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A B S T R A C T   

The existing measurement of the impact of the COVID-19 pandemic on energy consumption is based on changes 
between the years, which demonstrates the changes in energy consumption over the years without fully 
reflecting the impact of the pandemic on energy consumption. To better uncover the impact of the COVID-19 
pandemic on energy consumption, this research compared pandemic-free scenarios with actual (with COVID- 
19) energy consumption in 2020, rather than comparing energy consumption between 2020 and 2019 in the 
existing studies. The simulation approach used for scenario simulation was developed by combing the autore-
gressive integrated moving average (ARIMA) and back propagation neural network (BP). In the proposed 
ARIMAR-BP approach, BP was used to correct the error of ARMIA simulation, so as to reduce the error of 
simulation. The results of the model testing indicate that the simulation error of the developed approach is much 
lower than that of the BP or ARIMA simulation. The proposed simulation approach was run based on China’s 
electricity consumption from 2015 to 2019 to produce the simulated value of China’s electricity consumption 
from January to August of 2020 in the pandemic-free scenario. The actual electricity consumption was on 
average 29% lower than the electricity consumption in the pandemic-free scenario. which is much larger than 
the decline rate derived from year-to-year comparison. In addition, the results of the correlation analysis show 
the simulated decline in electricity consumption is only positively correlated with the number of new cases of 
COVID-19 in January–March, when the COVID-19 outbreak in China. This research provides a novel research 
structure for a more comprehensive understanding of the impact of the pandemic on energy consumption.   

1. Introduction 

The lockdown measures to contain the outbreak of the COVID-19 
pandemic lead to a decline in energy consumption. According to the 
Monthly Electricity Statistics released by International Energy Agency, 
global electricity consumption fell by 8.6% in 2020 compared with 2019. 
That compares with 6.6% in the United States and 0.8% in China (IEA, 
2020). Such measurement reflects the year-to-year changes in energy 
consumption, which fails to fully reflect the impact of the pandemic on 
energy consumption. To fill the research gap as well as to better assess the 
true impact of the pandemic, this work developed a new research frame-
work to compare the energy consumption in the business as usual (without 
COVID-19 pandemic) scenario with in the actual outbreak of COVID-19 in 
2020. The difference between the business as usual scenarios with actual 

energy consumption was regarded as the decrease in energy consumption 
caused by COVID-19. Research has provided a new way to assess the 
impact of COVID-19 on energy consumption and was of vital help in 
meeting the energy challenges caused by the COVID-19 pandemic. 

An empirical analysis of China’s electricity consumption using the 
proposed research framework was conducted. Specifically, the ARIMA-BP 
model with improved strategy was used to simulate the virtual electricity 
consumption under the business-as-usual scenario. After that, the business- 
as-usual scenario electricity consumption was compared with the actual 
electricity consumption. The difference was assumed to be the decline in 
electricity consumption caused by the COVID-19. For further analysis, this 
study conducted the correlation between the electricity declines and the 
number of confirmed cases. Analysis conclusion can not only be conducive 
to a comprehensive understanding of China’s energy shocks caused by the 
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COVID-19, but also reveal how China’s recovery has fared over different 
periods of the pandemic. 

The structure of this article is as follows: The second section is 
literature reviews. The third section is the methodology, including data 
sources, framework diagrams and model formulas. The fourth section is 
result analysis, including the electricity consumption decline calculation 
and correlation analysis. The fifth section summarizes the whole paper. 

2. Literature reviews 

2.1. Literature review on the impact of extreme on energy 

As a sudden pandemic, COVID-19 exerted varying degrees of impact 
on all walks of life in the whole society (Wang and Su, 2020). From the 
past to the present, the hot spots after historical emergencies have 
reference significance for today’s events. Analyzing from past research, 
assessing the impact of the event has become the primary concern of 
scholars and the community. Taking the 2008 financial crisis event as an 
example, this sub-section focused on sorting out the research connected 
with this event, in order to obtain research ideas. 

Many scholars have sorted out the impact of the 2008 financial crisis 
on all aspects of society, covering financial markets, technological 
innovation, oil prices, and energy consumption (Jin, 2016). The first is 
the financial market. Scholars have drawn a series of conclusions by 
analyzing and comparing the volume of the financial market before and 
after the crisis. Hasan and Mohammad (2015) used MF-DFA technology 
to study the multifractal structure of the US and seven Asian stock 
markets during the financial crisis. The study found that the markets of 
the United States, Japan, Hong Kong, South Korea, and Indonesia exhibit 
strong non-linear relationships. Based on the monetary and fiscal per-
formance of the global financial crisis in 2008–09, Makin (2019) 
reviewed the performance of Australia’s global financial crisis and 
emphasized the effectiveness of the macroeconomic actions at that time. 
Outside the economic field, Brem et al. (2020) assessed the impact of the 
financial crisis on innovative industries. Based on vertical patent data 
from the OECD, the study found the negative impact of the global 
financial crisis on innovation performance. Focusing on the field of 
crude oil, Lahmiri (2017) investigated the state and performance of oil 
prices before and after the international financial crisis. It has been 
shown that after the international financial crisis, the volatility of Brent 
and West Texas Intermediate (WTI) both showed chaotic dynamics. Also 
investigating the crude oil market are Joo et al. (2020). In their study, 
Hurst index, Shannon entropy and scaling index are used to characterize 
the efficiency and long-term equilibrium changes of the oil market 
caused by the financial crisis. Moutinho et al. (2017) compared and 
analyzed the relationship between crude oil prices in the European 
Union and consumer prices of transportation fuels before and after the 
2008 financial crisis. Studies have found that there is a close correlation 
between crude oil and gasoline prices, but there does not seem to be a 
similar relationship in the post-breakthrough period. In the energy field, 
scholars compared the data in the late period of the crisis with the data 
in the current period of the crisis, and obtained the amount of influence 
based on the input-output method. With the aid of data that has occurred 
in 2008 and 2009, Yuan et al. (2010) discussed the impact of the 2008 
financial crisis on China’s energy consumption and economic growth. 
Through the calculation of the input-output model, they found the 
percentage of the impact of the crisis in 2008 and the economic stimulus 
in 2009 on the economy and the energy industry respectively. Similar to 

the Chinese case, Ali Bekhet and Yasmin (Ali Bekhet and Yasmin, 2014) 
studied the impact of the financial crisis case on Malaysia. It turned out 
that the financial crisis has led to a 13% drop in GDP and a 16% drop in 
energy consumption. 

