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ABSTRACT

Diseases in the central nervous system (CNS) are often difficult to treat. Antibody- and protein-based
therapeutics hold huge promises in CNS disease treatment. However, proteins are restricted from entering the
CNS by the blood–brain barrier (BBB). To achieve enhanced BBB crossing, antibody-based carriers have been
developed by utilizing the endogenous macromolecule transportation pathway, known as receptor-mediated
transcytosis. In this report, we first provided an overall review on key CNS diseases and the most promising
antibody- or protein-based therapeutics approved or in clinical trials. We then reviewed the platforms that are
being explored to increase the macromolecule brain entry to combat CNS diseases. Finally, we have analyzed
the lessons learned from past experiences and have provided a perspective on the future engineering of novel
delivery vehicles for antibody- and protein-based therapies for CNS diseases.

Statement of Significance: Beyond simply reviewing the previous state-of-the-art in antibody delivery
crossing the BBB, we summarized a comprehensive list of design tips to generate successful bispecific
BBB-crossing antibodies.

KEYWORDS: Antibody; BBB; Bispecific; TfR; InsR

INTRODUCTION

Protein- and antibody-based therapeutics delivery into the
brain offer huge potential in treating a broad spectrum of
central nervous system (CNS) diseases, including cancer
(e.g., glioblastoma (GBM) and glioma), neurodegenerative
diseases (e.g., Parkinson’s disease (PD) and Alzheimer’s
disease (AD)), autoimmune diseases (e.g., multiple scle-
rosis), nervous system diseases (e.g., amyotrophic lateral
sclerosis), and genetic disorders (e.g., lysosomal storage
diseases (LSDs)). However, a significant hurdle for pro-
tein and antibody therapeutics to enter the brain is the
blood–brain barrier (BBB). BBB is formed by a continu-
ous monolayer of brain endothelial cells (BECs), pericytes,
and astrocytes. The continuous non-fenestrated capillaries
integrity is maintained by tight junctions (such as occludin,
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claudins, and other junctional adhesion molecules) seal-
ing the BECs together [1]. Key nutrients, such as amino
acids, glucose, and iron, are transported across the BBB
by specific carrier receptors [2]. The tight regulation of
peripheral substances in the CNS maintains the home-
ostasis of the CNS. Lipophilic molecules <400 Da can
diffuse through the BBB [3, 4], with macromolecules show-
ing severely restricted transportation. Beyond BECs, the
integrity of BBB is also maintained by the pericytes and
astrocytes surrounding the BECs [5–9]. Astrocyte end-feet
and pericytes cover up to 99% of the basal capillary mem-
brane [10, 11]. Additional contributions from factors, such
as angiopoietin-1 and angiotensin II, also promote the
integrity of the BBB [12, 13]. The multi-cellular neurovascu-
lar barrier regulates the passage of macromolecules across
the BBB, which poses substantial challenges in targeting the
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CNS with antibodies and proteins. The biology of BBB is
thoroughly reviewed elsewhere [14] and therefore is not a
focus of this review.

BBB restricts peripheral proteins and antibodies from
entering the CNS. Protein passage through the BBB is
mostly non-specific and is <0.1% of peripheral circulating
proteins enter the CNS [15, 16]. Although neurodegener-
ative diseases are believed to cause dysfunctions of BBB
with higher permeability, it has been demonstrated that the
BBB integrity was well maintained, preventing passive BBB
permeability of IgG injected peripherally in multiple AD
mouse models, including PS2-amyloid precursor protein
(APP), Tau transgenics, and APOE4 knock-in mice [17]. It
was estimated that only 0.01% of the peripheral antibody
molecules may enter the CNS [18]. With the extremely
low concentration of antibodies crossing the BBB, it is
difficult for therapeutic antibodies to achieve the concen-
trations required for the desired therapeutic effects. There-
fore, increasing the antibody uptake into CNS is imperative
for the exploration of a broader spectrum of targets and
increased the chance of success in targeting CNS diseases
with therapeutic antibodies or proteins.

Since plasma proteins may permeate and maintain
physiological concentrations by BBB-specific transporting
systems [19], scientists have successfully demonstrated
an increased brain delivery of protein and antibody
therapeutics by targeting those endogenous transporting
receptors, which is the focus of this review. Delivering
antibodies to the CNS via invasive strategies, such as
ultrasound, microbubbles, and direct injection into the
brain (e.g., intracerebroventricular delivery), are reviewed
elsewhere and are not included in this review [20, 21].

TARGETING BRAIN DISORDERS BY PROTEIN- AND
ANTIBODY-BASED THERAPEUTICS

Protein- and antibody-based therapies are the emerging
drug modalities for CNS diseases, with many drug candi-
dates the in preclinical development and clinical trials. We
focus here on the CNS disease targets and drug candidates
which are approved for clinical use or in clinical studies
(Table 1).

