea, loss of taste and smell, 
and skin rash (https://​www.​cdc.​gov/​coron​avirus/​SARS-​CoV-2/​
sympt​oms-​testi​ng/​sympt​oms.​html). In the severe stage, patients 
can feel shortness of breath, chest pain, and loss of speech and 
even movement. Based on the pandemic data and symptoms, 
we can easily understand the COVID-19 disease severity. On 
May 1, 2020, FDA recently approved the antiviral drug remde-
sivir to treat severely affected COVID patients. However, this 
drug was approved under emergency use authorization and had 
severe adverse reactions compared to the placebo [2]. Present 
COVID-19 drugs, including chloroquine, hydroxychloroquine, 

 *	 Vijay Kumar Prajapati 
	 vkprajapati@curaj.ac.in

1	 Department of Biochemistry, School of Life 
Sciences, Central University of Rajasthan, 
Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India

2	 Department of Biological Sciences, Sunandan Divatia 
School of Science, NMIMS University (Deemed), Vile Parle, 
Mumbai, India

3	 Department of Biochemistry, School of Biological Sciences, 
Central University of Punjab, Bathinda, Punjab, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-022-02113-9&domain=pdf
http://orcid.org/0000-0001-6510-0596
https://www.who.int/health-topics/coronavirus
https://www.cdc.gov/coronavirus/SARS-CoV-2/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/SARS-CoV-2/symptoms-testing/symptoms.html


	 Structural Chemistry

1 3

baricitinib, favipiravir, and umifenovir, are mainly based on the 
patient’s clinical symptoms [3, 4]. Nevertheless, even all these 
drugs are not devoid of toxicity, and there is an urgent need to 
work on COVID-19 drug discovery.

In recent years, peptide-based drugs have gained inter-
est in treating various disease conditions [5–9]. The well-
known examples are Lupron™ and Lantus™, approved to 
treat prostate cancer and diabetes, respectively [10]. As 
per the Pharmaceutical GlobalData, a total of 21 synthetic 
peptides are in the development phase for the treatment 
of COVID-19 (https://​www.​globa​ldata.​com/​indus​tries-​
we-​cover/​pharm​aceut​ical/). Based on all previous stud-
ies, this study was designed to identify peptides showing 
therapeutic potential for combating COVID-19. Peptide-
based targeted therapy needs information on crucial  
viral protein targets to participate in viral pathogenesis 
and survival. A literature survey reveals the presence of 
multiple targets present in the SARS-CoV-2 virus. Still, 
the central protease (Fig. 1C) is the most crucial one, 
which helps in processing the SARS-CoV-2 polyprotein 
post-viral RNA translation [11, 12]. Its inhibition leads 
to the viral replication machinery’s blockade, making 
it a crucial drug target for drug development. The non-
structural protein 9 (Nsp9) is another drug target that acts 
as an RNA-binding protein (Fig. 1D) and participates in 
both viral replication and virulence [13]. Angiotensin-
converting enzyme 2 (ACE2) of human cells has so far 
been directly bound through the S-protein of SARS-
CoV-2 (Fig. 1A) via its receptor-binding domain (RBD) 
[14]. This association exploited the ACE2, which leads 
to host infection. RBD thus supports its eligibility as a 
drug target for SARS-CoV-2. The approved medication 
remdesivir has a well-known target in the RNA-dependent 
RNA polymerase (Fig. 1B) of the SARS-CoV-2 virus [15, 
16]. The transcription machinery and inhibition of this 
protein make it a perfect candidate as a target for SARS-
CoV-2 medications. It serves as a crucial component of 
SARS-CoV-2 replication. The endoribonuclease, also 
known as non-structural protein 15 (Nsp15), is associated 
with the processing of viral RNA (Fig. 1D). This protein 
also protects the virus from host defense by degrading the 
viral RNA and interfering with the host’s innate immune  
system via protein interference [17, 18].

In this study, natural antiviral peptides were virtually screened 
based on their structural properties against the critical SARS-
CoV-2 targets. Screening the peptide library was carried out 
based on different parameters like toxicity, affinity, and stability 
to identify a suitable candidate to target the SARS-CoV-2 pro-
teins. These peptides could emerge as promising therapeutics to 
tackle this deadly virus.

