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Abstract

Protein engineering is currently being revolutionized by deep learning applications, especially 

through natural language processing (NLP) techniques. It has been shown that state-of-the-art 

self-supervised language models trained on entire protein databases capture hidden contextual 

and structural information in amino acid sequences and are capable of improving sequence-to-

function predictions. Yet, recent studies have reported that current compound-protein modeling 

approaches perform poorly on learning interactions between enzymes and substrates of interest 

within one protein family. We attribute this to low-grade substrate encoding methods and 

over-compressed sequence representations received by downstream predictive models. In this 

study, we propose a new substrate-encoding based on Extended Connectivity Fingerprints 

(ECFPs) and a convolutional-pooling of the sequence embeddings. Through testing on an 

activity profiling dataset of haloalkanoate dehalogenase superfamily that measures activities 

of 218 phosphatases against 168 substrates, we show substantial improvements in predictive 

performances of compound-protein interaction modeling. In addition, we also test the workflow 

on three other datasets from the halogenase, kinase and aminotransferase families and show that 

our pipeline achieves good performance on these datasets as well. We further demonstrate the 

utility of this downstream model architecture by showing that it achieves good performance with 

six different protein embeddings, including ESM-1b (Rives et al., 2021), TAPE (Rao et al., 2019), 

ProtBert, ProtAlbert, ProtT5, and ProtXLNet (Elnaggar et al., 2021). This study provides a new 

workflow for activity prediction on novel substrates that can be used to engineer new enzymes for 

sustainability applications.
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1. Introduction

Deep learning-guided directed evolution for proteins has largely improved the protein 

sequence-to-function predictions and enabled the design of novel sequences with desired 

features. The growing High-Performance Computing (HPC) and advances in Natural 

Language Processing (NLP) have brought promising techniques which allow researchers 

to use large protein databases to enhance predictions of sequence properties (or annotations) 

with relatively small experimental datasets. These techniques include (1) self-supervised 

learning based on advanced NLP models (i.e., Transformer (Vaswani et al., 2017), BERT 

(Devlin et al., 2018), etc.) that can extract hidden contextual and structural patterns in amino 

acid sequences from a large number of unlabeled protein sequences and convert sequences 

to representations (often referred to as embeddings) that improve downstream prediction 

tasks, and (2) transfer-learning, which uses such embeddings as input for subsequent 

predictive models trained on a relatively smaller dataset.

Recent literature in this area has reported various approaches of generating sequence 

embeddings; for example, ProtTrans (Elnaggar et al., 2021) alone has presented six models 

trained on databases containing up to 2.1 billion sequences. Different types of embeddings 

have also achieved some successes in characterizing protein properties with a small amount 

of data. For example, the Low-N method (Biswas et al., 2021) has brought the number of 

experimentally characterized sequences in training set down to 24. However, a recent study 

(Goldman et al., 2021) showed that it is difficult to predict enzyme activity from sequence 

when substrates are encoded and concatenated to sequence representations as inputs to the 

predictive model. This leads to the objective of our study, which is to better represent the 

two inputs to the compound-protein interaction (CPI) model, protein sequence and substrate. 

Downstream supervised models for predicting properties found in current literature typically 

take an average over the position-wise embeddings of sequences as inputs (averaging over 

protein length)(Elnaggar et al., 2021). This leaves out the valuable structural information 

captured by the upstream self-supervised training via language models which heavily rely on 

the order of the amino acid sequences.

In this study, we use a “convolutional pooling” approach to utilize such information 

containing local sequential patterns, which should be useful in downstream prediction 

tasks. We also propose a novel substrate encoding method, count-encoding of extended-

connectivity fingerprints (ECFPs) (Rogers and Hahn, 2010), to better characterize substrates 

as inputs, and compare it with the Morgan bit vector (Morgan, 1965) used in previous 

studies. We demonstrate the efficacy of our approach on phosphatase activities data from 

Huang et al. (2015), where enzyme assays were performed to measure activities of 218 

phosphatases in haloalkanoate dehalogenase superfamily against 168 substrates. We also test 

our methods on three relatively smaller enzyme activity datasets preprocessed and analyzed 

in the aforementioned study by Goldman et al. (2021).