Glioblastoma

Over 200 000 brain cancers are reported in the USA annu-
ally, and GBM is the most common, invasive, and neuro-
logically destructive brain cancer with high morbidity and
mortality [55]. With a 6.8% 5-year survival rate, treatment
options for GBM are urgently needed. A significant portion
of GBM patients (>50%) have epidermal growth factor
receptor (EGFR) amplification and mutations, which is
associated with poor prognosis [56–58]. EGFR overexpres-
sion or mutation affects the cancer proliferation, angiogen-
esis, and apoptosis. Cetuximab against wild-type EGFR
and �EGFR has been approved for the treatments of solid
tumors but not for GBM. A phase II clinical trial exam-
ining cetuximab treatment in patients with recurrent high-
grade glioma showed that cetuximab was well tolerated but
exhibited limited activity in this patient population [22].

The vascular endothelial growth factor (VEGF) is
another heavily studied target. VEGF is highly expressed
in glioma cells and is directly associated with the poor
prognosis and malignancy of gliomas [59–61]. The irregular
vasculature in GBM suggests that angiogenesis plays
a role in the GBM development and that VEGF is a
potential therapeutic target [62,63]. Bevacizumab is an
FDA-approved anti-VEGF antibody for many types
of cancer. However, a meta-analysis of four clinical
trials, including 607 patients, demonstrated combining
chemo-radiotherapy, while bevacizumab showed no overall
survival (OS) improvement [23].

Alzheimer’s disease

AD is the most common form of dementia and is charac-
terized by amyloid plaques and neurofibrillary tangles in
the brain. In the amyloid hypothesis, the amyloid-β (Aβ)
peptide causes synaptic dysfunction and neurodegenera-
tion [64]. Therefore, therapeutically removing Aβ is the
most studied approach for AD treatment, with one recently
FDA-approved antibody therapy [39]. Other therapeutic
approaches have been proposed, which include inhibitors of
the synthetic enzyme gamma-secretase and beta-secretase
and Aβ aggregation. While we focus on the amyloid target-
ing antibodies, readers may refer to reviews on other AD
therapeutic approaches, such as inhibiting beta-secretase 1
(BACE1), to reduce the Aβ burden [65–69].

Aducanumab (BIIB037), a fully human IgG1 mono-
clonal antibody (mAb), was the first antibody therapy
approved by the FDA for the AD treatment [39]. It binds
to AA3–6 present only on aggregated species of Aβ such
as oAβ and fibrils. Aducanumab demonstrated reduced
brain fibrillar Aβ in a dose- and time-dependent manner
in a phase 1b clinical trial [39]. Aducanumab showed a
dose-dependent reduction in brain amyloid and some cere-
brospinal fluid (CSF) phospho-Tau reduction in a phase
3 study (NCT02477800). Aducanumab was approved by
the FDA under the accelerated approval pathway. In addi-
tion to aducanumab, several other amyloid antibodies have
advanced to clinical trials, which include bapineuzumab,
solanezumab, gantenerumab, and crenezumab. These anti-
bodies are summarized in Table 1.

Bapineuzumab (AAB-001) is a humanized IgG1 that
binds to AA1–5 of Aβ and targets both fibrillar and soluble
Aβ [70]. Bapineuzumab was shown to be safe in a phase
I study [24]. Bapineuzumab showed no differences for the
primary efficacy endpoints in phase 2 trials for patients
with mild to moderate AD [25,26]. However, APOE ε4 non-
carriers showed potential treatment differences in later pre-
specified exploratory analyses. Moreover, bapineuzumab
failed to show benefits in the primary outcomes in a large
phase 3 study comprising 1121 carriers and 1331 noncarri-
ers with mild to moderate AD [27].

Solanezumab (LY2062430), a humanized IgG1 mAb
which binds to AA16–26 of Aβ, targets the soluble pool of
Aβ and increases the clearance of Aβ monomers [71–73].
Solanezumab showed mobilization of Aβ42 from plaques
in phase 1 and 2 studies [28,29]. However, solanezumab did
not meet the co-primary cognitive and functional endpoints
in two phase 3 double-blind, placebo-controlled trials. The
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more prespecified secondary analysis demonstrated that
mild subjects benefit more from solanezumab treatment
[30].

Gantenerumab, a fully human IgG1 mAb that binds to
AA3–12 and AA18–27 of Aβ, is a conformational epi-
tope in Aβ fibrils [31]. Phase 1 trials indicated that gan-
tenerumab is safe and well tolerated [32]. However, a lack
of significant treatment effects on brain Aβ levels led to
the termination of phase 2/3 trials in December 2014 [33].
Gantenerumab is also being evaluated in a phase 2/3 trial
in individuals at risk for and with early-stage autosomal-
dominant AD (NCT01760005) [34].

Crenezumab (MABT5102A) is a humanized antibody
on an IgG4 backbone to minimize the activation of frag-
ment crystallizable (Fc) gamma receptors [35]. Crenezumab
binds to AA13–24 of Aβ and recognizes Aβ monomers,
oligomers, and fibrils, with a 10-fold higher affinity for
oligomers over monomers [35–37]. Although well tolerated
in phase I studies, crenezumab failed to show benefits for
the primary or secondary outcomes in a phase 2 trial
(NCT01343966) [35]. Later post hoc subgroup analysis of
the high-dose cohort showed benefits in the mildest sub-
group. Moreover, failure to reach the primary endpoint
in participants with prodromal to mild AD led to the
termination of a phase 3 study (NCT02670083).