Through the above analysis, we found that studying the impact of 
emergencies on various sectors of society has become a practice of 
taking history as a mirror. However, most of the previous studies pri-
marily analyzed the performance of multiple industries after the inci-
dent through inter-year comparisons. This measurement had a certain 
degree of lag and could not make timely judgments from the perspective 
of the impact of the event itself. To avoid this situation, a timely judg-
ment of the event’s impact from the perspective of scenario simulation 
in time is a feasible way. To do this, appropriate energy simulation 
methods can provide a solution. 

2.2. Literature review on scenario simulation methods 

Data fitting under simulated scenarios can quantify the specific 
impact of the pandemic on energy consumption. Specifically, we ex-
pected to adopt mature methods to achieve accurate simulation of 
electricity consumption in the absence of an pandemic. To realize this 
idea, this sub-section combed and summarized the research progress 
related to energy simulation. The combing of the literature was of vital 
help to refine research methods and simulation calculations. 

In the field of energy fitting and simulation, method research around 
time series data was an important point. Many scholars have carried out 
related researches around ARIMA model and GM model. Selvaraj et al. 
(2020) affirmed the importance of statistical analysis of the ARIMA 
model. The ARIMA model has recently been widely used in the simu-
lation of pandemics (Duan and Zhang, 2020). Hernandez-Matamoros 
et al. (2020) used the ARIMA model to simulate the spread of the 
COVID-19 virus in 15 countries around the world. Singh et al. (2020) 
used wavelet and ARIMA coupling to develop a new hybrid model to 
simulate the number of deaths caused by COVID-19 in major countries 
around the world. Simulations show that despite the various preventive 
measures taken by the governments of these countries, the number of 
deaths will continue to increase sharply. Khan and Gupta (2020) used a 
univariate time series model to simulate the number of COVID-19 cases 
in India that might be infected in the next 50 days. Jamil (2020) 
modeled ARIMA to simulate water consumption in Pakistan. Wang et al. 
(2018b) used a new hybrid of nonlinear gray model and linear ARIMA 
residual correction to simulate U.S. shale oil production in order to 
better understand the global oil market. Al-Musaylh et al. (2018) fore-
casted the short-term electricity demand of Queensland, Australia’s 
second largest state, based on the ARIMA model. Through bagging 
ARIMA and exponential smoothing method, de Oliveira and Cyrino 
Oliveira (2018) simulated the medium and long-term power consump-
tion of different countries/regions. Use autoregressive integrated mov-
ing average (ARIMA) and seasonal ARIMA (SARIMA) methods, Ediger 
and Akar (2007) estimated Turkey’s future primary energy demand 
from 2005 to 2020. In addition to the above studies, there are also too 
many studies that combine the ARIMA model with other models for 
simulating (Koutroumanidis et al., 2009) (Barak and Sadegh, 2016). Ji 
et al. (2019) uses the ARIMA model and a deep neural network structure 
combining CNN and LSTM layers to simulate the price of carbon futures 
(Bowden and Payne, 2008). 

Apart from time series models, the research work of artificial neural 
networks was also deepening, and great progress had been made. There 
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were numerous researches on this subject by related scholars. Di Piazza 
et al. (Di Piazza et al., 2020) studied an artificial neural network 
(ANN)-based model for short-term simulating of hourly wind speed, 
solar radiation, and electricity demand. The simulation analysis proved 
that the method could coordinate the good prediction performance in 
the short term with a very simple network structure. Rodríguez et al. 
(2018) proposed an artificial neural network (ANN) to simulate photo-
voltaic generators. Dumitru and Gligor (2017) established an architec-
ture based on a feedforward artificial neural network and simulated the 
daily average wind energy in Southeast Europe. Using Iran’s monthly 
available data from 1996 to 2006, Azadeh et al. (2013) used an artificial 
neural network (ANN) method to simulate the consumption of renew-
able energy in consideration of environmental and economic factors. 
Neto and Fiorelli (2008). Pino et al. (2008) used an artificial neural 
network to simulate the next day’s electricity price in the Spanish energy 
market. Moreira et al. (2021) used an artificial neural network (ANN) to 
estimate the photovoltaic power generation in Minas Gerais, Brazil, with 
an average absolute percentage error of 4.7% per week. Khwaja et al. 
(2020) used integrated machine learning based on artificial neural 
networks (ANN) to perform short-term power load forecasting in New 
England. Islam et al. (1995) developed a new type of artificial neural 
network (ANN) to simulate electricity load and energy in the next 24 
months. The artificial neural network model has also been applied to the 
simulate of European electricity load (Behm et al., 2020) and wind 
power generation (Zafirakis et al., 2019). In addition, combination 
models related to artificial neural networks are also common in practical 
applications (Zainuddin et al., 2019). 

Through the above combing, it can be found that the existing fitting 
methods are relatively mature and have good practice for solving energy 
simulations in different situations. On the one hand, the ARIMA model 
and BP model have higher practicability and accuracy in methods of 
energy simulating. Energy simulation based on these two types of 
models is generally applicable to electricity, oil and gas, etc. On the 
other hand, the combination of multiple methods has become popular in 
the latest research. If we want to achieve further improve in accuracy, 
the construction of a compound model based on a new combination of 
ideas is necessary. This part of the combing provides the idea that, it is 
feasible to apply these two methods to determine the amount of elec-
tricity consumption in a pandemic-free state. In this way, the quantita-
tive treatment of the impact on the pandemic could be realized. 