In addition to examining the basic performance of the model through randomly splitting the 

enzyme-substrate pairs to training, validation and test sets, we further curated each dataset 

into two different splits to evaluate the performance of characterizing new sequences and 

new substrates. The two tasks split the data in a way such that the model was trained 

Xu et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2022 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and tested on novel sequences or substrates, not seen in the training set, respectively 

(hereinafter, referred to as “novel sequences characterization task” and “novel substrates 

characterization task”). Good prediction in such tasks implies capability of identifying 

enzymes that would act on novel substrates of interest (enzyme discovery) as well as 

identifying new sequences that are able to act on known substrates with potentially improved 

activity (enzyme engineering).

2. Method

2.1. Overview

Our proposed prediction pipeline starts with extracting “embeddings” (values in latent 

space) from large language models pre-trained on massive protein sequence data. Four 

protein language models provided by Elnaggar et al. (2021), as well as ESM-1b (Rives et al., 

2021) and TAPE (Rao et al., 2019) models, are utilized in this study. Predictive performance 

of the pipeline is mainly evaluated with ESM-1b (Rives et al., 2021) representations, while 

embeddings generated by other language models are also used to validate the proposed 

methods.

2.2. Count-Encoder of Extended-Connectivity Fingerprints

Extended-connectivity fingerprints (ECFPs) (Rogers and Hahn, 2010) are circular 

topological descriptors derived using a variant of Morgan algorithm, which was proposed 

to identify molecular isomorphism. ECFPs equally takes into account all molecular 

fragments and encode all groups of neighboring atoms connected. As shown in Figure 

1A, the first level ECFP identifiers (i.e., ECFP2) simply represent each non-hydrogen 

atom in the molecule with bonds connected. The substructures of each successive level are 

concatenations of the previous level substructures and their immediate neighboring atoms, 

which corresponds to higher levels of ECFPs (ECFP4, ECFP6, etc.). The advantage of using 

ECFP encoding is that all substructures of a molecule are represented directly in a vector. 

This feature distinguishes the ECFP and Morgan algorithm. The ECFP algorithm collects all 

identifiers after each iteration, in addition to the initial atom identifiers, into a set and retains 

the intermediate atom identifiers that are discarded in Morgan algorithm. The list of ECFP 

identifiers are then converted to a vector containing the counts of each distinct ECFPs, as 

shown in Figure 1B. Although the structural similarities of substructures are not reflected 

by ECFP identifiers themselves, identifiers of all shared substructures representing their 

common features can always be found in the count encodings. Different levels of ECFPs 

are obtained using Chemistry Development Kit (CDK) (Willighagen et al., 2017), an open 

source modular Java libraries for Cheminformatics.

2.3. Pooling the Bulky Sequence Embeddings with Convolutional Neural Networks

Current protein-level predictions typically use a global pooling that averages over the 

sequence length in the last hidden state of pretrained language models (Elnaggar et al., 

2021). As shown in Figure 2, this results in a fixed-size vector for each protein of different 

length. Using average pooling effectively simplifies the downstream predictive model, while 

at the same time impairs informative local patterns and leaves out token-level variance. In 

this work, we use convolutional neural networks (CNNs) to leverage the complete position-
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wise embeddings of amino acids. This allows the representation to preserve the sequential 

information of the original protein sequence as well as the structural patterns extracted by 

the pretrained language model.

Figure 3 illustrates “convolutional pooling” in a downstream predictive model. 

Convolutional pooling utilizes a combined structure of convolutional layers and a residual 

block to improve the flexibility of the model to adapt to the true number of degrees of 

freedom in the original problem without significant prior knowledge (He et al., 2016). 

Embedding dimension (DE) in the architecture is determined by the language model used, 

which is 1280 for ESM-1b. Substrate encoding dimension (DS) in Figure 3(A) is 1024 as 

Morgan bit vector is used, while the value of DS in Figure 3(B) is 1413 for ECFP6 encoder. 

Maximum sequence length (DL) ranges from ~300 to ~600 across the four datasets analyzed 

in this work.

3. Results

3.1. Outline

An overall good predictive capability of the count-encoding of ECFPs can be observed as it 

is tested by the “simple task” of random splitting of the ~35,000 sequence-substrate pairs. 

The performance is compared with that of using Morgan bit vector substrates representations 

examined by Goldman et al. (2021) on the same dataset. We tested another encoding 

approach, Junction-Tree Variational Auto Encoder (JT-VAE) (Jin et al., 2018) mentioned 

in the same literature and found that this approach was outperformed by the two former 

encoding methods. Figure 4 presents a comparison of Spearman’s correlation (R), area 

under Precision-Recall curve (AU-PRC), and area under receiver operating characteristic 

curve (ROC-AUC) on the simple task of activities regression and classification using 

different substrate encodings.