Parkinson’s disease

PD is the most common neurodegenerative disorder after
AD. The presence of aggregated and misfolded alpha-
synuclein (αSyn) is an important neuropathological marker
for PD. Aggregated αSyn forms intraneuronal filamen-
tous inclusions located in perikaryon and/or neurites of
degenerating neurons in PD patients [74–76]. Antibodies
have been developed and tested for the PD treatment by
targeting different regions and forms of αSyn, including
the N-terminus, C-terminus, central region, protofibrils,
oligomers, and fibrils, which have been reviewed in detail
elsewhere [14,77,78]. Prasinezumab, a humanized IgG1
mAb targeting the αSyn C-terminus, has shown good safety
and tolerability in ascending-dose trials with intravenous
infusions [41,42]. It significantly reduced serum levels of
free-to-total αSyn [41,42]. A phase 2, multinational study
of PRX002/RO7046015 in newly diagnosed PD patients
was initiated in the summer of 2017 (PASADENA Study,
ClinicalTrials.gov identifier NCT03100149). Cinpanemab
is another αSyn antibody which is in clinical trials for PD
[43].

Lysosomal storage diseases

LSDs are inherited metabolic disorders caused by defective
lysosomal enzymes which inflict on multiple organs [79].
Deficiencies in the brain result in developmental delay,
mild-to-severe mental retardation, ataxia, seizures, and
profound neurodegeneration [80–82]. Hurler syndrome
is caused by the deficiency of α-l-iduronidase. Alpha-
l-iduronidase (IDU) is important in the metabolism
of heparan and dermatan sulfate, and its deficiency
results in the accumulation of undegradable sulfated
glycosaminoglycans (GAG) material throughout the body.

Hurler syndrome is manifested as the developmental
delay and cognitive decline, and patients usually die
within the first year of life [83]. Recombinant human α-
l-iduronidase (laronidase) (rhIDU, Aldurazyme) has been
studied in clinical trials, showing improved forced vital
capacity and reduced symptoms of airway obstruction
[44–46]. In addition to rhIDU, recombinant human IDS
(idursulfase, Elaprase) improved the forced vital capacity
and increased exercise tolerance in clinical trials. IDS
treatment demonstrated a 25% reduction in liver and spleen
volumes. Significant improvement in elbow joint mobility
was also observed [47,48].

Migraine

Migraine is a headache disorder that directly affects more
than one in seven people worldwide. Calcitonin gene-
related peptide (CGRP) plays a major role in migraine [84].
There has been significant progress in blocking CGRP by
antibodies for migraine prevention. At least four CGRP
targeting antibodies have been approved for migraine
prevention in recent years, which include Erenumab
(human IgG2 antibody), Galcanezumab (humanized IgG4
antibody), Fremanezumab (humanized IgG2 antibody),
and Eptinezumab (humanized IgG1 antibody) [49–52].

TRANSPORT ROUTES FOR PROTEINS
AND ANTIBODIES ACROSS THE BBB

There are two transport routes for proteins and antibodies
across the BBB: uncontrolled non-specific protein brain
entry and controlled endogenous transport systems on
the BBB. The nonspecific nature of the absorptive-
mediated transport greatly limits the therapeutic potential
of therapeutic proteins and antibodies, as indiscriminate
cellular uptake is not only a major disadvantage in
terms of off-target effects, but it also may lead to the
suboptimal pharmacokinetic properties of the therapies
[85]. Exploring the endogenous transport systems on the
BBB is more desirable for the CNS delivery of protein and
antibody therapies. Receptor-mediated transcytosis (RMT)
and carrier-mediated transport (CMT) are the major
endogenous transport systems on the BBB [14,21,86]. The
substrate-selective CMT is responsible for the delivery
of small molecule nutrients that include glucose, amino
acids, monocarboxylic acids, hormones, ions, and vitamins
[86,87]. RMT delivers larger molecules via the vesicular
trafficking of the ligand-receptor complexes [86], such as
transferrin [88,89], insulin [90,91], leptin [92,93], tumor
necrosis factor-alpha (TNFα) [94], and EGF [95]. There-
fore, RMT is the most studied approach for delivering the
protein and antibody therapies to the brain [96]. RMT
uses endogenous receptors expressed on the luminal side
of the BBB, which transport macromolecule nutrients,
including iron-bound transferrin, insulin, and leptin, into
the brain side via vesicular trafficking of the ligand-
receptor complexes [88,90,92]. The RTM transport route
requires binding to the extracellular domain of the receptor,
subsequent endocytosis, and transcytosis to the luminal

ClinicalTrials.gov
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Figure 1. Illustration of the transcytosis of carrier-cargo fusion antibodies through the BBB. Here the illustration uses a bispecific antibody as the example,
although other formats also work under the same mechanisms, as shown in Fig. 2. Bispecific antibodies with BBB targeting moiety and cargo bind RMT
receptor on the surface of BECs. Then, the antibody-receptor complex undergoes transcytosis to the abluminal side into the brain parenchyma.

(brain) side of the capillary endothelium into the interstitial
space [14,96–98].

