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A B S T R A C T   

This paper examines changes in people’s mobility over a 7-month period (from March 1st to September 30th, 
2020) during the COVID-19 pandemic in the U.S. using longitudinal models and county-level mobility data 
obtained from people’s anonymized mobile phone signals. It differentiates two distinct waves of the study period: 
Wave 1 (March–June) and Wave 2 (June–September). It also analyzes the relationships of these mobility changes 
with various social, spatial, policy, and political factors. The results indicate that mobility changes in Wave 1 
have a V-shaped trend: people’s mobility first declined at the early stage of the COVID-19 pandemic (March
–April) but quickly recovered to the pre-pandemic mobility levels from April to June. The rates of mobility 
changes during this period are significantly associated with most of our key variables, including political 
partisanship, poverty level, and the strictness of mobility restriction policies. For Wave 2, there was very little 
mobility decline despite the existence of mobility restriction policies and the COVID-19 pandemic becoming 
more severe. Our findings suggest that restricting people’s mobility to control the pandemic may be effective 
only for a short period, especially in liberal democratic societies. Further, since poor people (who are mostly 
essential workers) kept traveling during the pandemic, health authorities should pay special attention to these 
people by implementing policies to mitigate their high COVID-19 exposure risk.   

1. Introduction 

Since December 2019, the COVID-19 pandemic has become one of 
the most critical global public health crises (World Health Organization, 
2020). In the U.S., since the first case was reported on January 20, 2020, 
there have been about 28.9 million confirmed cases and about 52.5 
thousand deaths at the time of writing (mid-March 2021) (USA Facts, 
2020). The COVID-19 pandemic has significantly affected various facets 
of our daily life. Among them, one important aspect that captures the 
attention of geographers and policymakers is people’s mobility. Spe
cifically, a growing number of researchers have examined how the 
COVID-19 pandemic has affected people’s mobility patterns and travel 
behaviors (e.g., Cartenì et al., 2020; Chakraborty and Maity, 2020; De 
Vos, 2020; Gao et al., 2020a, 2020b; Huang et al., 2020b; Irawan et al., 
2021; Lee et al., 2020a, 2020b; Liu et al., 2020; Willberg et al., 2021; 
Shamshiripour et al., 2020). Considering that mobility reduction can be 
an effective nonpharmacologic COVID-19 measure for controlling the 

spread of the virus, understanding how people’s travel behaviors are 
affected by the COVID-19 pandemic and how they have changed over 
time can provide useful insights into effectively designing and imple
menting COVID-19 mitigation policies. 

For example, Gao et al. (2020a) developed an interactive web-based 
geo-visualization platform where citizens and policymakers can easily 
learn about how the mobility levels of U.S. counties have changed over 
time and how these changes vary geographically. Focusing on the early 
stage of the COVID-19 pandemic in the U.S., Lee et al. (2020b) 
concluded that various human mobility metrics (e.g., miles traveled per 
person) had decreased after the declaration of a National Emergency on 
March 13, 2020, which is in line with the conclusions from Huang et al. 
(2020b). They also observed that states with higher income levels have 
higher percentages of people who stay at their homes. Liu et al. (2020) 
investigated the effect of the COVID-19 pandemic on the public transit 
ridership of 113 transit systems in the U.S. and concluded that regions 
with higher percentages of essential workers are more likely to maintain 
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their usual transit ridership levels. 
Although previous studies provided a useful ground for future 

research, they have two main limitations. First, previous studies largely 
focused on the early stage of the COVID-19 pandemic (e.g., March to 
April 2020). Considering that the COVID-19 pandemic in the U.S. is still 
an on-going public health crisis at the time of writing, investigating the 
mobility changes in a more comprehensive timeline would provide 
meaningful insights into the impacts of the COVID-19 pandemic on 
people’s mobility patterns and travel behaviors. Second, although there 
are some exceptions (e.g., Campbell et al., 2021; Matson et al., 2021), 
most previous studies largely used cross-sectional data and analytical 
methods. Given the fact that the COVID-19 situation in the U.S. has been 
evolving drastically since March 2020, it is plausible that people’s 
mobility behaviors have also been affected and changed substantially 
over time. However, using cross-sectional data and methods may have 
limitations for providing an in-depth understanding of people’s mobility 
changes during the COVID-19 pandemic. 

Thus, this research seeks to fill this important gap by employing 
longitudinal data analysis (LDA) methods. There are two research goals. 
First, we aim at investigating changes in people’s mobility levels in the 
U.S. for a 7-month period (March 1st to September 30th, 2020). Second, 
we seek to examine how the changes in people’s mobility levels over 
time are associated with social, spatial, policy, and political factors, such 
as poverty level, population density, COVID-19 severity, COVID-19 
mobility restriction policies, and political partisanship. 