2.3. Contribution points of this research 

Through combing the existing research, we found that the current 
study of extreme events’ impact on energy consumption was based on 
changes between years, which showed the inter-annual relative changes 
in energy consumption but did not fully reflect the immediate impact of 
emergency events on energy. In order to consider the specific effect from 
the incident itself, simulating the assumed amount of energy in the 
absence of a pandemic was the solution. Energy simulation methods 
have a certain degree of research enthusiasm in the current research 
field. Simulation methods that focus on combined models are the most 
common and accurate. By combing of these two points, this research 
aimed to design a research framework that used new energy simulation 
methods to assess the specific impact of China’s electricity consumption 
caused by the pandemic. 

In summary, the contributions of this research mainly included the 
following points. (1) First of all, this research designed a research 
framework to compare the electricity consumption of the whole Chinese 

society under the business-as-usual scenario and the actual scenario. The 
difference between the two was regarded as the loss value of the elec-
tricity industry affected by the pandemic. (2) Secondly, this research 
further optimized the existing mature energy simulation methods. A 
combination mechanism of "error correction + secondary modeling" has 
been established. Relying on this mechanism, a combined "ARIMA-BP" 
model was created. The comparison between multiple models helps to 
ensure whether the simulation mechanism in the combined model is 
superior, thereby providing persuasive results for the research. (3) The 
study further analyzed the correlation between the decline in the elec-
tricity industry and the severity of the pandemic. This relevant analysis 
played an important role in explaining the epidemic-driven reasons 
behind the downward trend. In general, this research has adopted 
mature methods to simulate the impact of the pandemic on China’s 
electricity consumption. It could provide a reference value for the 
relevant research between the pandemic and China’s energy, economy, 
and industries in the current context. 

3. Method 

3.1. Framework of this study 

This work designed a research framework to quantitatively analyze 
the difference between the business-as-usual scenario and the actual 
scenario in 2020. Specifically, by modeling the monthly electricity 
consumption data from 2015 to 2019, China’s electricity consumption 
in 2020 derived from the historical trajectory was simulated. There were 
two reasons for choosing electricity consumption as the research object. 
First, electricity consumption accounts for most of a country’s energy 
use. Evaluating the impact of the epidemic on electricity consumption 
can reflect changes in the energy sector under the epidemic. Secondly, 
electricity consumption is related to all aspects of the operation of a 
country’s society, so it is the best indicator to evaluate the extent to 
which a country’s society is affected/recovered by the epidemic. Over-
all, the electricity consumption used in this research can not only reflect 
the comprehensive state of the energy field, but also reflect the social 
conditions beyond the energy field. Therefore, electricity consumption 
is an ideal social assessment indicator under the epidemic environment. 
Among multiple simulated methods, the autoregressive integrated 
moving average model (ARIMA model) and backpropagation neural 
network model (BP model) are used as traditional models. In addition, 
the ARIMA-BP model newly constructed in this research based on the 
principle of “error correction and secondary modeling” was applied to 
the simulation of this research. Mean square error (MSE), mean absolute 
percentage error (MAPE) and mean square error percentage (MSPE) was 
used to calculate the accuracy of these methods. The simultaneous use of 
multiple methods increased the persuasiveness of the simulation results. 
After that, we compared the electricity consumption in this ideal state 
with the actual monthly electricity consumption in 2020. 

This gap in electricity consumption was regarded as the absolute 
amount of the decline in electricity consumption caused by the 
pandemic. Furthermore, analyzing the correlation between this decline 
and the severity of the pandemic could assess the stagnation and re-
covery state of Chinese society during the pandemic. Based on this 
research framework (as shown in Fig. 1), this study provided a new way 
to quantitatively measure the impact of the pandemic. The results of the 
study were of vital help for the macro-understanding of the supply and 
demand security of the energy market under the pandemic. 

Q. Wang et al.                                                                                                                                                                                                                                   



Journal of Cleaner Production 313 (2021) 127897

4

3.2. Data description 

The data used in this paper come from China Electricity Council 
(2020). With the pandemic from severe to mild, China has gradually 
shifted from industry closure to industry recovery, and the process of 
social restart has also begun. Thus, electricity consumption in 2020 is 
significantly different from previous years. Fig. 2 shows China’s elec-
tricity consumption over the period 2015–2020. The black line in the 
figure represents the historical value from 2015 to 2019, and the yellow 
line represented the value in 2020. The black curve displays that China’s 
petroleum consumption presents an overall upward trend with seasonal 
characteristics in history. The electricity consumption in 2020 shown by 
the Yellow curve indicates a trend of decreasing first and then 
rebounding quickly. These data characteristics, which are different from 
those in previous years, further confirm the obvious impact of the 
pandemic on China’s electricity consumption. 

3.3. Simulating technique 

Existing models establish accurate equations based on the charac-
teristics of historical data when simulating, so as to obtain prediction 

Fig. 1. The framework of this study.  

Fig. 2. Monthly petroleum consumption in China period 2015–2019.  
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results that conform to the law of historical fluctuations. With the 
development of simulating technology, different models have their own 
advantages in establishing electricity consumption simulations. There-
fore, the comparison and combination of models has become the key to 
improving the accuracy of prediction. In order to make the prediction 
more accurate, we use combination method based on error correction 
principle to simulate the electricity consumption in 2020. The rest of this 
section focused on these methods. 