Receptor-mediated transcytosis

Most of the studies on delivering proteins and antibodies
have been on RMT receptors, such as the transferrin recep-
tor (TfR), the insulin receptor (InsR), CD98hc, and FC5
antibody binding receptor, which is the focus of this review
(Table 2). Figure 1 illustrates a TfR-mediated transport of
a bispecific antibody, which binds to the TfR, through
the BBB into the brain. Once inside the brain, the other
arm of the bispecific antibody engages the disease target.
Other RMT receptors, such as the low-density lipoprotein
receptor-related protein 1 and the folate receptor, have
shown to enhance the BBB passage of large cargos other
than proteins and antibodies, such as virus-like particles
and nanoparticles, which have been reviewed by others and
are not covered in the current review [99,100].

The transferrin receptor

There are two known TfRs, TfR1 and TfR2. TfR1 (or
TfR) has been extensively studied for the delivery of protein
and antibody therapies across the BBB due to its high

expression level in BECs [99]. TfR is a type II transmem-
brane receptor and is a homodimer linked by disulfide
bonds at Cys89 and Cys98 [144]. The extracellular domain
of TfR consists of three domains, apical domain, heli-
cal domain, and protease-like domain. TfR binds iron-
bound holo-Tf via the helical and protease-like domains.
At neutral pH, iron binds tightly to Tf, and the iron/Tf
complex is trafficked intracellularly via TfR. In the low-PH
endosomes, iron is released from Tf. The apo-Tf which is
complex with TfR is trafficked back to the cell surface. At
neutral pH, the low affinity of apo-Tf to TfR results in the
release of apo-Tf [144,145]. TfR is ubiquitously expressed,
with erythroid cells and proliferating cells expressing high
levels due to the metabolic demand for iron [146,147].
BECs were reported to express TfR as well [99]. Transferrin
was shown to be transported through the BBB, indicating
the TfR pathway can naturally transport macromolecules
across the BBB [148].

Using transferrin directly as the carrier is not practi-
cal for multiple reasons, including the high circulating
endogenous concentration of transferrin at 3 mg/mL.
Therefore, using antibodies to target TfR as the carrier for
transporting cargo through the BBB is more feasible. To
avoid the interference of normal TfR functions of shuttling
iron/Tf and apo-Tf across cell membranes and the BBB, the
antibody carrier should not compete with Tf binding
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Figure 2. Illustration of common designs of BBB targeting antibody or protein designs. The illustration was based on individual references listed in the
articles. (1) TfRMAb-IDUA [134], (2) ETV:IDS [123,124], (3) cTfRMAb-ScFv [130], (4) anti-TfR/BACE1 [121], (5) ATV:BACE1 [122], (6) PTV:PGRN
[125], (7) Ab18 TVD-Ig/αTfR [137].

to TfR [136]. For example, currently discovered carriers
targeting TfR often bind at the apical domain of TfR,
which is distant from the sites where Tf binds TfR [121–
124]. TfR-based BBB-crossing antibody carriers are often
used to deliver three types of cargos: enzymes, recombinant
proteins, and therapeutic antibodies. In each category, we
discuss representative examples of the distinct designs and
their effects on efficacy.

An example of anti-TfR/enzyme fusion is the TfRMAb-
IDUA for the treatment of LSDs [134]. TfRMAb-IDUA is
an anti-mouse TfR antibody-IDUA fusion, with TfR Mab
at the N-terminus and IDUA at the C-terminus (Fig. 2,
design (1)). The TfR Mab has a high affinity of 1.8 nM.
TfRMAb-IDUA fusion was also validated for unaltered
IDUA enzyme activity upon fusion at 776 ± 79 units/μg.
Treatment of the MPSI mice with TfRMAb-IDUA reduced
the intracellular lysosomal inclusion bodies by 73% in the
brain (vs. saline-treated mice) with IV injections twice a
week for 8 weeks at a 1 mg/kg dose [134].

Another example of anti-TfR/enzyme fusion was an
enzyme transport vehicle (ETV) fused with the lyso-
somal enzyme iduronate 2-sulfatase (IDS), known as
ETV:IDS, which delivers IDS for treating Hunter’s
syndrome [123,124]. IDS is fused to the N-terminus of an
engineered Fc fragment that binds to human TfR (called
the ETV) (Fig. 2, design (2)). Different from other anti-
TfR-based carriers, ETV used directed-evolution engi-
neered Fc fragment binding apical domain of human TfR
but without compromising FcRn binding, which preserves
the long circulating half-life of the construct. The ETV has
low-affinity monovalent binding (130 nM) to TfR. The
design possesses multiple advantages such as (1) the native
Fc configuration maintains antibody PK profiles, (2) low
affinity to TfR allows efficient release of antibodies after
entering the brain, and (3) lower affinity to TfR reduces
peripheral clearance. ETV:IDS maintains the biological
activity of IDS in MPS II patient fibroblasts. ETV:IDS
showed 3–5-fold higher brain uptake than Fc:IDS in
human TfR KI mice [123,124]. Single or multiple doses of
ETV:IDS reduced the brain and CSF sGAG levels by 3–5-
fold in comparison to IDS. ETV:IDS significantly reduced
GAGs in neurons, astrocytes, and microglia and reduced
the lysosomal lipid accumulation in the brain [123,124].