Figure 4 and Table 1 illustrate that, compared to average pooling, convolutional pooling 

consistently improves the CPI prediction with different substrate encodings and sequence 

embeddings. Table 1 shows embedding dimensions and Spearman’s correlations for results 

on 6 different pre-trained protein language models (without tuning the predictive model): 

ESM-1b (Rives et al., 2021), TAPE (Rao et al., 2019), ProtBert (Elnaggar et al., 2021), 

ProtT5 (Elnaggar et al., 2021), ProtXLNet (Elnaggar et al., 2021) and ProtAlbert (Elnaggar 

et al., 2021). ECFP6 encoding is used for substrates.

3.2. Substrate Discovery: Prediction of Activity on Novel Substrates

We also evaluated our models on the “novel substrates characterization task”, which 

examined, using a different split of the dataset, the potential of applying our workflow to 

predict activities on novel substrates. Table 2 reports the performance comparison between 

ECFP6 and baseline Morgan encoding algorithms on predicting the enzyme activities on 

novel substrates. ECFP6 was found to offer superior robustness of characterizing unseen 

substrates over Morgan fingerprint due to its ability to interpret all substructures of 

the substrates. The classification results also confirms the robustness of the ECFP6 and 

convolutional pooling pipeline in identifying the presence of enzyme activity on novel 

Xu et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2022 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



substrates, as shown by an increased AU-PRC value. Table 3 shows extended results of 

the “novel substrates characterization task” covering the performance of this pipeline on 

three other datasets presented in Goldman et al. (2021). These datasets include activity 

data from halogenase family (62 substrates on 42 sequences) (Fisher et al., 2019), kinase 

family (72 substrates on 318 sequences) (Davis et al., 2011) and the aminotransferase family 

(18 substrates on 25 sequences) (Li et al., 2020). Due to fewer substrates presented, the 

regression results for these three datasets were not comparable to that for the phosphatases 

dataset, but the classification models resulted in fairly good metric scores (i.e., AU-PRC and 

ROC-AUC), which are higher than that reported in Goldman et al. (2021).

3.3. Enzyme Discovery: Prediction of Activity for Novel Sequences

The “novel sequences characterization task” was also performed on all four datasets 

mentioned in the previous section, with results shown in Table 3. The use of convolutional 

pooling and ECFP encoding consistently outperformed the baseline model on the first three 

enzyme datasets. However, the proposed pipeline seemed not able to earn a better result than 

the baseline in the aminotransferase case, likely due to the limited number of substrates and 

sequences.

For the phosphatase dataset, while we ensured that the same sequences do not appear in 

both the training and the test sets, we did not exclude sequences in the training set that 

may potentially be similar to sequences in the test set. The phosphatase data was from the 

original paper (Huang et al., 2015), where enzyme sequences with greater than 40 percent 

identity were clustered and different sequences from diverse clusters were experimentally 

characterized. We note that several enzymes from the same cluster were similar in sequence 

and eliminating them would have resulted in a smaller training set. Further characterizing 

phosphatases to obtain additional sequences will be valuable to explore the diversity of this 

family and such a dataset would offer a more comprehensive test of our workflow.

4. Conclusion

In this study, we encode the substrates using a new approach that enables a better 

characterization of substructural information. We also mitigate the problem of information 

loss resulting from averaging the position-wise embeddings, by learning a convolutional 

pooling of those embeddings to retain the information captured by language models. The 

proposed new approaches of encoding substrates and pooling the sequence embeddings 

are tested on four high-quality enzyme activity datasets and compared with recent studies. 

Taken together, the results suggest that our proposed compound-protein interaction modeling 

pipeline achieves better predictions compared to current methods. These results also set the 

stage for using our proposed workflows for enzyme discovery by identifying potential novel 

substrates for existing sequences in these families and also for identifying new sequence 

variants that can have improved activity through generative modeling, paving the way for 

enzyme engineering for these families. Finally, our results also demonstrate the potential 

for applying these methods to other enzyme families that have been characterized to the 

same extent as the datasets studied here. All our models and results are available through 

https://github.com/LMSE/CmpdEnzymPred.
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Figure 1: 
(A) Extended Connectivity Fingerprints of Glycerol-3-Phosphate. Multilevel neighborhoods 

of atoms (MNAs) substructures are identified surrounding each non-hydrogen atom before 

being converted to a set of ECFP identifiers through a numeric identifier conversion 

algorithm. (B) Count encoding of ECFP identifiers, each dimension in the vector 

representation represents the count of occurrence of a different ECFP identifier.