3.3.1. ARIMA model 
The Autoregressive Integrated Moving Average Model (ARIMA) is a 

method of establishing a mathematical model through curve fitting and 
parameter estimation (Zhang, 2003). This model is mainly for stationary 
non-white noise sequence data, and generally uses a specific mathe-
matical formula to make the data meet the calculation conditions 
(Morimune and Miyazaki, 1997). In the process of transforming a 
non-stationary time series into a stationary time series, the ARIMA 
model is a model established by regressing the dependent variable only 
on its lag value and the present value and lag value of the random error 
term. This reflects that the ARIMA model has the characteristics of 
simple operation. Its modeling only needs endogenous variables and 
does not need to resort to other exogenous variables. At the same time, 
the ARIMA model also has its application limitations. First of all, the 
model has strict requirements on the stability of the data. Stationarity 
can be divided into two categories: strong stability and weak stability. In 
the process of practical application, strong stationarity is too ideal and 
theoretical, and weak stationarity and unevenness need to be dealt with 
by difference tools. If the data after the difference is still not stable, then 
this set of data series could not be executed. Secondly, the ARIMA model 

essentially can only capture linear relationships, not non-linear re-
lationships. The overall flow chart is shown in Fig. 3. 

In the first step of model calculation, the elimination of random 
factors in the time series is the first consideration. Differential tools are 
usually applied to this process (Hillmer and Tiao, 1982). The D-order 
difference tool can make the original series {Yt} into a stationary series 
{Y*

t }. The specific steps are as follows: 

Y*
t =(1 − B)dYt (1) 

After the conversion of stationary non-white noise data, the auto-
correlation function (ACF) and partial autocorrelation function (PACF) 
of the model are calculated in the second step. 

The determination of autocorrelation and partial autocorrelation 
coefficients can identify the type of the model on the one hand and 
determine the parameters on the other hand. The autocorrelation 
function of AR (p) model is expressed as: 

Y*
t = c + α1Yt− 1 + α2Yt− 2 + ⋯ + αpYt− p + ut (2) 

MA (q) is the use of current error terms and the previous period of 
error items to explain the explanatory variables. The partial autocorre-
lation function of MA (q) model is expressed as: 

Y*
t = ut + β1ut− 1 + β2ut− 2 + ⋯ + βqut− q (3)  

Where c means constant variable; αi means parameter; ut means error 
terms. 

If a model has both the above nature of the AR (p) and MA (q) 
process, then it can form an autoregressive and moving average process 
ARMA (p, q) model: 

Y*
t = c + α1Yt− 1 + α2Yt− 2 + ⋯ + αkYt− k + μt + β1μt− 1 + β2μt− 2 + ⋯ + βqμt− q

(4) 

Finally, after model testing and optimization, the future trend of the 
data can be predicted. 

3.3.2. BP model 
BP neural network model was a commonly used neural network 

learning algorithm. This model was applied in the field of energy 
simulation in the 1990s (Hobbs et al., 1998) and has been used more and 
more widely recently (Hsu et al., 2018). The calculation process includes 
two steps of signal forward propagation and error backward propaga-
tion. Among them, the forward propagation of the signal refers to the 
data from the input layer through the hidden layer to the output layer. 
Backward propagation of errors refers to error analysis based on the 
training results and expected results, and then modify the weights and 

Fig. 3. Flow chart of ARIMA model.  Fig. 4. Flow chart of BP neural network model.  
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thresholds, step by step to obtain a model that can output consistent 
with the expected results (Li and Wang, 2019). The specific principles of 
the training process of the BP neural network model are as follows (as 
shown in Fig. 4): 

The beginning of model training is to establish the transfer function 
(Sigmoid function) between the input layer and the hidden layer: 

f (x)=
1

1 + e− x (5) 

While the function between hidden layer and output layer is Purelin 
function. 

The second is to determine the number of nodes in the hidden layer 
and the output layer. Among them, the function for determining the 

number of nodes in the hidden layer is: 
∑n

i=0
Ci

ni > K, where K means 

sample number; ni means the number of hidden layer’s node; n means 
the number of input layer’s node; and Ci

ni = 0 if i > n (He et al., 2007). 
After the forward propagation process, the next step is to reverse the 

error. In this process, errors are propagated from the output layer back 
to the hidden layer, and then back to the input layer. Through the layer- 
by-layer correction of the weight matrix, the goal of optimal output is 
achieved. The errors are calculated by formula (6) where Ep represents 
error, dk means the expected output and ok means actual output. 

Ep =
1
2
∗(d − o)2

=
1
2
∗
∑l

K=1
(dk − ok)

2 (6)  

Ep =
1
2
∗
∑l

K=1
[dk − f (netk)]

2
=

1
2
∗
∑l

K=1

[

dk − f

(
∑m

j=0
wjkyj

)]2

(7)  

Ep =
1
2
∑l

K=1
dk − f

[
∑m

j=0
wjkf

(
netj
)
]2

=
1
2
∑l

K=1
dk − f

[
∑m

j=0
wjkf

(
∑n

j=0
vijxi

)]2

(8) 

The adjustment formulas of the weight matrix and the threshold 
matrix are shown in equations (9) and (10). The partial derivative of the 
weight coefficient error is the key to finding the optimal result. After the 
above series of calculations, the actual output can be consistent with the 
expected output. The prediction results based on this process are quite 
convincing. 

wjk =wjk − η1*
∂Ep

∂wjk
= wjk − η1*σjk*yj j = 0, 1,…，m; k = 1, 2,…, l (9)  

vij = vij − η2*
∂Ep

∂vij
= vij − η2*σij*xi i = 0, 1,…, n; j = 1, 2,…m (10)  

Fig. 5. The detailed error correction modeling principle.  
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3.4. Error correction mechanism and ARIMA-BP model 

Based on the existing ARIMA model and neural network model, this 
research put forward the modeling principle of "error correction" com-
bined with the idea of further improving the prediction accuracy. This 
idea combined the above two models by selecting the base model and 
the modified model. The accuracy was improved through the secondary 
correction of the error. 

During error correction modeling principle, it first extract the pre-
diction error based on the base model; then use the correction model to 
perform residual correction, that is, perform a secondary prediction on 
the error given by the initial model to achieve the effect of reducing the 
error. By combining the results of the initial model with the errors of the 
modified model, the optimal prediction value has been obtained. The 
detailed modeling principle is shown in Fig. 5. 