An example of bivalent TfRMAb fusion with an amy-
loid Ab single-chain variable fragments (scFv) is shown in
Fig. 2, design (3). This design has the TfR MAb at the

N-terminus and amyloid Ab scFv at the C-terminus [130].
The entire construct is a bivalent fusion with bivalent TfR
MAb and bivalent amyloid Ab scFv. Daily subcutaneous
(sc) injections of 5 mg/kg of the cTfRMAb-ScFv fusion for
12 consecutive weeks reduced the amyloid plaque in the cor-
tex and hippocampus in 1-year-old presenilin (PS)-1/APP
AD double transgenic mice [130].

Another example of an anti-TfR-based carrier is a bis-
pecific antibody that consists of an anti-TfR antibody and
an anti-BACE1 antibody (anti-TfR/BACE1) (Fig. 2, design
(4)) [121]. The anti-BACE1 inhibits the BACE1 activities
and thus reduces soluble amyloid peptides in the brain.
Different from the cTfRMAb-ScFv fusion, the anti-TfR
and anti-BACE1 are both monovalent. The bispecific anti-
body was assembled into a heterodimer on the knob-into-
hole (KiH) platform. Anti-TfR binds to both human and
cynomolgus monkey TfR with low affinities, 270 nM binds
to huTfR, and 810 nM binds to cynoTfR. The advantage of
low-affinity TfR binding is less degradation of TfR in the
BBB and more efficient release of anti-TfR/BACE1 upon
entering the brain. Anti-TfR/BACE1 has abolished the Fc
effector functions to avoid depletion of the red blood cells
(RBCs). Anti-TfR/BACE1 showed a 3–5-fold increase in
brain uptake in both human TfR KI mice and cynomolgus
monkeys. In addition, therapeutic effects were observed as
reduced Aβ concentration in both plasma and CNS (both
in mice and monkeys) [121]. Other examples using a similar
design are listed in Table 2.

Another distinct design is the antibody transport vehicle
(ATV): BACE1, which has the Fc fragment of a bivalent
BACE1 Ab replaced with an engineered Fc fragment that
binds to huTfR at low affinity (120 nM binds to huTfR
and 2200 nM binds to cynoTfR) (Fig. 2, design (5)) [122].
ATV:BACE1 has monovalent binding to TfR and bivalent
binding to BACE1. The ATV molecules have a native
IgG structure and stability. ATV:BACE1 showed >20-
fold increase in brain uptake than the BACE1 antibody
in human TfR KI mice. The increased brain uptake also
showed an >2-fold decrease in brain Aβ load. ATV:BACE1
showed a 50% reduction of CSF Aβ40 in cynomolgus
monkeys and maintained the effect for 14 days after a single
IV injection. In comparison, the BACE1 antibody showed
no CSF Aβ40 reduction [122].

Zhao et al. isolated a mouse TfR-specific antibody from
the phage-displayed antibody libraries and constructed
αTfR-containing bispecific antibodies to facilitate the
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delivery of antibody therapies crossing the BBB. In the
bispecific antibody design, monovalent TfR engagement
showed a 5-fold higher brain antibody concentration
than the bivalent TfR engagement [136]. It was found
that the bivalent TfR engagement trapped the antibody
in the vasculature, while monovalent TfR engagement
showed broad brain parenchyma distribution. Further
mechanistic studies found that bivalent TfR engagement
significantly increased the lysosomal degradation of TfR,
whereas monovalent TfR engagement did not. Using the
TfR targeting bispecific antibody, the authors successfully
enhanced triggering receptor expressed on myeloid cells
2 (TREM2) antibody delivery into the mouse brain by
10-fold. Compared to the bispecific TREM2 antibody
without TfR engagement, weekly treatment of 5XFAD
mice (a model of AD) with Ab18 tetra-variable domain
(TVD)-immunoglobulin (Ig)/αTfR (Fig. 2, design (7))
showed a considerable reduction of amyloid burden, with
an increased microglia migration to and phagocytosis
of amyloid plaques, improved synaptic and neuronal
marker intensity, improved cognitive functions, reduced
endogenous tau hyperphosphorylation, and decreased
phosphorylated neurofilament H immunostaining [137].

The insulin receptor

The InsR is a single-pass type I transmembrane receptor
with two subunits (α- and β-chains) connected by disulfide
bonds. Insulin binds to two distinct sites on each subunit
of the receptor, crosslinking the two receptor halves to
create a high binding affinity [149,150]. Insulin-receptor
binding activates the intracellular tyrosine kinase catalytic
domain, which then triggers the downstream signaling cas-
cades and regulates various biological functions, such as
glucose uptake. Insulin-bind to InsR can be internalized
[151]. InsR is highly expressed by BECs, and it transports
insulin across the BBB by an active and energy-dependent
process since insulin is indispensable to the brain glucose
metabolism. However, insulin is not an appropriate car-
rier for transportation due to the potential dysfunction of
carbohydrate metabolism. Therefore, using InsR antibod-
ies as carriers for transporting cargo across the BBB is
more feasible. Anti-InsR-based BBB-crossing carriers have
been studied to deliver enzymes or recombinant functional
proteins and therapeutic antibodies. In each category, we
discuss representative examples of distinct designs and the
effects of the different configurations on efficacy.