Results

Sorting of antiviral peptides from the AVP database 
(AVPdb)

To find the therapeutic antiviral peptides against the multiple 
targets of the novel coronavirus (SARS-CoV-2), the whole 
library with a total number of 2060 natural AVPs was ana-
lyzed. Analyzing each AVP with all five targets was challenging 
and generated extensive data. So to reduce the complexity of 
the data, AVPs were narrowed down through three different 
criteria. The first criterion was that AVPs previously reported 
against viruses in the coronaviridae family (104 AVPs) were 
deleted because we intended to find other AVPs that could 
efficiently target SARS-CoV-2. The second criterion was to 
remove the AVPs that were toxic, and the ToxinPred web server 
was used for the prediction of the toxic or non-toxic behavior 

Fig. 1   A The spike protein binds to the ACE2 receptor of the host 
cell and directs its entry into the cell. B RNA polymerase is involved 
in both translation and replication of the viral RNA. C The main pro-
tease is required for the polyprotein processing to produce functional 
peptides. D The Nsp9 and Nsp15 are crucial for the virulence and 
replication of the virus

https://www.globaldata.com/industries-we-cover/pharmaceutical/
https://www.globaldata.com/industries-we-cover/pharmaceutical/
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of the AVPs. We found 69 AVPs having toxic nature. So, we 
have removed all those toxic AVPs. The third and last crite-
ria were that those AVPs with less than 27 amino acids had 
been removed. This was done because the Robetta web server 
selected for modeling these AVPs did not allow the modeling 
of those peptides with at least 27 amino acids. So, we have 
removed 1453 AVPs from the library with this criterion. From 
the compilation of all these three criteria, we have removed a 
total of 1626 AVPs (104 coronaviridae family, 69 toxic, and 
1453 < 27 amino acids) from the 2060 AVPs (Fig. 2).

Now, 434 AVPs remained to analyze for their binding 
affinities with the targets. We have modeled all these 434 
AVPs using the Robetta web server to obtain this purpose.

Evaluation of the AVPs’ affinity with the molecular 
targets of SARS‑CoV‑2

For binding affinity assessment of the selected AVPs (434) with 
the targets, main protease, and non-structural protein 9 (Nsp9), 
the ClusPro web server was used. The docking screening of 
all those 434 AVPs was performed with both targets. With the 
results of this docking screening, we have selected only the top-
scoring AVPs (the most negative free energy >  − 1000) among 
all the 434 AVPs, and the score is also compared with a ref-
erence peptide (IEEQAKTFLDKFNHEAEDLFYQSSLAS-
WNYNTNITEENVQNMNNAGDKWSAFLKEQSTLAQMY-
PLQEIWDLGKGDFR) [19]. The top-scoring AVPs include 11 
AVPs (AVP1155, AVP1235, AVP1757, AVP1758, AVP1760, 
AVP1788, AVP1789, AVP1791, AVP1792, AVP1794, and 
AVP1801) with both targets. The source and nomenclature of 
these peptides are presented in Table 1.

These docking scores exhibit an excellent binding affinity 
for both the main protease and the non-structural protein 9 
(Nsp9) targets, according to our analysis. We are curious 
about the possibility that these preselected AVPs could also 
target other SARS-CoV-2 targets due to their high dock-
ing scores. So, with this curiosity, we have found another 
three targets (RBD/ACE2-B0AT1 complex, SARS-Cov-2 
RNA-dependent RNA polymerase in complex with cofac-
tors, and Nsp15 endoribonuclease from SARS-CoV-2) and 
performed their docking analysis with the selected AVPs 
by using the same web server (ClusPro). Fortunately, the 
docking scores of these three targets with the selected AVPs 
are also as good as the initial targets (main protease and 
non-structural protein 9 (Nsp9)) (Table 2). Obtained docking 
scores of peptides were compared with a reference peptide. 
Although most of the peptides have shown a better affinity 

Fig. 2   Flow chart for the structure-based screening of the peptides and 
identification of potential lead AVP for targeting the SARS-CoV-2