Combining this principle, ARIMA-BP combined model was applied in 
this study. The ARIMA-BP model was a combination based on the 
principle of "error correction + secondary modeling". Among them, the 
ARIMA model was the first step in operation, and the initial error is the 
product of this step. After this, the initial error was substituted into the 
calculation of the BP software. Through the secondary modeling, the 
corrected error and the final prediction result of the ARIMA-BP model 
were obtained (Wang et al., 2018a). The operating formula and steps of 
the ARIMA-BP model were shown below.  

(1) Use tools such as unit root test and difference to make the initial 
data series stable. Among them, the formula of unit root test is: 
xt = ρxt− 1 + εt. This is to judge the stability of the data. The 
formula of the difference tool is: Y∗

t = (1 − B)dYt. In this step, the 
non-stationary series is treated as a stationary series through a 
formula.  

(2) We bring the data that has become stable after processing into the 
ARIMA model to solve the preliminary prediction results. Model 
identification, model ordering, and parameter estimation need to 
be processed sequentially in the whole process. Model recogni-
tion is to judge the type of model. AR model is: Y∗

t = c+
α1Yt− 1 + α2Yt− 2 + ⋯+ αpYt− p + ut. MA model is: Y∗

t = ut +

β1ut− 1 + β2ut− 2 + ⋯+ βqut− q. Model order is determined by the 
BIC criterion method. Parameter estimation is to solve the two 
unknown parameters “p” and “q” in the equation.  

(3) Run the ARIMA model to get the initial prediction results. By 
subtracting the predicted value of this step from the true value, 
the initial prediction error is obtained.  

(4) Input the initial error into the BP model (Dumitru and Gligor, 
2017) to generate the BP network. Then conduct network 
training and simulation. Among them, the formula for network 
training is as follows: [net, tr, Y,E,Pf ,Af ] = train(net, P, T, Pi, Ai,
VV, TV). The formula for network simulation is as follows: [Y, Pf ,

Af ,E, perf ] = sim(net, P, Pi, Ai, T). Through the operation of the 
software, the corrected error sequence is calculated.  

(5) Combine the corrected error sequence with the initial prediction 
value to get the final prediction result. 

The tools used to run the model are Eviews, SPSS and Matlab soft-
ware. Among them, Eviews is used to process the stability of the data 
and to determine the parameters of the ARIMA model, and the SPSS 
software is used to run the initial prediction results of the ARIMA model. 
Matlab software is used to simulate the BP program of the initial error, 
and the error after the second correction is obtained. The prediction 
result of this research was obtained after integrating the three software 
operations. Among them, Eviews and SPSS are operations within the 
software, while Matlab relies on data codes. The data code was shown in 
the appendix. 

4. Empirical result and analysis 

4.1. Hypothesis of electricity consumption without an pandemic 

To model the monthly electricity consumption from 2015 to 2019, 
this sub-section mainly focused on the prediction process and accuracy 
of each model. According to statistics from the China Electricity Council, 
the value of electricity consumption in the past five years was shown in 
Table 1. The data conveyed the following information points. First, 
China’s electricity consumption had shown a slow upward trend in the 
past five years. Specifically, the annual growth rate in recent years was 
18%, 22%, 21%, 5%, and 15%. Second, there were apparent seasonal 
changes between monthly data. Summer and winter usually reached 
small peaks of electricity consumption during the year. 

By fitting the data, the historical values derived from the simulated 
model were calculated. This sub-section showed the deduction process 
of each model in turn. Indicators for judging the accuracy of model 
fitting was given. 

4.1.1. Model fitting of BP 
According to the calculation steps listed in the previous section 3.3, 

this study uses Matlab software to perform a fitting operation on elec-
tricity consumption by BP model. 

Fig. 6 was a diagram of the internal calculation process of the BP 
model. It can reflect the continuous correction and test process of the 
error in the inner calculation. Through the reverse adjustment process of 
the error, the best validation performance was 307555 at epoch 8. In 
addition, the error curve obtained after optimization was also included 
in the plan. After the positive and negative feedback mechanism inside 
the model, the fitting results were shown in Table 2. It was worth noting 
that model’s accuracy could be calculated by comparing the data in 
Tables 1 and 2. This detailed part was placed in Section 4.1.3. 

4.1.2. Model fitting of ARIMA-BP 
The first step of the ARIMA-BP model is to use the ARIMA model to 

make initial predictions. After this, the initial prediction error was ob-
tained by calculating the difference between the two. Then, we used the 
correction function of the BP model to correct the initial error. 

The ARIMA model first performed a unit root test on the data. Since 
the data had specific fluctuation characteristics, this process was 
essential and could not be omitted. Table 3 was the result of the unit root 
test. Among them, Q represents the original sequence, Q* means the 
sequence after the first-order difference, and Q** represents the 
sequence after the second-order difference. By comparing the ADF sta-
tistic with the value of different confidence intervals (1%, 5%, and 10%), 
the stable characteristics of the data were reflected. 

Through continuous inspection, the fitting accuracy of the data was 
the most accurate in the first-order difference. Based on this, the cor-
relation coefficient map of the first-order difference sequence was drawn 
and the values of “p” and “q” in the ARIMA model were determined. The 

Table 1 
Historical monthly electricity consumption data in China (100million kwh).  