Xu et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2022 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Comparison between average pooling and the idea of convolutional pooling. Global average 

pooling, which is used in current top models, simply averages over the entire length-

dimension of the last layer of pretrained language models. It converts the representation to 

a fixed-length vector with dimension equals to the pretrained language model’s embedding 

dimension. The idea of convolutional pooling is to apply convolutional filters along the 

sequence length direction in order to obtain a same length sequential output as the protein 

sequences (padded to the same length).
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Figure 3: 
(A) A conventional model for downstream predictions (used as baseline for validating 

the performance). The baseline model uses average pooling and Morgan bit vector 

substrates encoding. (B) Architecture of the proposed predictive model. One-dimensional 

convolutional layers together with a residual block were used to parse sequence embeddings. 

Two detectors sharing the same initial convolutional layer are used to extract local 

information and global features in parallel: a basal detector that contains two 1-D 

convolutional layers with a kernel size of 3 captures local patterns of amino acids, while 

a superior detector composed of 3 convolutional layers (using the same kernel size) 

with a residual connection effectively formulates global patterns from panoramic view of 

the sequence embeddings. The filtered outputs from both detectors were then flattened 

and concatenated with substrate encodings to generate single vector for each sequence-

compound pair, followed by two fully-connected (FC) layers. Dimensions of each block’s 

output are shown with ESM-1b embeddings and ECFP6 encoder.
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Figure 4: 
A simple comparison of different substrates encodings, tested on multilayer perceptron 

(MLP) top models using ESM-1b embeddings with average pooling. Figures in the first 

row show results of regression models. Scatter plots were used to correlate predicted values 

against actual values. A stronger correlation can be observed in both the logarithmic values 

plots (where zeros are removed) and actual values plots for ECFP6 as compared with 

the other two encodings (ECFP4, and Morgan bit vector). Binary classification based on 

different chemical encodings approaches were also tested. The same classification labels 

as Goldman et al. (2021) were used directly. The comparison between AU-PRC as well as 

ROC-AUC value also shows the two ECFP’s achieve better predictions than Morgan bit 

vector.
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Table 1:

Results of using different sequence embeddings on downstream predictions (ECFP6 encoding used for 

substrates). R denotes Spearman’s correlation and the best performing result is highlighted in bold.

Language Models

ESM-1b TAPE ProtBert ProtT5 ProtXLNet ProtAlbert

Embedding Dimension 1280 768 1024 1024 1024 4096

Rconv. pooling 0.816 0.813 0.810 0.818 0.810 0.820

Ravg. pooling 0.788 0.786 0.763 0.763 0.777 0.795
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Table 2:

Results of ECFP6 and Morgan substrate encoders on “novel substrates characterization task”.

ECFP6 Morgan

Rconv. pooling 0.681 0.658

Ravg. pooling 0.654 0.649

AU-PRC (convolutional pooling) 0.588 0.562

ROC-AUC (convolutional pooling) 0.858 0.853
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Table 3:

Full regression and classification results of three characterization tasks on the four enzyme datasets. Baseline 

model here used Morgan bit vector encoding and two layers of fully connected MLPs.

Tasks Dataset Phosphatase Halogenase Kinase
a Aminotransferase

#Seq. × #Subs. 218 × 168 42 × 62 318 × 72 25 × 18

Simple task RConv+ECFP6 0.816 0.892 0.845 0.838

RBaseline 0.728 0.838 0.805 0.808

AU-PRC 0.710 0.732 0.809 0.867

ROC-AUC 0.901 0.937 0.905 0.905

Substrates task RConv+ECFP6 0.681 0.545 0.335 0.470

RBaseline 0.649 0.521 0.205 0.322

AU-PRC 0.588 0.606 0.403 0.756

ROC-AUC 0.858 0.931 0.730 0.697

Sequence task RConv+ECFP6 0.465 0.673 0.735 0.790

RBaseline 0.422 0.581 0.716 0.796

AU-PRC 0.418 0.743 0.745 0.790

ROC-AUC 0.695 0.909 0.889 0.842

a
Classification performed to Kinase dataset uses self-defined labels.
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