Table 1   The source and nomenclature of the selected AVPs

Id Length Virus Family Nomenclature Source Reference

AVP1155 41 Influenza A virus Orthomyxoviridae PB1 4–1 Conotoxin [20]
AVP1235 33 Dengue 2 virus Flaviviridae DN59 DENV envelope glycoprotein (gpE) [21]
AVP1757 29 Dengue 1 virus Flaviviridae DV2 DENV2 envelope protein (stem peptide) [22]
AVP1758 29 Dengue 1 virus Flaviviridae DV3 DENV3 envelope protein (stem peptide) [22]
AVP1760 29 Dengue 2 virus Flaviviridae DV2 DENV2 envelope protein (stem peptide) [22]
AVP1788 29 Dengue 4 virus Flaviviridae DV2 DENV2 envelope protein (stem peptide) [22]
AVP1789 29 Dengue 4 virus Flaviviridae DV3 DENV3 envelope protein (stem peptide) [22]
AVP1791 29 Dengue 3 virus Flaviviridae DV2 DENV2 envelope protein (stem peptide) [22]
AVP1792 29 Dengue 2 virus Flaviviridae DV3 DENV3 envelope protein (stem peptide) [22]
AVP1794 29 Dengue 3 virus Flaviviridae DV3 DENV3 envelope protein (stem peptide) [22]
AVP1801 34 Marek’s disease virus Herpesviridae gHH3 MDV H glycoprotein (gH) [23]
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for the targets than the reference, we determined the top 4 
scoring peptides for each target (Fig. 3). From this, we found 
AVP1155 was among the top four highest scorings for the 
targets 6M03, 6W4B, 6M17, and 6VWW, whereas AVP1235 
and AVP1788 in targets 6M03, 6M17, and 6VWW. There-
fore AVP1155, AVP1235, and AVP1788 can be used as 

potential lead peptides to target most coronavirus proteins 
with greater affinity.

Physicochemical characterization

The physiochemical parameters of the selected AVPs have 
been estimated with the ProtParam tool’s utilization. The-
oretical pI, half-life, stability index, aliphatic index, and 
GRAVY scores are among the physiochemical parameters 
involved (Table 3).

Among the peptides selected for the multiple targeting, 
AVP1155 has shown a more excellent score (68.69) and 
half-life of 1.2 h, indicating its low stability. Besides the 
high affinity, it cannot be used for therapeutics at present, 
so it may require further development to improve its stabil-
ity. However, now it is possible to increase the peptide’s 
stability due to significant advancements in science. The 
basic processes for continuing to increase the stability of 
therapeutic peptides include N- and/or C-terminal recon-
figuration (N-acylation or N-formylation at the N-terminal 
end, C-termination amidation) and even partial replacement, 
reconfiguration of the backbone, conversion of peptides with 
the d-amino acid or unnatural amino acid, crosslinking, nan-
oparticle formulations of the peptides, and/or by increasing 
the molecular mass. Conjugating the peptide with polymer 
also increases the stability of the peptide; for example, 

Table 2   The ClusPro docking scores of 11 selected AVPs with all five 
targets

AVPs Therapeutic targets of SARS-CoV-2

6M03 6W4B 6M17 6M71 6VWW

Reference 
peptide

−895 −869 −911.3 −915.1 −998.1

AVP1155 −1078.5 −1162.0 −1669 −1262.4 −1599.2
AVP1235 −1202.0 −1024.0 −1452 −1191 −1346.1
AVP1757 −1030.8 −1116.6 −1347.8 −1272.4 −1209.5
AVP1758 −1026.3 −1035.6 −1257.3 −1212.3 −1300.6
AVP1760 −1029.3 −1050.9 −1303.2 −1275 −1176.7
AVP1788 −1080.9 −1017.8 −1460.7 −1155.1 −1303.1
AVP1789 −1047.9 −1030.9 −1276.8 −1197.8 −1279
AVP1791 −1060.8 −1053.7 −1346.2 −1302.9 −1213.1
AVP1792 −1066.8 −1033.4 −1248.2 −1150.2 −1256.7
AVP1794 −1024.1 −1047.5 −1260.6 −1264.4 −1278.1
AVP1801 −1078.4 −1014.0 −1312 −1139.5 −1334.9

Fig. 3   Plot representing the binding affinity of the peptides with the different protein targets of the SARS-CoV-2
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polyethylene glycol (PEG) is the most promising polymer 
[24–26]. On the other hand, AVP1235 and AVP1788 are 
both stable in nature, but AVP 1235 has a half-life of 30 h 
compared to the 4.4 h of AVP 1788. So, based on these 
parameters, AVP 1235 has been selected for further stability 
evaluation at the microscopic level.