Month Year 

2015 2016 2017 2018 2019 

January 4227 4381 4678 5995 6172 
February 4227 4381 4678 4557 4891 
March 4448 4762 5139 5325 5732 
April 4415 4569 4847 5217 5534 
May 4567 4730 4968 5534 5665 
June 4723 4925 5244 5663 5987 
July 5034 5523 6072 6484 6672 
August 5124 5631 5991 6521 6770 
September 4563 4965 5317 5742 6020 
October 4491 4890 5130 5481 5790 
November 4658 5072 5310 5647 5912 
December 5023 5369 5703 6283 7110  
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autocorrelation coefficient graph and partial autocorrelation coefficient 
graph in Fig. 7 were obtained through Eviews7.2 software. By judging 
their respective convergence conditions, it can be roughly determined 
that the partial autocorrelation coefficient was truncated after the third 

order. The autocorrelation coefficient was truncated after the second 
order. In addition, the values of Prob were all less than 0.05 which 
meaned that the selection of parameters has a higher reliability. In 
summary, ARIMA (3, 1, 2) was chosen. 

In order to further confirm this point of view, we calculated the 
stationarity R-square of the ARIMA model fitting. The results confirmed 
that the selection of parameters was reliable. Table 4 further listed the fit 
significance and the number of outliers, confirming the validity of the 
prediction. 

After the above calculations, the initial prediction values of the final 
ARIMA (3, 1, 2) model were shown in Table 5. By comparing the dif-
ference between the results in Tables 1 and 5, the initial errors were 
listed as input of BP model. Through the calculation of the BP model, the 
running results of the ARIMA-BP model were obtained (see Table 6). 

The calculation of the BP model was similar to the previous one. 
After positive propagation and negative feedback, the corrected error 
sequence was shown in Fig. 8 (orange lines). It can be seen from the 
figure that the orange curve was closer to the coordinate axis than the 
green curve. 

4.1.3. Accuracy comparison analysis 
In this study, we compared the accuracy of the different models using 

the fitted data and used the comparison between the real value and the 
simulated value to calculate the error value. The more common error 
value formula has the following. In these error formulas, we define ‘yi’ 
‘xi’ ‘n’ as fitting value, true value and sample size, respectively. Detailed 
error judgment indicators were mean absolute percent error (MAPE), 
mean square percent error (MSPE) and mean square error (MSE). 

The MAPE (Mean Absolute Percent Error) was used to measure the 
accuracy of prediction, and calculation formula was: 

Fig. 6. The flow chart of internal operation of BP model.  

Table 2 
Initial fitted result based on the BP model.  

Month Year 

2015 2016 2017 2018 2019 

January 4227 5054 5456 5888 5967 
February 4227 4549 4549 5588 5751 
March 4448 4849 4991 5128 5581 
April 4415 5055 5054 5555 6695 
May 4535 4549 4549 5283 4968 
June 4677 4828 5008 5709 5575 
July 4777 5040 5054 5134 6116 
August 5052 5629 5942 6364 6773 
September 4959 5089 5551 5756 5992 
October 4549 4952 5129 5582 6067 
November 4923 5265 5575 5980 6299 
December 5298 5313 5761 6004 6818  

Table 3 
Unit root test and difference results based on Eviews 7.2  

Sequence ADF 
Statistic 

Critical Value Value of 
p 

1% 5% 10% 

Q − 7.894837 − 4.156734 − 3.504330 − 3.181826 0.0000 
Q* − 13.37168 − 4.161144 − 3.506374 − 3.183002 0.0000 
Q** − 7.008416 − 4.165756 − 3.508508 − 3.184230 0.0000  
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MAPE=
∑n

i− 1

⃒
⃒
⃒
⃒
yi − xi

xi

⃒
⃒
⃒
⃒×

100
n

(16)  

Where: y(i) is predicted value, x(i) is actual value, n is the number of 
data. 

The smaller the average relative error is, the higher the prediction 
accuracy is. 

In these expressions, yi is the predicted value and xi is the actual 
value. 

Fig. 7. Autocorrelation and partial autocorrelation coefficients of the original sequence.  

Table 4 
Parameters of fitting goodness for ARIMA (3,1,2) model.  

Model Number of 
Predictors 

Model Fit Statistics Number of 
Outliers 

R- 
Squared 

Significance 

ARIMA 
(3,1,2) 

1 0.630 0.000 0  

Table 5 
Initial fitted result based on the ARIMA model.  

Month Year 

2015 2016 2017 2018 2019 

January 4227 4381 4678 5995 6172 
February 4227 4381 4678 4557 4891 
March 4448 4762 5139 5325 5732 
April 4415 4569 4847 5217 5534 
May 4567 4730 4968 5534 5665 
June 4723 4925 5244 5663 5987 
July 5034 5523 6072 6484 6672 
August 5124 5631 5991 6521 6770 
September 4563 4965 5317 5742 6020 
October 4491 4890 5130 5481 5790 
November 4658 5072 5310 5647 5912 
December 5023 5369 5703 6283 7110  

Table 6 
Finial predicted result based on the ARIMA-BP model.  

Month Year 

2015 2016 2017 2018 2019 

January 4227 4589 5033 6095 6223 
February 4228 4927 5246 4604 5544 
March 4230 4782 5118 5015 5387 
April 4413 4199 4621 6017 6130 
May 4994 5114 5108 5707 6051 
June 4777 4851 5217 5620 5821 
July 4811 5275 5789 5933 6342 
August 5109 5430 5436 6007 6385 
September 4555 5071 5554 5917 6410 
October 4820 5003 5182 5361 6094 
November 4690 4949 5172 5752 6185 
December 4561 4878 5412 5843 6696  
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The mean square error (MSE) was calculated as follows: 

MSE=
1
n

∑n

i=1
(yi − xi)

2 (17)  

Where: y(i) is predicted value, x(i) is actual value. 
The mean square percent error (MSPE) was calculated as follows: 

MSPE=
1
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

[
yi − xi

xi

]2
√

(18) 

By comparing the predicted value and actual value, the prediction 
error of each model was calculated in Table 7. For the MAPE value, the 
value of the combined ARIMA-BP model was smaller than that of the 
ARIMA and BP models. In addition, the MSPE and MSE values of the 
combined model were also smaller than those of the two single models. 
This proved that the predictive effect of the integrated model was more 
accurate than the two single models. Therefore, the prediction results 
based on the combined model were more convincing. 