A human InsR (HIR) antibody 83–14 has been exten-
sively studied as a HIR-mediated brain delivery vehicle
[101–104]. It is noted that antibody 83–14 is non-competing
with insulin for binding InsR [99]. In this design, the anti-
InsR 83–14 is typically configured at the N-terminus and
the enzyme or protein is typically configured at the C-
terminus with the entire construct as bivalent antibody-
enzyme/protein fusion (Fig. 2, design (1)). A specific exam-
ple is the HIR MAb-IDUA fusion (valanafusp alpha),
which is under evaluation in phase 2 clinical trials for the
treatment of Hurler’s syndrome. Valanafusp alpha is a biva-
lent HIR MAb fused to IDUA, with HIR MAb at the N-
terminus and IDUA at the C-terminus (Fig. 2, design (1)).
HIR antibody was verified to maintain high-affinity InsR

binding, and the IDUA maintains its enzymatic activities.
Preclinical studies in Rhesus monkeys showed a >12-fold
brain distribution increase versus IDUA as measured by
radioactivity [105,106]. In a 52-week open-label phase 1–
2 trial on the safety and efficacy in pediatric MPSI patients
with cognitive impairment, valanafusp alpha demonstrated
the effects in stabilizing the cortical gray matter volume
of the brain, urinary glycosaminoglycan levels, spleen vol-
umes, and shoulder range of motion [101–104]. Other HIR
MAb-enzyme/protein fusion examples that are being stud-
ied in preclinical nonhuman primates are listed in Table 2.
All the HIR MAb-enzyme/protein fusions demonstrated a
10–40-fold increase in the Rhesus monkey protein brain
distribution versus the enzymes/proteins themselves with
HIR MAb measured by radioactivity.

Fusion of anti-InsR with therapeutics antibodies is less
studied, and no molecules in this category have reached
human clinical trials. One representative example is the
HIR MAb-anti-amyloid fusion in which the HIR MAb
was fused with amyloid Ab as a bivalent fusion protein
with HIR MAb at the N-terminus and the amyloid Ab
scFv at the C-terminus (Fig. 2, design (3)). High affin-
ity HIR binding, EC50 = 1.9 ± 0.1 nM, and high Aβ-
binding activity, ED50 = 2.0 ± 0.8 nM, were validated.
In Rhesus monkeys, the HIR MAb-anti-amyloid antibody
fusion showed a >10-fold increase in brain uptake versus
anti-amyloid antibody alone. The amount of HIR MAb-
anti-amyloid antibody fusion entering BBB reached 1%
injected dose (ID)/100 g tissue as measured by radioactivity
[115,116].

Beyond the well-studied TfR and InsR, efforts are being
made to identify new receptors that may bring higher effi-
ciency for transporting protein/antibody cargos across the
BBB, with a focus on new RMT receptors highly expressed
on the BECs. Some RMT receptors are listed in Table 2.

CONSIDERATIONS IN ENGINEERING
CARRIER-CARGO FUSIONS FOR BRAIN DELIVERY
OF PROTEIN/ANTIBODY THERAPIES

Highly expressed at BBB

The ideal RMT receptor candidates are often highly
expressed in the BECs such as TfR. Proteomics study of
the species of interest will aid the identification of other
highly expressed RMT receptors in the brain capillary
or BECs for brain delivery [138]. Species-specific RMT
receptor expression profiles are often different from species
to species, and the conclusion learned from rodents needs
to be validated in nonhuman primates or humans. For
example, InsR is highly expressed in human BBB but much
less in mouse BBB, resulting in less transportation to mouse
brains which limits the use of mice as preclinical animal
models [99]. Detailed case studies on the optimized design
of carrier-cargo fusions for brain delivery are summarized
in Table 3 and are depicted in Fig. 3.

Antibody cross-reactivity

Antibody cross-reactivity is an important consideration.
Antibodies often target specific epitopes in the RMT
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Table 3. Summary of engineering tips learned from previous cases studying macromolecule BBB crossing

Factor to consider Description/details Ref

Category: choice of receptors for the carrier
Highly expressed at BBB Highly expressed in the BECs

Identify novel RMTs by proteomics
[138,152–154]

Antibody cross-reactivity Validate expression in species-of-interest
Preclinical studies require cross-reactivity to
nonhuman primates’ RMT

[103,121,155] [122,139–143,156]

Category: antibody format engineering
Fusion to naturally existing
transcytosis ligands should be avoided

Being blocked by natural ligands present at
high concentration
Perturbing normal biological functions

[144,155,157]

Antibody and fusion format Valency of the antibody targeting RMT is
important
Bivalency may not be preferred for the
carrier, but may be preferred for the cargo
Protein fusion order or configuration
matters, depending on the optimal functions
Fusion protein produced using genetic
engineering is preferred over conjugation
due to more homogeneity
Overall structure stability
Optimal activities of the cargo should be
retained

[102,108,109,117–120,122]

Antibody affinity to RMT targets High-affinity binding may induce receptor
degradation and compromise further
transcytosis thus limiting brain uptake
High-affinity binding promotes peripheral
receptor-mediated clearance, causes
significant shorter circulation and lower
BBB crossing efficiency
High-affinity binding prevents the release of
transported antibodies, instead, being
trapped in the vasculature

[102,106,115–118,120,121,135,138]