Analysis of ΔG and Kd between the peptide 
and SARS‑CoV‑2 proteins

Finally, the binding affinity (ΔG) and the Kd (dissociation 
constant) were calculated using the PRODIGY web server. 
The tool predicts the binding affinity between the antiviral 
peptides (AVP1155 and AVP1235) with all the important 
proteins of SARS-CoV-2 (main protease (3C-like protein-
ase), spike protein, RNA-directed RNA polymerase, endori-
bonuclease, and Nsp9 (RNA-binding protein)) (Table 4).

Molecular dynamics simulations

Molecular dynamics simulation was performed for 100 ns using 
the GROMACS v5.0 for ten complexes: 6M03_AVP1155, 
6M03_AVP1235, 6M17_AVP1155, 6M17_AVP1235, 6M71_
AVP1155, 6M71_AVP1235, 6VWW_AVP1155, 6VWW_
AVP1235, 6W4B_AVP1155, 6W4B_AVP1235. The root-
mean-square deviation (RMSD) reveals the average deviation 
between the two proteins, i.e., the initially submitted structure 
and the dynamics nature of the protein under the physiological 
state during the molecular dynamics simulation. The calculated 
RMSD value for all the complexes is in the acceptable range. The 
average RMSD values for seven complexes (6M03_AVP1155, 
6M03_AVP1235, 6M17_AVP1155, 6M17_AVP1235, 6M71_
AVP1155, 6M71_AVP1235, and 6W4B_AVP1235) were less 
than 0.5 nm, whereas three complexes (6VWW_AVP1155, 
6VWW_AVP1235, and 6W4B_AVP1155) have average 
RMSD of more than 0.5 nm. The stable RMSD was obtained 
for 6M03_AVP1155, 6M03_AVP1235, 6M17AP_1235, 
6M71_AVP1155, and 6M71_AVP1235, whereas the remain-
ing complexes were stable with little deviation (Fig. 4). The 
root-mean-square fluctuation then characterizes the movement 
of each residue involved in molecular dynamics. For each of the 
complexes described above, RMSF was computed. The average 
RMSF score for all the complexes was below 0.2 nm except for 
the 6VWW_AVP1155, 6VWW_AVP1235, 6W4B_AVP1155, 
and 6W4B_AVP1235 (Fig. 5). The gyration radius indicates the 
structural compactness of the questioned protein. Proteins with 
the smallest gyration radius represent the tightest packing and 
the better protein structure. Here, we have calculated the radius 
of gyration for all the selected protein-peptide complexes. The 
Rg score for all the complexes was less than 3.0 nm. Six com-
plexes show the Rg between 1.5 and 1.9 nm, whereas in four 
complexes, Rg scores were between 2.4 and 2.9 nm (Fig. 6). 

Table 3   Physiochemical characteristics of the AVPs

Id Molecular weight Theoretical pI Estimated half-
life (hour)

Instability index Aliphatic index GRAVY

AVP1155 4948.02 6.25 1.2 68.69 125.85 0.89
AVP1235 3443.96 5.19 30 8.74 100.61 0.776
AVP1757 2941.34 6.79 4.4 −3 91.03 0.738
AVP1758 3026.46 6.79 4.4 13.77 94.14 0.569
AVP1760 2941.34 6.79 4.4 −3 91.03 0.738
AVP1788 2941.34 6.79 4.4 −3 91.03 0.738
AVP1789 3026.46 6.79 4.4 13.77 94.14 0.569
AVP1791 2941.34 6.79 4.4 −3 91.03 0.738
AVP1792 3026.46 6.79 4.4 13.77 94.14 0.569
AVP1794 3026.46 6.79 4.4 13.77 94.14 0.569
AVP1801 3795.48 10.45 1.4 36.06 143.53 0.221

Table 4   AVPs and proteins from SARS-CoV-2 with predicted values 
for binding affinities (G) and dissociation constants (Kd)

