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A B S T R A C T   

I examine the epidemiological and economic effects of two types of lockdowns during the COVID-19 pandemic in 
Japan: a voluntary lockdown by which people voluntarily stayed at home in response to the risk of infection, and 
a request-based lockdown by which the government requested people to stay at home without legal enforce-
ments. I use empirical evidence on these two types of lockdowns to extend an epidemiological and economic 
model: the SIR-Macro model. I calibrate this extended model to Japanese data and conduct some numerical 
experiments. The results show that the interaction of these two types of lockdowns plays an important role in the 
low proportion of infectious individuals and the large decrease in consumption in Japan.   

1. Introduction 

The spread of Covid-19 and non-pharmaceutical government in-
terventions (NPIs) to contain the spread seriously damaged many 
economies in 2020. Panel A of Fig. 1 plots the rate of change in real GDP 
in the third quarter of 2020 from the previous year against the total 
number of deaths per million of population as of September 30.1 I use 
the latter as a proxy for the spread of the virus. Panel B of Fig. 1 depicts 
the same rate of change in real GDP against the stringency index that 
was averaged from January 1 to September 30.2 This index represents 
the strictness of lockdown-style policies that primarily restrict people’s 
behavior. It shows that as the spread of the virus and the lockdown 
become severer, GDP tends to fall more. It further shows that there are 
large variations in the degree of the spread of the virus, the severity of 
the lockdown, and the decrease in GDP. In the case of Japan, the death 

rate was low (12.5) and the lockdown policy was loose (30.8) relative to 
the cross-country averages (420.7 and 51.1 for the former and the latter, 
respectively) while the decrease in real GDP (-5.7%) was slightly larger 
than the cross-country average (-4.5%).3 

To understand such epidemiological and economic dynamics in 
Japan, I focus on two types of lockdowns. First, the spread of the virus 
made people cautious about going out. Fig. 2 shows the new cases and 
the stay-at-home ratios for four prefectures in Japan. Here, the stay-at- 
home ratio is defined as the ratio of people who stay within 500 
square meters of home (Mizuno, 2020). The ratio shows that as the 
number of new cases increases, the stay-at-home ratio increases and that 
this increase is especially prominent in the first wave of Covid-19 from 
March to May 2020. Further, the increase is evident to some extent in 
the second and third waves from July to September and October to 
December 2020, respectively. I define a voluntary lockdown as the 
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response of the stay-at-home ratio to an increase in the risk of infection 
hereafter. The presence of a voluntary lockdown can restrain the spread 
of new infections as the contacts between susceptible and infectious 
individuals are less frequent than in its absence. On the other hand, a 
voluntary lockdown may have adverse effects on economic activities 

beyond the government’s behavioral restrictions, especially the con-
sumption of goods and services that need face-to-face contact to take 
place. 

The second type of lockdown that I focus on is the request-based 
lockdown that the Japanese government adopted. Although the Japa-
nese government declared a state of emergency from April to May in 

2020, it did not legally enforce or administer penalties on noncompli-
ance with its request to stay at home.4 Thus, the government let people 
choose whether to go out or not. Such a request-based lockdown can 
have heterogeneous effects on individuals’ choice of whether to stay at 
home. 

Voluntary and request-based lockdowns potentially affect infections 

Fig. 1. Rate of Change in GDP, Total Deaths Per Million, and Strin-
gency Index. Panel A. Rate of Change in GDP and Total Deaths Per 
Million. Panel B. Rate of Change in GDP and Stringency Index 
Notes. The rates of change in GDP are from International Financial 
Statistics published by International Monetary Fund and the System of 
National Accounts published by the Cabinet Office of Japan. They are 
the value in the third quarter of 2020 from the previous year. Total 
deaths per million are from Roser et al. (2020). They are numbers as of 
September 30, 2020. The stringency indexes are from Hale et al. 
(2020b). They are the average from January 1 to September 30, 2020. 
The number of countries in the sample is 42.   

4 According to Hale et al. (2020b), the index for stay-at-home requirements in 
Japan was ranked 1 (recommend not leaving house) for most of the period 
during which the data were available (from April 7, 2020 to February 1, 2021). 
The Japanese government declared the state of emergency again in January 
2021, and it plans to continue the state until March 2021. 
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and the economy during the pandemic. Moreover, they are not unique to 
Japan but observed in other countries.5 Nonetheless, their quantitative 
effects have been largely unexplored by the literature as I review in 
Section 2. To void this gap, I try to answer the following questions. First, 
do people really respond to the risk of infection in deciding whether to 
stay at home or not; and if so, to what extent? Second, to what extent do 
voluntary and request-based lockdowns, solely or interactively, 
constrain infections and economic activities? 

To answer these questions, I first examine the existence and degree of 
a voluntary lockdown in Japan using daily prefecture-level data. Then, I 
extend an epidemiological and macroeconomic model: the SIR-Macro 
model that was developed by Eichenbaum, Rebelo, and Trabandt 
(2020) to incorporate voluntary and request- based lockdowns. In the 
model, susceptible individuals balance the utility from going out to 
consume goods that involve with the risk of infection and the disutility 
from the infection. Their optimization generates a feedback from the risk 
of infection to the voluntary lockdown, and then to the transmission rate 
of the virus, which, in turn, reduces the risk of infection. Moreover, the 
request-based lockdown decreases the utility from going out. I calibrate 
the model based on Japanese data and conduct some numerical exper-
iments to examine the effects of both types of lockdowns. 

My results can be summarized as follows: First, voluntary lockdowns 
existed in all three waves in Japan, although their degrees have declined 
over the three waves. Second, the interaction of these two types of 
lockdowns play an important role in the low proportion of infectious 

individuals and the large decrease in consumption in Japan. 
There is a rapidly growing literature on the impacts of Covid-19 on 

the macroeconomy as I briefly review in Section 2. Some of them focus 
on the substitution from high- to low-risk consumption goods as this 
present study does (Farboodi, Jarosch, and Shimer, 2020; Kaplan, Moll, 
and Violante, 2020; Krueger, Uhlig and Xie, 2020). However, as far as I 
know, none of these studies focuses on the extensive margin of whether 
going out to purchase goods that involve the risk of infection or not. 
Incorporating this extensive margin has two benefits: First, I can use the 
actual high-frequency (i.e., daily) data about the proportion of in-
dividuals who go out to set the model’s parameters. Moreover, it turns 
out that a voluntary lockdown can have a large negative effect on the 
proportion of infectious individuals with plausible parameters including 
the disutility from the infection and thus helps to account for their level 
observed in Japan. 

I further contribute to the literature by incorporating a request-based 
lockdown and examining its epidemiological and economic effects. 
Request-based lockdowns are different from uniform lockdowns 
(examined by Eichenbaum, Rebelo, and Trabandt, 2020, among others) 
in that some people do not stay at home under the former. Request-based 
lockdowns are also different from targeted lockdowns (e.g., Acemoglu 
et al., 2020, among others) in that the government does not intentionally 
decide who stays at home under the former while the government 
intentionally does under the latter. Consequently, request-based lock-
downs can have unique epidemiological and economic effects. 

The rest of this study proceeds as follows: In Section 2, I briefly re-
view the related literature. In Section 3, I present reduced-form evidence 
on the presence of a voluntary lockdown from prefecture-level daily data 
and its effects on the infection and consumption. In Section 4, I present 
the SIR-Macro model that incorporates voluntary and request-based 
lockdowns. In Section 5, I set the parameters. Section 6 presents nu-
merical experiments to show the effects of voluntary and request-based 
lockdowns. Section 7 concludes. 

Fig. 2. New Cases and Stay-at-home Ratios in Four Prefectures 
Note. The green solid line shows the number of new cases (left axis) and the red dashed line shows the stay-at-home ratios (%, right axis). Both series are moving 
averages over the past seven days. The sources of the new cases and the stay-at-home ratios are Toyo Keizai Online (2020) and Mizuno (2020), respectively. 