Antibody effector function Abolish Fc effector functions if causing
toxicities

[119]

Antibody binding RMT receptor
epitope

Avoid competing with natural ligands [120,121]

Antibody endocytosis Verify endocytosis by in vitro cell models [107–109,120,122,142,158]
Category: in vivo characterization

Blood circulation time Longer circulation time is preferred to
increase exposure to brain
Introducing Fc mutations that increase
FcRn binding at pH = 6.0

[117,121,135,159]

Verify brain distribution Quantifying antibody concentration from
brain lysate is not sufficient
Broad brain distribution should be
confirmed using imaging

[102,107,117,121]

Quantification of brain uptake Quantification using ELISA or radioactivity
Brain capillary depletion or perfusion with
PBS should be performed before
quantification in order to exclude possible
interferences from blood

[102,107,117,121]

Confirm biological effects or
therapeutic efficacy

Using appropriate animal models to confirm
improved therapeutic efficacy is required as
the final verification of true brain entry

[120–123,126–129,131–
133,135,138,141–143]
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Figure 3. Illustration showing the summarized considerations for obtaining effective brain antibody and protein delivery. Authors should consider first
the choice of receptors, which include the RMT receptor is highly expressed at BBB and species-of-interest validation. In antibody engineering, authors
should consider several factors, including avoiding fusion to naturally existing ligands, antibody fusion format engineering, antibody affinity, antibody
effector function, no competition with natural ligands, endocytosis, and transcytosis confirmation, and unaltered biological activities upon fusion. At
last, the in vivo evaluation is needed to validate the therapeutic efficacy and delivery efficiency, including blood circulation time, brain distribution verified
by imaging, brain uptake quantification, and in vivo efficacy improvement.

receptors, which may not be conserved between species.
For example, the majority of the reported TfR antibodies
do not cross-react between humans and mice and even
between mice and rats or human and nonhuman primates
[117–119,121]. This implies that it is often necessary to
generate transgenic mouse models with the desired receptor
knock-in to evaluate the biological and physical properties
of the drug molecule preclinically. Because it is not readily
feasible to generate transgenic nonhuman primate models
with the desired receptor knock-in, it is essential to have
antibodies that are cross-reactive to nonhuman primate
and human RMT receptors.

Avoid natural ligands as carriers

Although RMT receptors transport natural ligands, it is
often not feasible to use natural ligands directly as the
carrier due to multiple concerns. First, natural ligands
present in high concentrations with strong binding, which
could block the receptor engagement of the carrier-cargo
fusions. Second, the natural ligand triggers signaling upon
binding to the receptor. If using a natural ligand as the
carrier, dysfunctional physiological effects may result in
adverse side effects. An example is insulin, which triggers
carbohydrate metabolism after binding to InsR. Third, the
natural ligand fusion may perturb normal biological func-
tions by competing with natural ligands. Therefore, most of
the known successful anti-RMT platforms use antibodies
that do not compete with natural ligands binding to the
receptor.

Optimal fusion design

Specific optimization may be needed for the optimal effi-
ciency of the carrier-cargo constructs. For the optimal func-
tions of the carrier, for example, bivalent targeting TfR was
found to cause lysosomal degradation of TfR, significantly

reducing the overall transportation efficiency [120,136].
Also, the avidity effects from bivalent anti-TfR binding
resulted in >100-fold stronger binding to TfR [117–119].
Without a proper level of dissociation from TfR, even if
the anti-TfR-cargo is transported inside the brain, they
cannot diffuse into the brain parenchyma, resulting in being
trapped inside the vasculature [117–119,121,136]. The over-
all structural stability of the carrier-cargo fusion is also
critical. For example, compared to the traditional bispecific
antibody anti-TfR/BACE1, the ATV:BACE1 is more pre-
ferred due to better overall stability, which can improve the
PK profiles and subsequently increase delivery to the brain
[122].

For the optimal activities of the cargos, both fusion
configurations and valency need to be determined case by
case for individual cargos. For example, the ATV:BACE1
was preferred over the anti-TfR/BACE1 because the biva-
lent anti-BACE1 from ATV:BACE1 neutralizes BACE1
significantly better [122]. Moreover, the ETV enzyme deliv-
ery platform was optimized for different enzymes. While
IDS tolerates being fused at the C-terminus, progranulin
(PGRN) requires a free C-terminus to be functional [123–
125] (Fig. 2, design (6)). In the anti-InsR-enzyme fusions,
fusion proteins are often validated for similar InsR binding
and enzyme activity in comparison to the parent antibodies
and enzymes [101–106].

Optimal affinity to RMT receptors

High affinity to RMT receptors may not be always optimal
for the carrier antibody. As learned from TfR, high-affinity
TfR binding induces receptor degradation by promoting
trafficking to the lysosome [117–119]. The reduction of
TfR will compromise subsequent transcytosis, thus limit-
ing brain uptake. Additionally, due to the broad periph-
eral TfR expression, high-affinity anti-TfR showed signifi-
cantly shorter circulation time due to peripheral clearance
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[117–119]. Shorter circulation time limits the exposure to
the brain since transcytosis at the BBB interface is con-
centration dependent. More importantly, the high-affinity
TfR antibody will remain bound to TfR after transcytosis
into the brain side, trapping the antibody near vasculature
and limiting broad brain distribution [120]. Endocytosis
and transcytosis of candidate carrier antibodies should
be verified. For example, a TfR targeting antibody was
verified for the cellular uptake and transcytosis using BEC
lines, such as hCMEC/D3, bEnd3 cells, and SV-ARBEC
[120]. The anti-HIR antibody 83–14 was also validated for
endocytosis in vitro [99].