S. no. Protein-antiviral 
peptide complex

ΔG (kcal mol−1) Kd (M) at 
25.0 ℃

1 6M03_AVP1155 −10.2 3.2e−08

2 6M03_AVP1235 −11.7 2.6e−09

3 6M17_AVP1155 −11.3 5.4e−09

4 6M17_AVP1235 −11.3 4.8e−09

5 6M71_AVP1155 −13.0 2.8e−10

6 6M71_AVP1235 −14.0 5.4e−11

7 6VWW_AVP1155 −8.6 5.2e−07

8 6VWW_AVP1235 −7.8 2.0e−06

9 6W4B_AVP1155 −5.1 1.8e−04

10 6W4B_AVP1235 −6.1 3.3e−05
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Fig. 4   RMSD plot of selected complexes of antiviral peptides (AVP1155 and AVP1235) and SARS-CoV-2 proteins (main protease, RBD with ACE2, 
RdRp, Nsp15, and Nsp9)
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Fig. 5   Graphical representation of RMS fluctuation plot of selected complexes of antiviral peptides (AVP1155 and AVP1235) and SARS-CoV-2 
proteins (main protease, RBD with ACE2, RdRp, Nsp15, and Nsp9)
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Fig. 6   Radius of gyration of antiviral peptides (AVP1155 and AVP1235) and SARS-CoV-2 proteins (main protease, RBD with ACE2, RdRp, Nsp15, and Nsp9)
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Solvent-accessible surface area (SASA) of a protein refers to 
the surface area of the protein that is accessible to the avail-
able solvent in the virtual physiological condition. Except for 
complexes 6M71_AVP1235 (258.64 nm2), 6VWW_AVP1155 
(358.98 nm2), and 6VWW_AVP1235 (356.56 nm2), all the 
complexes have SASA scores between 118.56 and 167.82 
nm2, which shows the low accessibility for the solvent (Fig. 7). 
Finally, the hydrogen bond was analyzed that is the formation 
and the breakage of the hydrogen bond during the molecular 
dynamics simulation. Complexes 6M03_AVP1155 and 6M03_
AVP1235 have an average hydrogen bonding of ~10, whereas 
6M71_AVP1155 and 6M71_AVP1235 with ~ 5 hydrogen bonds 
during the simulation period. The lowest number of hydrogen 
bonding was found for complexes 6VWW_AVP1155 and 
6VWW_AVP1235, i.e., between 1 and 1.5 (Fig. 8).

Discussion

Peptides can antagonize the protein–protein interactions, making 
them critical in the therapeutics research of various deadly path-
ogens. Currently, around 140 peptide therapies are under clinical 
evaluation, and among them, 21 peptide-based therapies, such 
as plitidepsin, aviptadil, BIO-11006, and solnatide, are under 
development against COVID-19 [27, 28]. Fewer side effects, 
better tolerance, minimal interference, and greater specificity 
are the main benefits of peptides over chemical drugs [29]. In 
the future, after further research, peptide-based drugs can have 
a promising impact on the progression of COVID-19. Here, we 
have evaluated five attractive targets for determining the poten-
tial peptides that can be used to develop anti-nCoV therapeutic 
drugs. The main protease is crucial for the virus as it processes 
the replicase protein required to replicate the coronavirus [30]. 
Nsp9 is an RNA-binding replicase protein encoded by the ORF1 
and is an essential protein for the RNA synthesis of the virus 
[31]. As the primary inducer of the pathogenicity of this virus, 
the ACE-2 receptor-binding domain is the most common target 
of SARS-CoV-2. Extreme affinity exists between the RBD in the 
spike protein and the ACE-2 receptors expressed in human cells, 
and this interaction facilitates viral fusion and entry into host 
cells [32, 33]. RNA-dependent RNA polymerase, also known 
as Nsp12, plays a pivotal role in the replication and transcription 
of the virus. Therefore, it is one of the most attractive targets 
of SARS-CoV-2 [34]. The Nsp15 endoribonuclease aids in the 
evasion of the virus from the immune response by preventing 
its detection by the dsRNA sensors [18].