5 For evidence of voluntary lockdowns, refer to Farboodi, Jarosch, and 
Shimer (2020) for the US and Kruger, Uhlig and Xie (2020) for Sweden, among 
others. As for evidence of request-based lockdown, I use the index for 
stay-at-home requirements developed by Hale et al. (2020a) as a proxy for 
request-based lockdowns and find that the index takes the same value as that of 
Japan (1: recommend not leaving home) for many countries (e.g., 120 countries 
on December 31, 2020). 
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2. Related Literature 

Following the seminal work by Eichenbaum, Rebelo, and Trabandt 
(2020a), there is a growing literature on the effects of Covid-19 on 
economic activities. Among them, Farboodi, Jarosch, and Shimer 
(2020), Krueger, Uhlig and Xie (2020), Kaplan, Moll, and Violante 
(2020), and Aum, Lee and Shin (2020) are most closely related to the 
present study in that they consider people’s responses to the risk of 
infection. Eichenbaum, Rebelo, and Trabandt (2020a) incorporate an 
endogenous reduction in consumption and work in response to the 
spread of Covid-19 in the canonical SIR model and show that such 
behavior decreases the proportion of infectious individuals while exac-
erbating the size of the recession caused by Covid-19.6 Farboodi, Jar-
osch, and Shimer (2020) analyze the response of social activities to the 
risk of infection and its effects on the transmission of the virus. Krueger, 
Uhlig and Xie (2020) consider heterogeneous sectors that differ in the 
risk of infection. Estimating the model based on Swedish health data, 
they show that endogenous sectoral reallocation avoids more than 
two-thirds of the decline in aggregate output and consumption. Kaplan, 
Moll, and Violante (2020) integrate an expanded SIR model into a 
macroeconomic model with income and wealth inequality. They also 
incorporate an endogenous reduction in the consumption and work that 
involve the risk of infection in response to an overall increase in the risk. 
While Kaplan, Moll, and Violante (2020) and Krueger, Uhlig and Xie 
(2020) analyze the sectoral shift from high- to low-risk sectors with the 
overall infection risk as this present study does, they consider the 
intensive margin of substitution of how much each type of goods to 
consume. In contrast, this study considers the extensive margin: whether 
to go out to purchase the goods with a risk of infection (“social goods”) 
or not. Aum, Lee and Shin (2020) build a model in which people choose 
occupations and whether to commute for work or to work from home. 
Working from home entails lower earnings due to lower productivity but 
curtails the risk of infection. They show that more people choose to work 
from home as infections rise to a high level. While they focus on the 
extensive margin of work, I focus on that of consumption. This is because 
the literature has largely left the latter unexplored, although both can 
play a role in the epidemiological and economic dynamics. In fact, while 
Brinca, Duarte, and Faria e Castro (2020) show that two-thirds of the 
drop in the growth rate of hours worked in April 2020 in the US was 
attributable to labor supply shocks, Watanabe (2020) provide evidence 
that the economic deterioration due to COVID-19 was largely driven by 
an adverse aggregate demand shock to face-to-face service industries in 
March 2020 in Japan. 

This study is also related to the literature on the effects of various 
lockdown policies including overall and risk-based targeted lockdowns 
(Eichenbaum, Rebelo, and Trabandt, 2020a; Farboodi, Jarosch, and 
Shimer, 2020; Krueger, Uhlig, and Xie, 2020; Kaplan, Moll, and Viola-
nte, 2020; Kobayashi and Nutahara, 2020; Rachel, 2020; Acemoglu 
et al., 2020; Alvarez, Argente, and Lippi, 2020; Favero, Ichino, and 
Rustichini, 2020; Glover et al., 2020, among others). However, most of 
these studies assume that the government can coerce or induce all or 
targeted people to stay at home (or firms to close). In the case of the 
request-based lockdown that I consider, the government does not 
intentionally choose who follows the request, but lets people choose. 
Most studies have largely left the effects of such untargeted and partial 
characteristics of a request-based lockdown unexplored, although many 
countries adopt similar policies.7 I examine the epidemiological and 
economic effects of a request-based lockdown. 

Empirical studies on the presence of a voluntary lockdown are also 
related to the present study. Watanabe and Yabu (2020) study the de-
terminants of the stay-at-home ratio in Japan. They find that while the 
government’s requests are responsible for about one quarter of the 
decrease in outings in Tokyo, the remaining three quarters are the result 
of people’s voluntary response based on their awareness of the seri-
ousness of the pandemic. Shoji et al. (2020) provide survey-based evi-
dence that the increase in risk is associated with the likelihood of 
social-distancing behavior that includes infrequent dining outside. Evi-
dence on the response of consumption to the risk of infection is not 
limited to Japan. Farboodi, Jarosch, and Shimer (2020) show that in-
dividuals in the US substantially reduced their social activity before state 
and local governments imposed the stay-at-home restrictions. Krueger, 
Uhlig and Xie (2020) provide evidence of the reallocation of consump-
tion from restaurants (a typical example of goods that involves the risk 
of infection) to food at home in Sweden. 

To focus on the roles of voluntary and request-based lockdowns, I 
abstract from various other important aspects that concern the rela-
tionship between the spread of the Covid-19 and economic activities 
that other studies focus on. These include the risk of infection at a 
workplace and the productivity gap between working at a workplace 
and from home (e.g., Aum, Lee and Shin, 2020; Jones, Philippon, and 
Venkateswaran, 2020), uncertainty about an individual’s health status 
or the aggregate state of infection (e.g., Eichenbaum, Rebelo, and Tra-
bandt, 2020b; Hamano, Katayama, and Kubota, 2020), precautionary 
savings against the risk of infection (e.g., Kaplan, Moll, and Violante, 
2020), and heterogeneous risk of infection (.e.g., Acemoglu et al., 2020; 
Favero, Ichino, and Rustichini, 2020; Glover et al., 2020). These studies 
are all complementary to the present study in that they consider various 
factors other than voluntary and request-based lockdowns. 

3. Reduced-form Evidence 

3.1. Data 

For epidemiological information, I use prefecture-level daily data 
compiled by Toyo Keizai Online (2020) that contain the numbers of 
infectious and recovered people. To derive the ratio of these people to 
the total prefectural population, I use the prefecture-level population as 
of October 1, 2019, from the Population Estimates published by the 
Bureau of Statistics, Japan. 

Following a standard SIR model, I use these data to classify people in 
prefecture i at date t into three categories that depend on their health 
status: susceptible (S), infectious (I), and recovered (R). Then, I denote 
the ratio of the number of each category to the total population of the 
prefecture by Sit, Iit, and Rit, respectively; so that Sit + Iit + Rit = 1. 

Using the number of infectious people, I estimate the effective 
reproduction number (ERit) for each prefecture by following Cori et al. 
(2013). I assume that the mean and standard deviation of the serial in-
terval is 6.3 and 4.2 days, respectively, that follows Bi et al. (2020) and 
Yamanaka (2020). To exclude outliers, I take the following two steps: 
First, I drop ERit if Iis = 0 for s = − 14, … − 8, because in such cases ERit 
has extraordinarily large values (typically, more than 10). Then, I drop 
ERit that is equal to or larger than its 99th percentile for each prefecture. 
From the estimated ERit, I further construct the transmission rate, βit =

γERit/Sit, by assuming that the recovery rate γ = 1/7 as in Moll (2020). 
The sample period for the daily data of the epidemiological numbers 

runs from March 11 to December 27, 2020, for the prefectures other 
than Tokyo and Kanagawa; for these two prefectures, it runs from 
February 8 to December 27, 2020. Fig. 3 shows the average values of Sit, 
Iit , Rit, and ERit across the 47 prefectures. It clearly shows that Japan 
experienced three waves in 2020. I define the first wave as the period 
from February 8 to May 31, the second from July 1 to September 30, and 
the third from October to December 27. I exclude the period from June 1 
to June 31 from any wave because there were few new cases in many 
prefectures that month. Moreover, the third wave was still ongoing at 

6 Specifically, they show that the SIR-Macro predicts the proportion of the 
initial population that is infected will peak at 5.3% while it is 6.8% in the SIR 
model. They further show that the average aggregate consumption in the first 
year of the epidemic falls by 4.7% in the SIR-Macro that is seven times larger 
than in the SIR model.  