Avoid antibody effector functions

Antibody Fc engineering may be required to eliminate
the Fc-effector function–mediated toxicities. For example,
TfR is known to be expressed during RBC development;
therefore, designs with uncompromised Fc effector func-
tions were shown to deplete RBC and cause acute toxicity
upon injection [117–119]. The binding to BECs may cause
cell killing and lead to significant side effects if the RMT
receptors have broad peripheral distribution.

A long time in blood circulation is preferred

A longer circulation time of the carrier-cargo molecules
is preferred to increase exposure to the brain. Due to the
broad expression of RMT receptors, such as TfR and InsR
in the periphery, the BBB-crossing antibodies often exhibit
rapid clearance from the blood. For example, the HIR
MAb-IDUA fusion showed an even quicker clearance than
the IDUA enzyme in circulation [101–104]. Anti-TfR anti-
bodies show a significantly shorter circulation time than the
control IgGs [117–119].

Verify brain distribution

Quantifying antibody concentration in the brain lysate
is not sufficient to confirm the actual brain entry and
broad distribution into the brain parenchyma. Even if
a high concentration is observed in the brain lysate, the
antibodies could just be trapped inside the vasculature
[117–120]. Therefore, brain distribution should be con-
firmed using immunostaining or radioautography. For
example, low-affinity anti-TfR was found to co-localize
with neuronal marker NeuN using the immunofluorescent
imaging of brain sections [122]. Also, monovalent sFab
was found to engage plaques, while the bivalent dFab was
found to remain mostly inside microvessels [120]. Radioau-
tography was used to confirm the brain tissue distribution
of injected radioisotope-labeled HIR MAb-IDUA fusion
protein [101–104].

Depending on the labeling method and sensitivity of the
assay, quantification using enzyme-linked immunosorbent
assay (ELISA) or radioactivity has been explored. For
injection with trace dosing (0.1–0.5 mg/kg), radioisotope
labeling is suitable due to its high sensitivity [101–104].
For injection at therapeutic dosing (>20 mg/kg), quan-
tification by ELISA has been successful [117–119]. For
example, when quantifying anti-TfR brain distribution, the

brain antibody concentration was quantified using sand-
wich ELISA. It should be noted that brain capillary deple-
tion or perfusion with PBS should be performed before
quantification to exclude possible interferences from blood,
which has a much higher antibody concentration than that
in the brain tissues.

Verify therapeutic efficacy

The most important proof of drug brain delivery is thera-
peutic efficacy. Using appropriate animal models to con-
firm the improved therapeutic efficacy is required as the
final verification of true brain entry. A major issue is that
most of the disease models are only available in mice and
rats, rendering NHP and human correlation more diffi-
cult. If a biomarker is available in the nonhuman pri-
mate, it is preferred to predict human therapeutic outcomes.
For example, the anti-TfR-BACE1 bispecific antibody was
shown to reduce the brain and plasma Aβ concentration in
NHP in addition to mice [121,122].

PERSPECTIVE

RMT requires endocytosis of the protein therapeutics,
which implies that antibody drug conjugates (ADCs) are
not likely to be deliverable through RMT due to toxicities
to the endothelial cells. In addition, the RMT receptors
may not be specific to cancer, and thus bispecific ADC
will cause strong side effects, depending on the distribution
of the RMT receptors in normal organs. Hypothetically,
delivery of ADCs via TfR will likely result in lethal
toxicities considering the broad distribution of TfR in the
body. Similarly, any therapeutic modalities that rely on
the effector functions of antibodies are not suitable for
delivery using RMT, which was also illustrated in the case of
TfR-mediated antibody delivery. Anti-TfR with bispecific
antibodies with full effector functions also causes lethal
side effects, such as RBC depletion. Therefore, discovery
of novel RMT targets with CNS-restricted expression is
necessary to avoid systemic toxicities. The advancement of
RNA-seq and proteomics will accelerate the identification
of novel CNS-specific RMT targets.

The widely used BBB crossing platforms, such as TfR
and InsR, are not ideal RTM receptor systems, as they
can lead to fast clearance from the blood due to their
broad peripheral distribution, which limits brain entry.
While strategies, such as low-affinity TfR binding antibod-
ies and monovalent carrier design, can minimize the fast
clearance in blood, high and more frequent dosing may also
be needed to compensate for the clearance and achieve the
therapeutic concentration inside the brain. Therefore, there
is a need to identify new RMT receptors that are more
specific to the brain. Future engineering approaches will
focus on further boosting the BBB crossing efficiency, thus
allowing a much lower dose to be used. As more protein-
and antibodies-based therapies target CNS diseases with
enhanced BBB crossing properties entering human clinical
trials, we will gain new insights on how to further improve
brain exposure to macromolecule therapeutics.
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