Here, we have used the structure-based virtual screening to 
identify stable, non-toxic, and strongly interacting peptides for 
targeting the SARS-CoV-2, leading to pandemic and mortality 
worldwide. There are currently around 21 peptide-based drugs 

under clinical evaluation, but more alternatives and therapies 
must be identified to tackle the current situation. The selection 
of peptides from a massive number of natural antiviral peptides 
has been made using three criteria. From the library of 2060 
antiviral peptides, we removed those peptides that are already 
under clinical trials against SARS as we want to identify some 
novel therapeutic peptides against SARS-CoV-2. The second 
criterion used to narrow down the list was toxicity, using the 
ToxinPred web server and selecting those peptides which were 
non-toxic [35, 36]. The third criterion we used was peptide 
length, and we selected 434 peptides having a minimum of 27 
peptides as Robetta cannot model the peptides of small length 
[37]. The other reason to eliminate the small peptide is their 
low specificity and less stability, as they cannot maintain their 
secondary structure and can be easily degraded [38, 39]. The 
interaction between the peptide structure and the two targets 
(main protease and Nsp9) was evaluated by docking them in 
the ClusPro server, predicting the affinity based on minimum 
energy between the protein and peptide [40, 41]. The 11 pep-
tides with lower scores for the minimum energy compared 
to the reference peptide were selected and docked with three 
more essential targets (ACE-2 receptor-binding domain, RNA-
dependent RNA polymerase, and Nsp15 endoribonuclease) of 
the SARS-CoV-2 to determine whether it can target the multi-
ple sites of the pathogen.

Interestingly, these 11 peptides have shown a strong affin-
ity with the main protease and Nsp9 and the other three 
targets. Among them, we selected two peptides (1155 and 
1235) which showed overall better interaction with all the 
five targets, and these peptides were further verified for their 
structural stability at the microscopic level by molecular 
dynamics simulations for 100 ns. We also determined the 
physicochemical characteristics, such as aliphatic index, 
hydrophobicity, and half-life, using the ProtParam [42, 43].

Moreover, this study has identified 11 potential thera-
peutic peptides that can target multiple sites of the SARS-
CoV-2 to obstruct the protein–protein interaction of the virus 
and host, which are critical for the fusion, replication, and 
virulence of the novel coronavirus. Our study provides new 
alternatives in the direction of peptide-based drug devel-
opment to treat COVID-19. Further research to determine 
their efficacy and safety is required to acknowledge their 
impact on the pandemic caused by SARS-CoV-2 [44]. The 
post-MD analysis of all the aforementioned SARS-CoV-2 
proteins and antiviral peptides calculated the electrostatic 
energy contribution, van der Waals energy contribution, and 
total energy contribution (Fig. 9). Changes in the energy 
profile for 100 ns of the molecular dynamics simulation were 
studied, and it was discovered that all of these energy charts 
are stable throughout the dynamics [33, 43, 44].
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Fig. 7   Solvent accessibility surface area plot of selected complexes of antiviral peptides (AVP1155 and AVP1235) and SARS-CoV-2 proteins 
(main protease, RBD with ACE2, RdRp, Nsp15, and Nsp9)
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Fig. 8   Graphical representation of hydrogen bond formation and breakage during the molecular dynamics simulation between the selected com-
plexes of antiviral peptides (AVP1155 and AVP1235) and SARS-CoV-2 proteins (main protease, RBD with ACE2, RdRp, Nsp15, and Nsp9)
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Conclusion

As essential proteins for the replication and virulence of the 
SARS-CoV-2 mediated disease progression, the main pro-
tease and Nsp9 are potential targets to combat COVID-19. 
This study has identified the natural antiviral peptides which 

are non-toxic and have a strong affinity for target proteins by 
structural-based virtual screening. These selected peptides can 
be used as potential therapeutics to block the protein–protein 
interaction of the virus with the host organism. In addition to 
the targets mentioned above, these peptides have shown strong 
affinity in three more targets of the SARS-CoV-2, which 

Fig. 9   Energy contribution for 
the antiviral peptides (AVP1155 
and AVP1235) and SARS-
CoV-2 proteins (main protease, 
RBD with ACE2, RdRp, Nsp15, 
and Nsp9). A Electrostatic 
energy pattern from an MD sim-
ulation plotted. The description 
depicts how electrostatic forces 
changed throughout the MD 
simulation. B van der Waals 
(VDW) energy contribution and 
changes in the VDW energy 
during the MD simulation. C 
Contributions to the total energy 
and changes in the total energy 
over the duration of the 100 ns 
MD simulation
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indicates their multiple targeting properties. The trajectory 
analysis for 100 ns during MDS has indicated their structure 
stability at the microscopic level. The screened peptides can 
be further evaluated for their efficacy and safety by in vitro 
and in vivo experiments. Our findings can aid in the accelera-
tion of the development of therapeutics against SARS-CoV-2.