7 See footnote 5. 
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the end of the sample period, December 27. 
For the information on the ratio of the people who stayed at home, I 

use the data provided by Mizuno (2020). Using the information on the 
real-time population distribution that is estimated from about 78 million 
base stations of a major telecom company in Japan, DOCOMO, he esti-
mates the number of outgoing people from residential areas that are 
defined as the difference between the daytime and nighttime popula-
tion. Then he defines the stay-at-home ratio, Stayit, for prefecture i on 
day t as follows: 

Stayit = 1 −
# of outgoing peopleit × average outoging hoursit

# of outgoing peoplei0 × average outoging hoursi0 

Here, the 0 denotes the average of the pre-pandemic period from 
January 6 to January 31, 2020. “Outgoing” is defined as going outside of 
the 500 square meter mesh where the person’s house exists. Thus, for 
example, if Stayit is 60%, it means that 60% of the people stayed at home 
(or within the 500 square meters of the home). Please refer to Mizuno, 
Ohnishi, and Watanabe (2020) for details. Table 1 shows the descriptive 
statistics of the daily data that I use for each wave. 

For the information on consumption, I use prefecture-level monthly 
data on the sales of extant department stores and supermarkets from the 
Monthly Report on the Current Survey of Commerce published by the 
Ministry of Economy, Trade, and Industry. The sample period for the 
monthly sales data runs from January to October 2020. Fig. 4 shows the 
year-on-year changes in sales and the moving average of stay-at-home 
ratios from January to October in 2020. They apparently move in the 
opposite direction. 

3.2. Regression results 

I first examine whether the stay-at-home ratio depends on the risk of 
infection, πit, that I define as the ratio of new cases to the number of 
susceptible people: πit = − (Sit − Sit− 1)/Sit− 1. Specifically, I run the 

following fixed-effect panel regression: 

Stayit = b1πit− 1 + b2EMit + Weekdayt + fi + εit (1) 

Here, EMit denotes a dummy for the period of the state-of-emergency 
for prefecture i, Weekdayt is a set of dummies for Monday through Sat-
urday, fi is a prefecture-level fixed effect, and εit is an error term. I run 
the regression above for each wave to consider the possibility that 
people’s responses to the risk of infection change over the three waves. 
EMit is included in the regression only for the first wave because the state 
of emergency was declared only for that wave during my sample 
period.8 In the second wave, I add the summer vacation dummy that 
equals one for August 12 to 14. 

The results shown in Columns (1) to (3) in Panel A of Table 2 provide 
clear evidence for the voluntary lockdown. They show that the co-
efficients for πit− 1 are positive and significant for all three waves that 
indicates that people were more likely to stay at home as the risk of 
infection increased. The coefficients for πit are the largest for the first 
wave (9,151), followed by the second and third waves (2,269 and 1,000, 
respectively). For example, an increase in new cases by 1 in 100,000 
susceptible people increases the stay-at-home ratio by 
9.151% (= 9, 151×1 /100,000×100) in the first wave. 

Next, I examine whether an increase in the stay-at-home ratio con-
tributes to containing the spread of the virus by regressing the trans-
mission rate on the stay-at-home ratio with the data for the whole 
sample period as follows: 

Fig. 3. Epidemiological Dynamics in Japan. 
Note. The graphs show the simple averages across 47 prefectures in Japan. The effective reproduction number is the author’s estimates following Cori et al., (2013). 
The vertical lines show the period of the state of emergency in Tokyo. 

8 The state of emergency was declared again on January 8, 2021, for Tokyo 
and three surrounding prefectures and on January 13, 2021, for other seven 
prefectures. 
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βit = c1Stayit− 7 + c2jWavej + c3jWavej × Timet + c4EMit− 7 + Weekdayt + fi

+ εit

(2) 

I take the 7-day lag of Stay to consider the incubation, detection, and 
reporting periods. I add the three wave dummies (Wavej), time trend 
(Timet), and their interaction to the explanatory variables to consider the 

gradual behavioral changes such as wearing a mask, social distancing, 
and washing hands. 

Panel B of Table 2 shows that the coefficient for Stayit− 7 is negative 
and significant. An increase in Stayit by one percentage point decreases 
βit by 0.213 percentage points. The coefficients for the interaction of 
Wave and Time are negative for the first and second waves. This sign 
indicates that people gradually learned the best practices to avoid the 

Table 1 
Descriptive Statistics.  

Panel A. First Wave: March 11, 2020–May 31, 2020. 
VARIABLES N mean p50 sd min max    
Effecitve reproduction number (ERt) 100 1.395 1.151 0.854 0.371 3.106    
Transmission rate (beta) 100 0.199 0.164 0.122 0.053 0.444    
Infectious (I, % of population) 114 0.00161 0.000758 0.00168 1.62E-05 0.0049    
Infectious (I, day when maximum reached)      (49)    
Susceptible (S, % of population) 114 100 100 0.00331 99.99 100    
Recovered (R, % of population) 114 0.00181 0.000376 0.00253 0 0.00739    
Stay at home ratio (Stay) 114 0.2 0.181 0.12 -0.0213 0.511    
Stay at home ratio (Stay, moving average) 108 0.204 0.187 0.106 0.00898 0.407    
Panel B. Second Wave: July 1, 2020–September 31, 2020. 
VARIABLES N mean p50 sd min max    
Effecitve reproduction number (ERt) 92 1.465 1.148 0.634 0.624 2.571    
Transmission rate (beta) 92 0.209 0.164 0.0905 0.0892 0.367    
Infectious (I, % of population) 92 0.00358 0.00303 0.0022 0.000303 0.0074 1.512295 ######## 41 
Infectious (I, day when maximum reached)      (41)    
Susceptible (S, % of population) 92 99.98 99.97 0.0106 99.96 99.99    
Recovered (R, % of population) 92 0.0199 0.0177 0.01 0.00826 0.0357    
Stay at home ratio (Stay) 90 0.127 0.11 0.0704 -0.234 0.331    
Stay at home ratio (Stay, moving average) 84 0.128 0.129 0.0198 0.0856 0.185    
Panel C. Third Wave: October 1, 2020–December 27, 2020. 
VARIABLES N mean p50 sd min max    
Effecitve reproduction number (ERt) 88 1.407 1.335 0.298 1.046 2.121    
Transmission rate (beta) 88 0.201 0.191 0.0426 0.15 0.303    
Infectious (I, % of population) 88 0.00663 0.00511 0.00443 0.00206 0.016    
Susceptible (S, % of population) 88 99.94 99.95 0.0185 99.9 99.96    
Recovered (R, % of population) 88 0.0519 0.0466 0.0142 0.036 0.0852    
Stay at home ratio (Stay) 77 0.0885 0.0736 0.0349 0.0533 0.184    
Stay at home ratio (Stay, moving average) 77 0.0888 0.0897 0.0107 0.0697 0.11    

Notes. The table shows the descriptive statistics of the average numbers across 47 prefectures. For Tokyo and Kanagawa Prefectures, the first wave began on February 
8, 2020. The effective reproduction number is estimated following Cori et al. (2013) and the transmission rate is estimated by βit = γERit/Sit that assumes that the 
recovery rate is γ = 1/7 as in Moll (2020). The peak days of the infectious ratios are April 29, 2020 (49 days from March 11) and August 11, 2020 (41 days from October 
1) for the first and second waves, respectively. (Iit , Sit , Rit) are estimated using data from Toyo Keizai Online (2020), and Stayt is from Mizuno (2020). 