4.2. Electricity consumption gap caused by the COVID-19 

By comparing the prediction results of the ARIMA-BP model with the 
actual statistics, the electricity consumption gap caused by the 2020 
pandemic could be calculated. Table 8 listed this point numerically, 
while Fig. 9 ploted the gap curve between the two from an image 
perspective. 

According to the data in Table 8, compared with the historical ex-
pected trajectory, the decline in electricity consumption from February 
to May was the largest, ranging from 25% to 36%, with an average of 
30%. Since June, the gap between the actual value of electricity con-
sumption and the ideal value has gradually narrowed. This rate of 
decline fell from 18% in June to 0.9% in July. At this point, the positive 
gap began to stop. With the advent of the post-pandemic era, the actual 
electricity consumption finally exceeded the expected electricity con-
sumption for the first time in August, and the exceeding rate remained at 
4.33%. 

The yellow curve in Fig. 9 was the ideal value of electricity con-
sumption in China without the pandemic generated by the ARIMA-BP 
model in this study. The black curve was the actual value of electricity 
consumption in 2020. These two curves showed irregularly shaped gaps 
during the period from January to July. Since July, the gap between the 
two lines began to become smaller. After that, the actual electricity 
consumption began to exceed the expected value, and there was a 

Fig. 8. Comparison chart of initial (ARIMA) and corrected error (ARIMA-BP).  

Table 7 
MAPE, MSPE and MSE calculated for each model (%).  

Type BP ARIMA ARIMA-BP 

MAPE 5.25% 6.05% 4.98% 
MSPE 0.009986653 0.010021953 0.007750388 
MSE 171545.1371 165270.6099 101911.7331  

Table 8 
The difference in China’s electricity consumption in 2020 with or without the 
pandemic (100million kwh).  

Month Simulations of 
ARIMA-BP 

Real value 
of 2020 

Consumption 
gap 

Decline 
proportion (%) 

January 6906 5805 1101 18.96% 
February 5997 4398 1599 36.36% 
March 6870 5493 1377 25.06% 
April 7359 5572 1787 32.08% 
May 7893 5926 1967 33.19% 
June 7515 6350 1165 18.34% 
July 6885 6824 61 0.90% 
August 6979 7294 − 315 − 4.33%  

Fig. 9. Electricity consumption gap caused by COVID-19.  

Table 9 
Correlation test results between gaps and confirmed COVID-19 cases.  

Period Variable Correlation test Result 

January to March Gaps Pearson correlation coefficient 1.000** 
Significance (two-tailed) 0.000 
Number of cases 3 

March to May Cases Pearson correlation coefficient ¡1.000** 
Significance (two-tailed) 0.000 
Number of cases 3 

May to August Cases Pearson correlation coefficient ¡1.000** 
Significance (two-tailed) 0.000 
Number of cases 4 

Note: ** means the correlation is significant at the 0.01 level (two-tailed). 
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characteristic that the excess volume became larger and larger. 
In this study, we regarded the area enclosed by the two curves in 

Fig. 9 as a quantitative value of the impact of the pandemic on China’s 
electricity consumption. The gap between the two curves was closely 
related to the severity of the pandemic to a certain extent. 

Since the outbreak of COVID-19, the pandemic in China has expe-
rienced an incubation period, a severe period, and a post-pandemic 
period. In terms of specific months, from February to March, the num-
ber of new cases has always remained high. The tense atmosphere of the 
masses forced the slowdown of society and hindered travel. By 
April–May, although the number of new cases was under control, people 
were still very concerned about maintaining social distancing. The social 
part was functioning normally, but the operations of many offline en-
tities were still prohibited due to people’s panic. Since entering June, 
this panic has gradually subsided. To restore the economy, the social 
resumption of work and production has started to accelerate the process. 
At the same time, domestic inter-provincial transportation and enter-
tainment activities have also begun to expand. 

From this analysis, industrial and commercial activities in society 
have shown a dynamic change during the pandemic. Consistent with this 
change, the decline in electricity consumption in China’s entire society 
during the pandemic was also following this process and undergoing 
fundamental changes. Based on this essential judgment, this study 
believed that it was necessary to give a detailed statistical analysis of the 
correlation between the two. This kind of correlation analysis can assist 
in understanding the reasons behind the change in the electricity con-
sumption gap. In the long run, this analysis also provided a reference for 
predicting the supply and demand trends of the energy market in future 
emergencies. 

4.3. Correlation analysis between gaps and confirmed COVID-19 cases 

This sub-section calculated and analyzed the correlation coefficient 
between the electricity consumption gap and the pandemic (see 
Table 9). It was expected to obtain the variation curve of the specific 
value of the correlation coefficient. 

Fig. 10 showed the changes in the cumulative number of confirmed 
cases and the number of newly confirmed cases in China recorded from 
the official website of the China Health Commission. Among them, the 
purple curve showed the data of newly confirmed cases each day, and 
the blue curve displayed the cumulative number of confirmed cases that 
day. Although the meanings of the two curves were different, they 
showed a consistent range of change. Monthly, the number of cases 
began to appear in January and reached a climax in February at a rapid 
rate. In mid-to-late February, the cumulative number of confirmed cases 
in China reached a peak of 58,000. The number of new cases also ach-
ieved the highest during that period, with 15,000 cases. Since this peak, 
the cumulative number of confirmed cases in China has gradually 
declined since March. After a two-month decay period, the cumulative 
number of confirmed cases in China fell to a stable minimum at the end 
of April. We also call the period during which the total number of cases 
remained within 300 cases as the post-pandemic period. 

Return to the research object of this study. According to existing 
analysis, electricity consumption is directly determined by social and 
industrial conditions. Since 2020, social and industrial conditions have 
been largely affected by the pandemic. From this reasoning, the dynamic 
evolution of the entire pandemic should theoretically be related to the 
gap in electricity consumption. 