Methodology

Screening of antiviral peptide library

To identify a therapeutic peptide that can hit the multiple 
targets of the novel coronavirus (SARS-CoV-2), we have 
screened a library of natural antiviral peptides (AVPs) taken 
from a database of antiviral peptides (AVPdb) (http://​crdd.​
osdd.​net/​serve​rs/​avpdb/​dd.​php). This AVPdb is an inclusive 
collection of antiviral peptides targeting 60 pathologically 
highlighted viruses [45]. This library involves 2060 natural 
antiviral peptides from various families of different viruses. 
Hence, we have removed the antiviral peptides reported 
against the coronaviridae family because we wanted to iden-
tify other AVPs that can potentially target the significant hits 
of the novel coronavirus.

We have reduced this library based on toxicity and the num-
ber of amino acids with the intention of modeling to achieve 
the goal of potential therapeutic peptides. The first criterion 
was the toxic or non-toxic nature of the AVPs; the ToxinPred 
server (http://​crdd.​osdd.​net/​ragha​va/​toxin​pred/) has been uti-
lized to predict the toxic or non-toxic nature of the AVPs. 
This server scans the dataset of toxic peptides and their single 
mutant analogs from Swiss-Prot and TrEMBLE to evaluate the 
toxicity of all potentially overlapping peptides [46].

Tertiary structure prediction of AVPs

To model AVPs, we have introduced these AVPs to the 
Robetta server (http://​robet​ta.​baker​lab.​org). This server allows 
predicting the automated protein structure with the utilization 
of genomic data (Peptide/protein sequences). It generates the 
models of the provided sequences via the homology modeling 
method if the sequence matches any known protein sequence. 
This server analyzes the input sequences and pairs them into 
the domains for homology modeling to construct the models. 
The sequences lack the homology with any known protein 
that is structured by de novo modeling. Unfortunately, this 
server does not allow input sequences of less than 27 amino 
acids; therefore, we have removed all those AVPs that do not 
have 27 amino acids [47]. Removing short peptides is also a 
reason for stability; most of the peptides approved for clinical 
trials are higher than 25 amino acids, suggesting that these 
selected AVPs can be stable and require less conjugation for 
therapeutic purposes [48].

Assessment of binding affinity of AVPs 
with the targets of the novel coronavirus

From the screening of the whole antiviral peptide database 
(AVPdb), we have selected 434 AVPs to evaluate the binding 
affinity with the targets of the novel coronavirus. Initially, 
we selected only two targets, the main protease and Nsp9. 
The protein data bank (https://​www.​rcsb.​org/​struc​ture/) has 
provided the crystal structures of the main protease (PDB-
6M03) and Nsp9 (PDB-6W4B). To perform the docking 
analysis of all 434 AVPs with the targets (main protease and 
Nsp9), the ClusPro web server v2.0 (https://​clusp​ro.​bu.​edu/​
login.​php) has been utilized. The PDB files for the receptor 
and ligand are input into this server, which is an entirely 
automated docking server. It utilizes the PIPER algorithm to 
predict the rank for the stability level, interaction potential, 
semi-definite programming-based underestimation (SDU) 
energy, and cluster size [49, 50].