Fig. 4. Year-on-year Changes (%) in Sales at 
Department Stores and Supermarkets and Stay-at- 
home Ratios (%) in 2020. 
Note. The blue solid line shows year-on-year 
changes in sales at department stores and super-
markets (%, left axis), and the red dashed line 
shows stay-at-home ratios (%, right axis) in 2020. 
Both series are simple averages across prefectures 
for each month. The source of year-on-year 
changes in sales at department stores and super-
markets is the Monthly Report on the Current 
Survey of Commerce published by the Ministry of 
Economy, Trade, and Industry and that of the stay- 
at-home ratios is from Mizuno (2020).   
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infection. On the other hand, the coefficient for the interaction for the 
third wave is positive, although small. This positive sign may be because 
the rate of infection kept rising during the observation period of the 
third wave. 

Third, I investigate the effect of staying at home on the rate of change 
in consumption from the previous year using the monthly data of sales at 
department stores and supermarkets, Salesit . Specifically, I run the 
following fixed-effect regression: 

Salesim = a1Stayim + a2EMim + fi + εim (3) 

Here, subscript m denotes the month, and Stayim and EMim are 
monthly averages of the daily variables, Stayit and EMit , respectively. 
Panel C of Table 2 shows that the coefficient for Stayim is negative and 
significant. An increase in Stayim by one percentage point decreases 
Salesim by 0.228 percentage points. The coefficient for EMim is also 

negative and significant that indicates the request by the government to 
close stores had a direct and negative impact on sales after controlling 
for the stay-at-home ratio. 

4. Model 

The reduced-form evidence shows that people were more likely to 
stay at home as the risk of infection rose and that this voluntary lock-
down mitigated the spread of the virus and decreased consumption. I 
formalize this idea by extending an epidemiological and macroeconomic 
model (SIR-Macro model) to incorporate voluntary and request-based 
lockdowns. First, I present a model with only a voluntary lockdown 
and then add a request-based lockdown. 

4.1. Setup 

Goods 
Following Kaplan, Moll, and Violante (2020), I assume that there are 

three types of goods: social goods (type s) produced by firms and 
consumed outside of the home, regular goods (type r) produced by firms 
and consumed at home, and home goods (type h) produced by in-
dividuals and consumed at home. Only social goods involve the risk of 
infection. Both social and regular goods are sold in markets, while home 
goods are not. Typical examples of social, regular, and home goods are 
restaurants, food, and home cooking, respectively. 

Firms 
There is a continuum of competitive and representative firms of a 

sufficiently large mass that potentially produce either type s or r goods. 
For each type of s and r goods, a representative firm produces one unit of 
goods with one unit of labor. Profit maximization of each type of firm 
leads to the prices of type r and s goods equal to the wage rate, which I 
normalize to one. 

Individuals 
There is a continuum of competitive individuals of unit measure. 

Individuals are classified into three groups according to their health 
status: susceptible (S), infectious (I), and recovered (R). 

Following the SIR model, I assume the following system of difference 
equations: 

St+1 = St − βtStIt (4)  

It+1 = It + βtStIt − γIt (5)  

Rt+1 = Rt + γIt (6) 

For simplicity, I assume no death, so that the population does not 
change. The parameters βt and γ denote the transmission rate and the 
recovery rate, respectively. While a simple SIR model assumes that βt is 
constant over time, I make it endogenous and time-variant by incorpo-
rating the individuals’ behavior as in the following: 

An individual is endowed with one unit of time. They can produce 
one unit of type h goods for their own consumption using one unit of 
time. Thus, the opportunity cost of consuming one unit of home goods is 
equal to the wage rate, that is, one. 

Individuals are heterogeneous in their preference for or disutility 
from going out, which I denote by ε. The ε is distributed according to the 
cumulative density function, F(ε). Further, ε can take negative values 
that represent disutility. Type-ε individual’s lifetime utility is: 

E1

∑∞

t=1
(1 − ρ)t− 1u(Cst,Crt, Cht, Ht; ε)

Here, u(Cst ,Crt , Cht , Ht ; ε) is the period utility of type-ε individual 
that depends on the consumption of social goods (Cst), regular goods 
(Crt), and home goods (Cht), their health status (Ht), and their time- 
invariant preference for going out (ε). Health status, Ht, represents the 
status of being either susceptible (S), infectious (I), or recovered (R). 

Table 2 
Regression Results  

Panel A. Stay-at-home Ratio 
Stayhome Ratio    
Wave 1st wave 2nd wave 3rd wave 
Infection Risk 9,151*** 2,269*** 1,000***  

(11.80) (9.140) (10.19) 
Emergency Dummy 0.140***    

(59.19)   
Summer Vacation Dummy  -0.197***    

(-35.09)  
Weekday dummies yes yes yes 
Observations 3,568 4,230 3,619 
R-squared 0.658 0.44 0.451 
Number of prefectures 47 47 47 
model FE FE FE 
t-statistics in parentheses    
*** p<0.01, ** p<0.05, * p<0.1    
Panel B. Transmission Rate (βt)     
Stay(t-7) -0.213***    

(-7.803)   
Wave1xTime -0.00298***    

(-13.50)   
Wave2xTIme -0.00294***    

(-27.79)   
Wave3xTime 0.00034***    

(3.20)   
Wave1 65.65***    

(13.52)   
Wave2 65.01***    

(27.79)   
Wave3 -7.492***    

(-3.200)   
Emergency Dummy (t-7) -0.108***    

(-13.04)   
Summer Vacation Dummy (t-7) -0.0894***    

(-6.147)   
Weekday dummies yes   
Observations 9,548   
R-squared 0.185   
Number of prefectures 47   
Model FE   
t-statistics in parentheses    
*** p<0.01, ** p<0.05, * p<0.1    
Panel C. Year-on-year Change in Sales at 

Department Stores and Supermarkets    
Stay -0.228***    

(-4.519)   
EM -0.133***    

(-6.224)   
Constant 0.00416    

(0.721)   
Observations 470   
R-squared 0.45   
Number of prefectures 47   
Prefecture FE Yes   

t-statistics in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Following Eichenbaum, Rebelo, and Trabandt (2020a), I assume that 
there is no way for agents to pool the risk associated with infection. 
Therefore, they maximize their lifetime utility under the temporal 
budget constraint: 

CSt + CRt + CHt = 1. (7) 

To derive budget constraint (7), I use the equilibrium conditions that 
the prices of all goods are equal to the wage rate of one. I specify the 
period utility as 

u(Cst,Crt,Cht, Ht; ε) = v(Cst,Crt,Cht) + ε1(Cst > 0) − D1(Ht = I). (8) 

Here, D > 0 denotes the disutility from the infection, and 1(⋅) denotes 
an indicator function that equals one if the conditions in the parentheses 
are met. v(⋅, ⋅, ⋅) is a well-behaved utility function from the consumption 
mix of (Cst ,Crt ,Cht). Individuals go out and get ε (or incur − ε) if and only 
if they consume type-s goods. 

A fraction η of infectious individuals are isolated and not allowed to 
consume type-s goods. The parameter η is a measure of the effectiveness 
of the test-trace-isolation. Susceptible individuals take the risk of 
infection as given. Below I let πt = − (St+1 − St)/St denote the risk of 
infection for susceptible individuals when they go out and consume 
type-s goods. 

4.2. Optimization of individuals 

I solve for the maximization of individuals in each health status in 
Appendix 1. The essential part of the optimization is that of susceptible 
individuals, which can be summarized as 

(Cs,Cr ,Ch) =

⎧
⎨

⎩

(
c∗s , c∗r , c∗h

)
, if ε > α0 + α1t(ε)πt

(

0, cr, ch

)

otherwewise
(9) 

Here, c∗s is a positive constant, α0 = v − v∗, and α1t(ε) = (1 −

ρ)(VS
t+1(ε) − VI(ε)), where v∗ = v(c∗s , c∗r , c∗h), v = v(0, cr, ch), and VS

t+1(ε)
and VI(ε) are the expected life-time utilities of type-ε susceptible and 
infectious individuals, respectively.9 Importantly, VI(ε), and hence 
α1t(ε), depends on D. Equation (9) shows that whether a susceptible 
individual goes out to consume type-s goods or not depends on the risk 
of infection, πt. It further shows that as the disutility from the infection, 
D, is larger, his response to the risk of infection, α1t(ε), is also larger. 