To verify the relationship between the two, this section first draws 
the curves of gaps and cumulative confirmed cases. As shown in Fig. 11, 
the green curve represents the cumulative number of confirmed cases, 
and the dark gray curve represents the calculated gap in electricity 
consumption. It can be seen from the figure that there are different 
correlations between the two in different periods of change. From 
January to March, the cumulative number of confirmed cases showed 
rising first and then falling. At the same time, the electricity consump-
tion gap showed the same characteristics of rising first and then falling. 
Judging from the reasons behind it, these few months correspond to the 
most severe period of the pandemic in China. The positive correlation 
between the two was related to restrictive measures. Specifically, the 
severity of the pandemic has strengthened the implementation of 
restrictive measures such as suspension of work and production. The rest 
of work and production and transportation restrictions have increased 
the impact of the pandemic on the electricity industry, resulting in a 
growing gap between the expected value of electricity consumption and 
the actual value. From this perspective, there is a clear positive corre-
lation between the pandemic and the gap in January–March. 

Fig. 10. Daily confirmed cases of COVID-19 in China.  

Fig. 11. Relationship curve between electricity gaps and confirmed COVID- 
19 cases. 
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In March–May, the cumulative number of confirmed cases dropped 
and returned to a stable level, and the pandemic situation showed a 
significant improvement. At the same time, the gap has not gradually 
become smaller, but still showed upward characteristics. This meaned 
that during this period, although the pandemic was under control, the 
electricity consumption of the whole society has not returned to the 
ideal scenario (the same as in previous years). The reason for this phe-
nomenon was closely related to people’s psychological panic about the 
pandemic. Due to prolonged immersion in the anxiety brought about by 
the pandemic, the industrial production, commercial scale, and trans-
portation of the whole society have still not recovered to the level when 
it was completely unaffected. Therefore, during this period of time, the 
electricity consumption gap did not decrease as the number of cases 
decreased, and there was a negative correlation between the two dues to 
the delayed impact of the pandemic. 

From May to July, the daily confirmed cases remained stable at a low 
level, maintaining around 200 cases. Correspondingly, the gap between 
the electricity consumption in an ideal state and the actual value began 
to shrink. In other words, China’s electricity consumption in the whole 
society has rebounded sharply since May and is approaching the ideal 
value in an pandemic-free state. This reflected the signs of resumption of 
work and production in Chinese society in May, which lasted until July. 

From July to August, the difference between actual electricity con-
sumption and ideal electricity consumption began to appear negative. 
This indicated that the economic recovery of Chinese society begun to 
present an unprecedented new situation. When society is beginning to 
function normally, economic growth has driven electricity consumption 
to exceed the historical average. The strong rebound in electricity con-
sumption not only affirmed China’s economic recovery, but also proved 
that people have gradually got rid of the haze enveloped by the 
pandemic and returned to normal work and life (Wang and Zhang, 
2021). 

5. Conclusion 

The COVID-19 pandemic has been profoundly changed the trajectory 
of energy consumption in both the world and countries/regions. 
Meeting the challenges posed by the pandemic to energy consumption 
requires a better assessment of the impact of the pandemic on energy 
consumption. However, existing evaluations of the impact of the 
pandemic on energy consumption were based on changes in energy 
consumption over the years. For example, an evaluation on the effect of 
the pandemic on energy consumption in the world reported by the In-
ternational Energy Agency, in the United States reported by the U.S. 
Energy Information Administration, and in China by the National Bu-
reau of Statistics of China is based on comparison of energy consumption 
in 2019 and in 2020. However, this comparison did not fully reflect the 
impact of the pandemic on energy consumption but reflects changes in 
energy consumption over the years. To better understanding the effects 
of the pandemic on energy consumption, this work proposed a research 
framework to compare energy consumption with pandemic scenario 
(actual energy consumption) and with pandemic-free scenario (simula-
tion energy consumption from modeling) in 2020. An empirical analysis 
of China’s electricity consumption was conducted using the proposed 
research framework. 

The computing results showed China’s electricity consumption 
under the COVID-19 pandemic scenario (or actual consumption) was 

reduced by an average of 29% compared with the pandemic-free sce-
nario (simulation consumption) from February to May, when the 
COVID-19 outbroke in China. In the most severe month of the pandemic, 
China’s electricity consumption with the pandemic scenario was 36% 
lower than that in the scenario without the pandemic. 

By analyzing the correlation between the electricity consumption 
gap and the pandemic, the following points were drawn. From January 
to March, the pandemic was severe, and its effect on electricity con-
sumption was equally severe. The two were positively correlated. From 
March to May, the pandemic situation improved, but its impact on 
electricity consumption did not improve but continued to be serious. 
The two were negatively correlated. The reason for this phenomenon 
was related to the psychological panic of people during this period. 
Although the number of confirmed cases was decreasing, the way soci-
ety operates was still similar to that in the early stage of the pandemic. 
From June to August, the improvement of the pandemic situation 
continued to stabilize, and its impact on electricity consumption still 
existed, but the magnitude was gradually getting smaller. This phe-
nomenon was related to the resumption of work and production and the 
robust implementation of economic recovery measures. At the end of 
August, the gap between the simulation value and the actual value 
turned from positive to negative. This meaned that the Chinese economy 
has recovered. 

In response to this situation, this study proposed the following policy 
recommendations from the perspective of economic and environmental 
sustainability. First, change the power supply situation and transform 
energy use from fossil energy to low-carbon green energy. Secondly, in 
terms of the use of clean energy, it is recommended to expand the 
installed capacity of wind power and pay attention to the fundamental 
role of hydropower and nuclear power in the energy transition process. 
Finally, the government should increase policy support for high-energy- 
efficiency industries (Wang and Wang, 2020), and improve the effi-
ciency of energy use to make the economic development mode healthier. 
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