Binding affinity analysis of the top‑scoring AVPs 
with other potential targets

With the ClusPro web server results, we selected the AVPs 
with the most negative weighted scores with both targets 
(main protease and Nsp9) to further assess the binding affinity. 
A reference peptide made up of two sequential helices taken 
from the protease domain (PD) of angiotensin-converting 
enzyme 2 (ACE2), which only targets the SARS-CoV-2 recep-
tor, was used to compare the docking scores of the chosen 
AVPs [51]. Surprisingly, we found excellent docking scores 
of the selected AVPs compared to the reference peptide. The 
good docking scores generated a new curiosity in our mind 
that the selected peptides may also have good binding efficacy 
with other targets of the novel coronavirus. With this curiosity, 
we performed a literature survey again and found some other 
crucial targets of SARS-CoV-2. From this literature survey, 
we have selected another three targets of the SARS-CoV-2, 
which involves RBD/ACE2-B0AT1 complex (PDB-6M17), 
SARS-Cov-2 RNA-dependent RNA polymerase in complex 
with cofactors (PDB-6M71), and Nsp15 endoribonuclease 
from SARS-CoV-2 (PDB-6VWW) [17, 18, 34]. The crystal 
structure of these three targets was extracted from the protein 
data bank. The ClusPro web server has been utilized again to 
analyze the binding affinity of the selected AVPs with these 
three targets (6M17, 6M71, and 6VWW).

Characterization of the AVPs 
through physicochemistry

To further examine the physiochemical characteristics of 
selected AVPs, we have utilized the ProtParam tool (https://​web.​
expasy.​org/​protp​aram/), which predicts different physiochemical 

http://crdd.osdd.net/servers/avpdb/dd.php
http://crdd.osdd.net/servers/avpdb/dd.php
http://crdd.osdd.net/raghava/toxinpred/
http://robetta.bakerlab.org
https://www.rcsb.org/structure/
https://cluspro.bu.edu/login.php
https://cluspro.bu.edu/login.php
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
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parameters of the protein (AVPs) [52]. The parameters include 
molecular weight, stability index, aliphatic index, theoretical 
Pi, and in vivo half-life based on the “N-end rule,” which talks 
about how proteins degrade based on N-terminal amino acids 
[53]. Additionally, it was predicted that if a protein’s instability 
index is less than 40, it will be stable, and vice versa [42, 54].

Determination of ΔG (binding affinity) 
and dissociation constant (Kd)

The PROtein binDIng enerGY (PRODIGY) prediction tool 
(https://​wenmr.​scien​ce.​uu.​nl/​prodi​gy/) was utilized before 
performing molecular dynamics to estimate the binding 
energy and dissociation constant between the antiviral pep-
tide and targets (complexes). The protein-peptide complexes 
(chains) were renamed using the PyMol standalone tool, and 
the complexes were saved in pdb format once again. These 
complexes were required by the PRODIGY software for bind-
ing energy prediction, and the protein was defined in interac-
tor 1, while the peptide chain name was added in interactor 2.

Molecular dynamics simulations to ensure 
the structural stability of the AVP target complexes

The structural stability and equilibration state of the selected 
lead AVPs (AVP1155 and AVP1235) were ensured with the 
therapeutic targets of SARS-CoV-2 (main protease (3C-like 
proteinase), spike protein, RNA-directed RNA polymerase, 
endoribonuclease, and Nsp9 (RNA-binding protein)) in the vir-
tual in vivo environment. Molecular dynamics simulation was 
performed using the GROMACS v5.0 standalone tool [55, 56].

Only the chains that interact with peptides and antiviral 
peptides, as well as the chains that do not interact with pep-
tides, were removed for PDB ID: 6M17 and 6M71. Six chains, 
A, B, C, D, E, and F, are present in PDB ID: 6M17, but only 
chain E interacted with the antiviral peptides. The protein-
peptide complex had all its chains removed except for chain 
E. There were four chains in PDB ID: 6M71, but only chain A 
interacted with peptides; therefore, all other chains (chains B, 
C, and D) were eliminated using the PyMol standalone tool. 
The whole protein opted for simulation in the cases of PDB 
IDs 6M03, 6VWW, and 6W4B.

To evaluate the interactions between the AVPs and their 
prospective molecular targets at the microscopic level, GRO-
MOS96 43a1 force field and the particle mesh Ewald sum-
mation method were used to run the MD simulation of the 
complexes mentioned above [57, 58]. For protein topology 
creation and characterization of bonded and non-bonded 
regions, the pdb2gmx command was given. Na+ and Cl− ions 
were used for system charge neutralization. Energy mini-
mization was performed that utilizes the steepest descent 
algorithm to confirm the appropriate geometry of the system 

without any steric clashes [59]. For system equilibration, the 
leapfrog algorithm was used with an increase in pressure 
of the system up to 1 bar and 300 K temperature [60]. The 
trajectory of the MD simulation was analyzed for 100 ns.
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