4.3. Equilibrium 

In equilibrium, (1) each person solves their maximization problem 
given the risk of infection, (2) the goods and labor markets clear, and (3) 
the risk of infection that individuals take as given is consistent with the 
risk of infection that is derived from the aggregation of individual be-
haviors. I have already incorporated the equilibrium prices into budget 
constraint (7). Here I describe how aggregate output of market goods 
and the risk of infection evolves. 

Let Stayt denote the proportion of individuals who stay at home. 
Stayt is composed of the susceptible individuals who choose (0, cr, ch) at 
period t and isolated infectious individuals. Therefore, denoting the 
ratio of susceptible individuals who stay at home by pt, Stayt can be 
written as: 

Stayt = ptSt + ηIt (10) 

It is noteworthy that pt depends on πt as Equation (9) indicates. The 
aggregate output of market goods, Yt, is equal to the aggregate con-
sumption of market goods, which is the sum of social and regular goods: 

Yt = Ct = (1 − Stayt)
(
c∗s + c∗r

)
+ Staytcr =

(
c∗s + c∗r

)
+

(

cr − c∗s − c∗r

)

Stayt

(11) 

The transmission rate, βt, represents the ratio of susceptible in-
dividuals that an infectious individual infects over a unit of time (i.e., a 
day). It depends on the multiple of the share of susceptible individuals 
who go out and the share of infectious individuals who are not isolated. 
Furthermore, following Kaplan, Moll, and Violante (2020), I assume that 
individuals gradually change their behavior to avoid being infected such 
as wearing face masks at an exogenous rate over time as represented by 
ω(t). In sum, 

βt = max{β(1 − pt)(1 − η) − ω(t), 0} (12) 

Here, β is the basic transmission rate. I impose the nonnegativity 
condition on βt. Substituting Equation (12) into Equations (4)-(6) yields 
the dynamics of St that in turn, yields πt = 1 − St+1/St. In Appendix 2, I 
describe my algorithm for computing the equilibrium. 

Equation (12) indicates that βt depends on pt , which, in turn, depends 
on πt . This generates a feedback from the risk of infection to the 
voluntary lockdown, and then to the transmission rate, which, in turn, 
reduces the risk of infection as Equation (5) indicates. Such a feedback 
occurs because the ratio of susceptible individuals who stay at home, pt, 
is endogenously determined by their optimization to balance the utility 
from consuming type-s goods and the disutility from the infection. 

4.4. Request-based lockdown 

I extend the basic model above by supposing that the government 
declares the state of emergency under which it requests people to stay at 
home during some span of time: from lstart to lend. I model this request 
as a change in the susceptible households’ preference for going out. 
Specifically, susceptible individuals incur utility losses, l, when they go 
out during the state of emergency. The utility losses associated with the 
state of emergency reflects the sense of guilt for disobeying the gov-
ernment’s request or social norms, and the peer effects from neighbors 
on staying at home. These utility losses may vary across individuals and 
over time. However, for the sake of analytical simplicity, we assume that 
the utility losses are common across individuals and constant over time. 

A susceptible individual’s optimization, which is described in Ap-
pendix 1, leads to 

(Cs,Cr,Ch) =

⎧
⎨

⎩

(
c∗s , c∗r , c∗h

)
, if ε > lt + α0 + α1t(ε)πt

(

0, cr, ch

)

, otherwewise
(13) 

Here, 

lt =

{
l, forlstart ≤ t ≤ lend
0, otherwise 

Consequently, the ratio of susceptible individuals who stay at home 
depends on the intensity of the request-based lockdown, l. As l is higher, 
the more susceptible individuals stay at home. Denoting the ratio of 
susceptible individuals who stay at home by p′

t, Stayt and βt with the 
request-based lockdown are the following: 

Stayt = p′

tSt + ηIt (14)  

and 

βt = max
{

β
(
1 − p′

t

)
(1 − η) − ω(t), 0

}
(15) 

The aggregate output and consumption of market goods are given by 
Equation (11). 

9 I assume that ε > v − v∗ for all ε to ensure that c∗s > 0 (see Appendix 1). 
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4.5. Specification 

I need to specify the functions v(Cst ,Crt ,Cht), F(ε), and ω(t). First, I 
specify the period utility function from consumption, v(Cst ,Crt ,Cht), as 
the following nested CES function: 

v(Cst,Crt,Cht) =
((

θhCσ
ht + (1 − θh)Cσ

st

)ψ
σ + θrCψ

rt

)1
ψ
, σ, ψ ≤ 1 (16) 

Next, I specify F(ε) as the uniform distribution over [b, b + 1]. 
Further, considering that the measured stay-at-home ratio is the change 
from the pre-epidemic period, I impose the restriction that the ratio of 
susceptible people who stay at home is zero if and only if πt = 0 and lt =
0. Thus, from Equation (13), I set b = v − v∗.

Third, I specify the learning curve ω(t) as the following logistic curve 
as in Griliches (1957) and Kaplan, Moll, and Violante (2020): 

ω(t) =
ω1β

e− χ(t− t0) + 1
(17) 

This specification indicates that βt eventually decreases by ω1 ×

100%. 

5. Parameterization 

The unit of time is a day. To set the epidemiological parameters, I 
follow Moll (2020). Specifically, I set the basic reproduction number to 
2.5 and the duration of the infection period to 7. These two numbers lead 
to β = 2.5/7 and γ = 1/7. The initial conditions of (St , It , Rt) are set to 
the average values of March 11, 2020, across prefectures in Japan. 

To set the economic parameters, I first set the discount rate to ρ =
0.05/365. Next, I set the elasticity of substitution among the three types 
of goods. Aguiar and Hurst (2007) estimate an elasticity of substitution 
between time and goods in home production at roughly 1.8. Based on 
this evidence, Kaplan, Moll, and Violante (2020) set the elasticity of 
substitution between social and home goods to 2. Following them, I set 1 
/(1 − σ) = 2 that leads to σ = 0.5. I set the elasticity of substitution 
between social and home goods and regular goods as close to one (i.e., 
Cobb-Douglas). Specifically, I set ψ = 0.1. 

I set the share parameters θh and θr based on the share of each type of 
goods. According to the 2016 Survey on Time Use and Leisure Activities 
published by the Statistics Bureau of Japan, the time spent on house-
work, caring or nursing, childcare, and shopping is 107 minutes per day, 
while the time spent on the secondary activities is 418 minutes per 
day.10 I take the ratio of the former to the latter to set the target of ch =

0.32. To determine the share of social goods, I rely on the 2019 Family 
Income and Expenditure Survey published by the Statistics Bureau of 
Japan. According to the survey, the share of services excluding utilities, 
communication, and rents to total goods and services is 0.26 for all 
households. Thus, I set the target to cs/(cs + cr) = 0.26. These two re-
strictions lead to θh = 0.57 and θr = 0.95. 

Using these numbers, I calculate the rate of change in aggregate 
consumption of market goods in response to an increase in the stay-at- 
home ratio by one point, cr/(c∗s + c∗r ) − 1, that is based on Equation 
(11), to be -0.244. This is comparable to the regression coefficient 
for Staymt in Equation (3) (-0.238). 

For the disutility from infection, D, I use the regression results from 
Equation (1).11 Specifically, I assume that 

α1t(ε) = (1 − ρ)(VS
t+1(ε) − VI(ε)) ≈ b1 holds for the individual with the 

mean ε, that is, ε = v − v∗ + 0.5. To use this relationship, I approximate 
VS

t+1 as the value in the pre-and post-epidemic steady states where πt =

0. That is, VS
t+1(ε) ≈ (v∗ + ε)/ρ, where v∗ is the period utility from (c∗s , c∗r ,

c∗h). Then, using this approximation, I obtain: 

(1 − ρ)
(

v∗ + ε
ρ − VI(ε)

)

= b1 

Substituting ε into VI(ε) (Equation (A4) in Appendix 1) and rear-
ranging yield D = η(v − v∗ − ε)+ (ρ + γ − ργ)/(1 − ρ)b1. Then, 
depending on the estimates of b1 for the first, second, and third waves, I 
obtain three different values for D. I use the largest one obtained from 
the estimate of the first wave to obtain D = 1308.3 as the baseline and 
use the other two (D = 324.3 and 142.8) to check the sensitivity of the 
baseline results. The baseline, middle, and low values of D correspond to 
5.8, 1.4, and 0.6 times, respectively, the period utility of the susceptible 
individual with mean ε in the pre- and post-pandemic steady states (that 
is, v∗ + ε = 227.5). I further compute the no voluntary lockdown case by 
setting D = 0. In this case, infectious individuals incur utility losses only 
from the insulation, under which they cannot consume social goods 
consumption. Therefore, susceptible individuals’ response to the risk of 
infection is quite small.12 

To set the parameters ω1, χ, and t0 in Equation (17), I follow Kaplan, 
Moll, and Violante (2020). Specifically, I set χ = 2/30, ω1 = 0.2, and 
t0 = 120. 

To set the proportion of isolation among infectious individuals, η, I 
use the regression result for Equation (2). Specifically, because St ≈ 1 
and It ≈ 0, Equations (2) and (15) lead to ∂βt

∂Stayt
≈

∂βt
∂p′t

= − β(1 − η) =

c1.13 Substituting the estimated coefficient for c1 and β = 2.5/7 yields 
η = 0.4036.

Finally, to set the severity of the request-based lockdown, l, I use the 
estimated coefficient for EMit in the regression of Equation (1). Specif-
ically, I set the lockdown severity to l = 0.323 so that the difference in 
the peak levels of the simulated stay-at-home ratios between with and 
without the request-based lockdown is equal to the coefficient (0.14). 
For the sake of the sensitivity analysis, I alternatively set l = 0.108 that 
is one third of the baseline value. I set the start and end dates of the 
request-based lockdown following the state-of-emergency during the 
first wave in Tokyo (from April 7 to May 24, 2020, which correspond to 
lstart = 27 and lend = 27+ 47). Table 3 has a summary of the 
parameters. 

6. Numerical Experiments 

6.1. Voluntary and Request-based Lockdowns 

First, I examine the effects of voluntary and request-based lockdowns 
separately. Fig. 5 illustrates the epidemiological and economic dynamics 
in the case where only the voluntary lockdown in considered.14 It shows 
that the risk of infection (πt) and the stay-at-home ratio (Stayt) closely 
comove with each other. Below I focus on the proportion of infectious 
individuals, It, and the rate of change in consumption, Ct . Table 4 has a 
summary of all the results for the numerical experiments. 

Fig. 6 depicts It and the rate of change in Ct with no, only the 
voluntary, and only the request-based lockdowns. For Case 1 without a 
voluntary or request-based lockdown, It reaches 0.543% at the 
maximum while the decrease in Ct is negligible (-0.1% at the bottom). 
The latter result is because only insulated infectious individuals reduce 10 The secondary activities comprise commuting to and from work or school, 

work, schoolwork, housework, caring or nursing, childcare, and shopping. 
11 The stay-at-home measure in the empirical part does not perfectly corre-

spond to zero social goods consumption in the model. Individuals may go 
outside the 500 square meter mesh of home to get regular goods. Conversely, 
they may stay inside the 500 square meter mesh of home to consume social 
goods. Here I assume that these two types of measurement errors offset each 
other and use this proxy as the measure of zero social goods consumption. 

12 Using the equation D = η(v − v∗ − ε)+ (ρ + γ − ργ)/(1 − ρ)b1, I find that 
D = 0 corresponds to b1 = 1.411. 
13 The max operator in Equation (15) turns out to be unbinding for the pa-

rameters I set.  
14 This is Case 3 in Table 4. 
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the consumption of social goods. 
For Case 2 with only the request-based lockdown, the peak level of It 

decreases to 0.033%, that is 6.0% of the peak level of It in Case 1. The 
request-based lockdown delays the day when It reaches the peak by 46 
days as well (from day 179 to day 225). Meanwhile, Ct decreases by 
7.9% at the bottom, although Ct recovers quickly after the end of the 
request-based lockdown. 

For Case 3 with only the voluntary lockdown, the peak level of It 
decreases to 0.015%, that is 2.8% of that in Case 1 and smaller than that 
in Case 2. The voluntary lockdown advances the day when It reaches the 
peak by 72 days as compared to Case 1 (from day 179 to day 107). Thus, 
the effect of the voluntary lockdown on It is substantial and larger than 
the request-based lockdown. Moreover, its effect on Ct is also sizable: Ct 
decreases to -4.9% at the bottom. Although this is smaller than its 
counterpart of the request-based lockdown, the former is more persis-
tent than the latter: with the voluntary lockdown, Ct recovers to the 
99.5% of the pre-pandemic level on day 350. 

6.2. Interaction of Voluntary and Request-based Lockdowns 

Next, I examine the interactions of voluntary and request-based 
lockdowns. In Case 4 of Table 4, I consider both the voluntary and 
request-based lockdowns. Fig. 7 depicts It and Ct in Case 3 (with only the 
voluntary lockdown) and Case 4 (with both the voluntary and request- 
based lockdown). In Case 4, the peak level of It is 0.007%, that is only 
1.2% of that in Case 1 and lower than that in Case 3. The request-based 
lockdown delays the day when It reaches the peak by 43 days as 
compared to Case 3 (from day 107 to day 150). While the peak level of It 
in Case 4 is significantly lower than that in Case 3, the decrease in Ct is 
larger in Case 4 (-8.4%) than in Case 3 (-4.9%). 

These results show that the interaction of the voluntary and request- 
based lockdowns play a substantial role in the low proportion of infec-
tious individuals and the large decrease in consumption observed in 
Japan. The degree of the voluntary lockdown is represented by the 
disutility from the infection, D while the intensity of the request-based 
lockdown is measured by the utility losses from going out under the 
request, l. Thus, these two parameters are crucial to obtain the unique 
epidemiological and economic features in Japan.15 

However, comparing the actual data from the first wave with the 
numerical experiment in Case 4, I find that the actual It peaked at a 
slightly lower level (0.005% vs. 0.007%) and faster (on day 49 vs. day 
150) than the simulated It in Case 4. There are two possible reasons for 
these discrepancies. First, the observed number of infectious people 
might be underreported because of the insufficient capacity of the 
testing and public health system in Japan. Second, people may have 
responded to the risk of infection by changing their behavior in some 
way other than staying at home, such as wearing a face mask and 
washing hands, while I have assumed that such behavioral changes 
occurred gradually and irrespectively of the risk of infection. Moreover, 
the actual Ct (depicted in Fig. 4) decreased more than the simulated 
counterpart in the first wave. This discrepancy may be because the 
model does not incorporate the direct effect of the state of emergency 

Table 3 
Parameters  

Epidemiological    
Basic transmission rate betabar 2.5/7 Moll (2020): Basic 

reproduction number =2.5; 
average duration of 
infectious period=7 

Recovery rate gamma 1/7 Moll (2020): Average 
duration of infectious 
period=7 

Initial (S, I, R) S1 0.9999968 Average value across 
prefectures as of March 11, 
2020.  

I1 2.909*10- 

6 
Average value across 
prefectures as of March 11, 
2020.  

R1 0 Average value across 
prefectures as of March 11, 
2020. 

Countermeasures    
Share of isolation of 

infectious 
eta 0.4036 Coefficient of Stay in the 

regression of estimated beta 
Requeset-based 

Lockdown (baseline: 
strong) 

l 0.323 Coefficient of state-of- 
emergency dummy in the 
regression of Stay for 1st 
wave 

Requeset-based 
Lockdown (weak) 

l 0.108 one-third of the baseline 

Lockdown Start lstart 27 Start of the state of 
emergency in Tokyo (April 7, 
2020) from day 1 (March 11, 
2020) 

Lockdown End lend 27+47 End of the state of emergency 
in Tokyo (May 24, 2020) 
from day 1 (March 11, 2020) 

Behavioral    
Learning speed chi 2/30 Kaplan, Moll and Violante 

(2020) 
Upper bound of 

learning/basic 
transmission rate 

omega1 0.2 Kaplan, Moll and Violante 
(2020) 

Days at which learning 
srart 

t0 120 Kaplan, Moll and Violante 
(2020) 

Preference    
Discount rate (per day) rho 0.05/365  
Elasticity of substitution 

between social and 
home goods 

1/(1- 
sigma) 

2 Kaplan, Moll and Violante 
(2020) 

Elasticity of substitution 
between social/home 
and regular goods 

1/(1- 
psi) 

1/0.9 Close to Cobb-Douglas 

Share of home good in 
total consmption 

ch 0.32 Share of time spent on 
housework, caring or 
nursing, child care and 
shopping 

Share of social goods in 
sum of social and 
regular goods 

cs/ 
(cs+cr) 

0.26 Share of services excluding 
utilities, communication, and 
rents 

→Share paramter of 
home goods in social/ 
home aggregate 

theta_h 0.57  

→Share paramter of 
regular goods relative 
to social/home goods 

theta_r 0.95  

Disutility of infection 
(baseline: high) 

D 1308.3 Coefficient of infection risk in 
the regression of the stay-at- 
home ratio for 1st wave 

Disutility of infection 
(middle) 

D 324.3 Coefficient of infection risk in 
the regression of the stay-at- 
home ratio for 2nd wave 

Disutility of infection 
(small) 

D 142.8 Coefficient of infection risk in 
the regression of the stay-at- 
home ratio for 3rd wave  

15 To further highlight the roles of the voluntary and request-based lockdowns, 
I modify the model and treat p′

t in Equation (14) as an exogenous variable that 
does not depend on πt . The results, shown in Appendix 3, indicate that without 
considering a voluntary lockdown or its interaction with a request-based 
lockdown, it seems difficult to account for both the low proportion of infec-
tious individuals and the large decrease in consumption observed in Japan. 
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such as the requests for complete or early closures of retail shops, res-
taurants, bars, sports gyms, and so on.16 

6.3. Sensitivity Analyses 

In this subsection, I examine to what extent the baseline results so far 
depend on the parameters I set. Specifically, I examine the sensitivity of 
the results to the two key parameters: the intensities of the voluntary and 
request-based lockdowns. 

6.3.1. Intensity of Voluntary Lockdown 
So far, I have set the intensity of the voluntary lockdown that is 

represented by the disutility from the disease, D, based on the estimation 

result from the first wave, which is the highest among the three waves. 
Here, I alternatively set the middle and small values for D based on the 
results from the second and third waves, respectively, and examine their 
effects on It and Ct . 

In Table 4, Cases 5 and 6 show the results for the middle and low 
intensities of the voluntary lockdowns while Case 3 shows the results for 
the baseline (i.e., high) intensity case. Fig. 8 depicts It and Ct for the 
baseline (high), middle, and low intensities of the voluntary lockdown. I 
assume no request-based lockdown in Cases 3, 5 or 6. As the intensity of 
the voluntary lockdown is smaller, the peak level of It is higher (0.015%, 
0.048%, and 0.087% for the baseline (high), middle, and low intensities, 
respectively). However, even in the weak intensity case, the peak It is 
16.1% of that without no lockdown (0.543% in Case 1). Thus, a 
voluntary lockdown seems to be one of the key factors that account for 
the actual low peak levels of It in Japan (0.005% and 0.007% in the first 
and second waves, respectively).17 Meanwhile, the bottom rate of the 

Fig. 5. Epidemiological and Economic Dynamics with the Voluntary Lockdown 
These figues show the eepidemiological and economic dynamics with only the voluntary lockdown (Case 3 in Table 4). 

Table 4 
Summary of Numerical Experiments  

Case Lockdown Infectious  Stay at home Consumption  
Voluntary Requested Peak Peak Peak relative Peak Bottom    

(%) Day to Case 1 (%) (%) (% Change) 
A. Baseline       
Case 1 no no 0.543 179 100.0% 0.3 -0.1 
Case 2 no yes 0.033 225 6.0% 32.3 -7.9 
Case 3 yes no 0.015 107 2.8% 20.1 -4.9 
Case 4 yes yes 0.007 150 1.2% 34.2 -8.4 
B. Sensitivity Analyses       
Case 5 yes (middle) no 0.048 122 8.8% 15.6 -3.8 
Case 6 yes (low) no 0.087 133 16.1% 12.5 -3.0 
Case 7 yes yes (low) 0.012 120 2.3% 19.2 -4.7  

16 Another possible reason for this discrepancy is that the actual data I used do 
not capture internet shopping and hence underestimate real consumption. 
However, this data problem does not seem to be serious; according to the 
System of National Accounts, real private consumption excluding imputed 
housing rents, which includes internet shopping, also decreased substantially in 
the second quarter in 2020 (-14.0% from the second quarter in 2019). 

17 Although the peak level of It in the third wave has not yet been seen when I 
write this manuscript, It reaches 0.016% on December 27, 2020, which is still 
lower than, but comparable with, the peak level of It in Case 6 (0.087%). 
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change in Ct is smaller as the intensity is smaller (-4.9, -3.8, and -3.0%, 
for the baseline (high), middle, and low intensities, respectively) 
because the sensitivity of consuming social goods to the risk of infection 
becomes smaller. 

6.3.2. Intensity of Request-based Lockdown 
Next, I examine how the results depend on the intensity of a request- 

based lockdown. Specifically, I assume the one-third of the baseline 
intensity, l (0.108). Here I assume the baseline intensity of the voluntary 
lockdown. Case 7 in Table 4 illustrates the results. 

Fig. 9 shows It and Ct in Case 7 (with the voluntary and weak request- 
based lockdowns) and Case 4 (with the voluntary and baseline (i.e., 
strong) request-based lockdowns). In Case 7, the peak level of It is 
0.012%, which is higher than that in Case 4 by 0.006 percentage points. 

Fig. 6. It and Ct : Request-based and Voluntary Lockdowns 
Note. This figure shows It (%, in the left panel) and the rate of change in Ct (%, in the right panel) for the cases with no, request-based, and voluntary lockdowns 
(Cases 1, 2, and 3, respectively in Table 4). 

Fig. 7. It and Ct : Request-based Lockdown in the Presence of Voluntary Lockdowns 
Note. This figure shows It (%, in the left panel) and rate of change in Ct (%, in the right panel) for the cases with and without the request-based lockdown (Cases 3 and 
4, respectively in Table 4). The voluntary lockdown is considered in both cases. 
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On the other hand, the bottom level of Ct is lower than that in Case 3 
(-4.7% and -8.4% in Cases 8 and 4, respectively). The weak request- 
based lockdown increases the proportion of infectious individuals and 
restrains the decrease in consumption as compared to the baseline (i.e., 
strong) request-based lockdown. 

7. Conclusion 

Based on the empirical evidence from Japan, I extend an epidemio-
logical and economic model: the SIR-Macro model. In this model, I 
incorporate a voluntary lockdown, that is, the tendency to stay at home 
in response to the risk of infection. I further incorporate a request-based 
lockdown, that is, the government’s request to stay at home without 

Fig. 8. Different Intensities of Voluntary Lockdowns 
Note. This figure shows It (%, in the left panel) and the rate of change in Ct (%, in the right panel) for the cases with high (Wave 1), middle (Wave 2), and low (Wave 
3) intensities of voluntary lockdowns (Cases 3, 5, and 6, respectively, in Table 4). No request-based lockdown is considered. 

Fig. 9. Strong (baseline) and Weak Request-based Lockdowns 
Note. This figure shows It (%, in the left panel) and the rate of change in Ct (%, in the right panel) for the cases with the weak and strong (i.e., baseline) request-based 
lockdowns (Cases 7 and 4, respectively, in Table 4). 
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legal enforcements. My numerical experiments show that the interaction 
of these two types of lockdowns plays an important role in the low 
proportion of infectious individuals and the large decrease in con-
sumption in Japan. 

Although the numerical experiments indicate the potential role of 
these two types of lockdowns in mitigating infections, one needs to be 
careful to derive quantitative policy implications from the experiments 
because the parameters that represent the voluntary and request-based 
lockdowns may change over time and the government cannot fully 

control them. 
The model I develop is relevant for some other countries as well 

because voluntary and request-based lockdowns are not limited to 
Japan. However, I have made various simplifying assumptions in the 
model to focus on the roles of voluntary and request-based lockdowns. A 
richer model that incorporates the risk of infection in the workplace, 
precautionary saving motives, and heterogeneous and uncertain risk of 
infection, among others, will help to give sharper quantitative estimates 
on the effects of voluntary and request-based lockdowns.  

Appendix 1. Optimization of Individuals 

In this Appendix, I solve for the maximization of individuals in each health status. 
A. Recovered individuals 
A recovered individual’s problem can be written in the recursive form as: 

VR(ε) = max
Cs ,Cr ,Ch

v(Cs,Cr,Ch) + ε1(cs > 0) + (1 − ρ)VR(ε)

under budget constraint (7). To solve the problem, first, suppose that the individual chooses c∗s > 0, and let (c∗s , c∗r , c∗h) and v∗ denote the optimal 
consumption mix and the associated period utility, respectively. Then, VR(ε) = (v∗ + ε)/ρ. Next, suppose that the individual chooses c∗s = 0, and let 
(0, cr, ch) and v denote their optimal consumption mix and the associated period utility, respectively. Then, VR(ε) = v/ρ . I assume that ε > v − v∗ for 
all ε. Therefore, all the recovered individuals choose c∗s > 0. Their lifetime utility is: 

VR(ε) = v∗ + ε
ρ (A1) 

B. Infectious individuals 
An uninsulated infectious individual’s problem is: 

VNI(ε) = max
Cs ,Cr ,Ch

v(Cs,Cr,Ch) + ε1(cs > 0) − D + (1 − ρ)
(
γVR(ε)+ (1 − γ)VNI(ε)

)

under budget constraint (7). Under the maintained assumption that ε > v − v∗, their optimal consumption mix is the same as the recovered individual, 
and the associated maximized lifetime utility is: 

VNI(ε) = v∗ + ε − D + (1 − ρ)γVR(ε)
ρ + γ − ργ

(A2) 

Infectious and isolated individuals are not allowed to consume type-s goods. Therefore, an isolated infectious individual’s problem is: 

VII(ε) = max
Cr ,Ch

v(0,Cr ,Ch) − D + (1 − ρ)
(
γVR(ε)+ (1 − γ)VII(ε)

)

under budget constraint (7). They choose (Cs,Cr, Ch) = (0, cr, ch) and their lifetime utility is: 

VII(ε) = v − D + (1 − ρ)γVR(ε)
ρ + γ − ργ

(A3) 

C. Susceptible individuals 
C.1 No Request-based Lockdown 
A susceptible individual’s problem without a request-based lockdown is: 

VS
t (ε) = max

Cst ,Crt ,Cht
v(Cst,Crt,Cht) +

(
(1 − ρ)

(
(1 − πt)VS

t+1(ε)+ πtVI)+ ε
)
1(cst > 0) + (1 − ρ)VS

t+1(ε)1(cst = 0)

under budget constraint (7). Here VI is the expected value of the infectious individual :

VI(ε) = ηVII(ε) + (1 − η)VNI(ε) = ηv + (1 − η)(v∗ + ε) − D + (1 − ρ)γVR(ε)
ρ + γ − ργ

(A4) 

The optimal consumption mix is 

(Cs,Cr ,Ch) =

⎧
⎨

⎩

(
c∗s , c∗r , c∗h

)
, if ε > α0 + α1t(ε)πt

(

0, cr, ch

)

, otherwewise
(A5) 

Here, α0 = v − v∗ and α1t(ε) = (1 − ρ)(VS
t+1(ε) − VI(ε)). 

C2. Request-Based Lockdown 
A susceptible individual’s problem with a request-based lockdown is: 
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VS
t (ε) = max

Cst ,Crt ,Cht
v(Cst,Crt,Cht) +

(
(1 − ρ)

(
(1 − πt)VS

t+1(ε)+ πtVI(ε)
)
+ ε − lt

)
1(cst > 0) + (1 − ρ)VS

t+1(ε)1(cst = 0)

Here, 

lt= {
l for lstart ≤ l < lend

0 otherwise 

The optimal consumption mix is 

(Cs,Cr ,Ch) =

⎧
⎨

⎩

(
c∗s , c∗r , c∗h

)
, if ε > lt + α0 + α1t(ε)πt

(

0, cr, ch

)

, otherwewise
(A6)  

Appendix 2. Solution Method 

I follow the following 7 steps to solve for the model. 
1. Given S1, set an initial guess of {St}

T
t=2. 

2. Compute {πt}
T
t=1, where πt = 1 − St+1/St. 

3. Because πt→0 as t→∞, set VS
T+1 = (v∗ + ε)/ρ, and solve for a susceptible individual’s period-T problem given πT (Equation 13). 

4. Given {πt}
T− 1
t=1 , solve for susceptible individuals’ problem backwardly from period T-1 to 1 (Equation 13). 

5. Based on Steps 3 and 4, compute {β̃t}
T
t=1 (Equation 15), {(S̃t , Ĩt , R̃t)}

T
t=2 (Equations 4, 5, and 6, respectively), and {π̃t}

T
t=1, where π̃t = 1 − S̃t+1 

/S̃t. 
6. If the maximum absolute difference in {π̃t}

T
t=1 in Step 5 and {πt}

T
t=1in Step 2 is larger than the tolerance level ν, then, replace {St}

T
t=2 with {S′

t}
T
t=2, 

whereS′

t = κS̃t + (1 − κ)St, and iterate Steps 2 to 5. Otherwise, stop the iteration. 
7. Solve for {Stayt}

T
t=2, and {Ct}

T
t=1 (Equations 14 and 11, respectively). 

I set T = 2000, ν = 10− 7, and κ = 0.1. 

Appendix 3. An Alternative Model: Exogenous Ratios of Susceptible Individuals Who Stay at Home 

In this Appendix, I examine how the epidemiological and economic dynamics change if we drop the voluntary lockdowns from the model. To do so, 
I treat p′

t in Equation (14) as an exogenous variable that does not depend on πt. Specifically, I assume that 

p
′

t =

{
p + l, for lstart ≤ t ≤ lend
p, otherwise.

Table A1 shows the results. For the first four cases, I set l = 0 and p = 0.0001, 0.001, 0.01, or 0.1. The other parameters are the same as those in the 
main text. In these cases, the peak levels of the proportion of infectious individuals are low and close to the actual data in the first wave (0.05%). The 
proportion of infectious individuals is not sensitive to the value of p. Meanwhile, the decreases in consumption are also quite small in all cases except 
for the case where p = 0.1. In that case, Ct decreases by 2.6% at the bottom, but the ratio of infectious individuals is too small (0.001%) relative to the 
actual data. 

For the fifth case, I set p = 0.0001 and l = 0.14, where the latter is chosen based on the estimated coefficient b2 in Equation (1). In this case, Ct 
decreases by 3.7% at the bottom, but the proportion of infectious individuals is too small (0.001%) relative to the actual data. 

These results indicate that without considering the voluntary lockdown or its interaction with the request-based lockdown, it seems difficult to 
account for both the low proportion of infectious individuals and the large decrease in consumption observed in Japan.   

Case Lockdown Infectious Stay at home Consumption  

p l Peak (%) Peak Day Peak (%) Bottom (% Change) 

A1 0.0001 0 0.005 120 0.0 -0.003 
A2 0.001 0 0.005 120 0.1 -0.03 
A3 0.01 0 0.004 117 1.0 -0.3 
A4 0.1 0 0.001 88 10.0 -2.6 
A5 0.0001 0.14 0.001 120 14.0 -3.7  
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