2. Data and methods 

2.1. Data 

2.1.1. County-level mobility data 
The key dataset of this research is the U.S. county-level daily 

mobility dataset, which is open to the general public and provided by 
Descartes Labs (Warren and Skillman, 2020). The original data contain 
each county’s daily mobility level measured by the median value of the 
maximum distances (in kilometers) of the selected individuals’ trips 
from home (i.e., the initial point of a certain day) to any daily activities 

that they undertook. The selected individuals of each county are those 
whose anonymized mobile phone location records are collected by the 
commercial data providers and provided to Descartes Labs (Warren and 
Skillman, 2020). The home and activity locations of the sampled persons 
are estimated from anonymized location records of their mobile phones. 
Daily mobility level is calculated for each county and each day. A high 
mobility level for a county indicates that the sampled individuals living 
in the county traveled long distances for undertaking their daily activ
ities. Fig. 1 illustrates how county-level daily mobility level is measured. 
Readers are encouraged to refer to Warren and Skillman (2020) for 
technical details about how Descartes Labs processed the data and 
calculated county-level mobility level. Although county-level mobility is 
estimated daily in the original dataset, we calculate the monthly average 
for each month from March 1st to September 30th, 2020 (i.e., study 
timeline). 

Among about 3000 counties in the U.S., we select 2639 counties for 
this study. First, we focus on counties that are within the conterminous 
U.S. Second, some rural counties with small populations do not provide 
mobility data to protect the geoprivacy of their residents (Buckee et al., 
2020; Kim and Kwan, 2021; Kim et al., 2021; Warren and Skillman, 
2020). Third, some counties that reported excessively high mobility 
levels (e.g., ≥50km) are also excluded because they may reflect non- 
routine daily mobility patterns (e.g., recreational trips from/to na
tional parks or long-distance trips to special annual events). Lastly, 
counties that do not have complete sociodemographic information are 
excluded. 

2.1.2. Other data 
We utilize data of the percentage of below-poverty population, 

population density, political partisanship, COVID-19 severity, and the 
mobility restriction policy of each county. First, we use the data on the 
percentage of each county’s below-poverty population from the 2018 
American Community Survey (ACS) 5-year estimates. Second, we use 
the 2020 Presidential Election results from McGovern (2020), which are 
the most up-to-date data that attempt to capture the overall political 
partisanship of U.S. counties. A county is considered as a “Democrats” 
county when the percentage of people who voted for the presidential 

Fig. 1. An illustration of how county-level daily mobility level is measured by Descartes Labs (Image Source: Authors).  
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candidate of the Democratic Party (Joseph R. Biden) is higher than that 
of people who voted for the presidential candidate of the Republican 
Party (Donald J. Trump). Third, COVID-19 severity is assessed by the 
total new confirmed COVID-19 cases per capita for each county (USA 
Facts, 2020). 

Lastly, we utilize state-wide mobility restriction policy data (“Strin
gency Index”) from the Oxford COVID-19 Government Response Tracker 
(Hale et al., 2021). The data consist of a composite score for each U.S. 
state reflecting the extent to which each state-level government imple
mented several mobility restriction policies (e.g., reduction of public 
transit operations, workplace and school closures, restrictions on private 
gatherings, and so on). A higher score indicates that the state in question 
implemented stricter mobility restriction policies. Although it would be 
ideal to consider more spatially detailed COVID-19 policy data, to our 
best knowledge, there is no such publicly available county-level data for 
the U.S. However, given that state-wide policies play the most critical 
influences on county-level policies and people’s behaviors, using state- 
level data (instead of county-level data) is justifiable for investigating 
the policy’s effects on people’s mobility. 

2.2. Methods 

2.2.1. Longitudinal data analysis (LDA) 
We employ longitudinal data analysis (LDA) methods (also known as 

growth modeling) to investigate changes in people’s mobility levels over 
time and how the changes are associated with various social, spatial, 
policy, and political factors (Grimm et al., 2016). We adopt a multilevel 
modeling framework for estimating longitudinal changes (Grimm et al., 
2016). Specifically, Level-1 equations estimate within-county differ
ences, while Level-2 equations estimate between-county differences. We 
use the nlme R-software package to conduct the multilevel modeling 
(Pinheiro et al., 2020). 

For our longitudinal models, we divide the study timeline (March
–September) into two sub-timelines, consisting of Wave 1 (March–June) 
and Wave 2 (June–September), because of the following two reasons. 
First, the trend of mobility changes over time (i.e., the dependent vari
able of the longitudinal models) is substantially different between 
Waves 1 and 2. Fig. 2 presents a longitudinal plot of mobility level 
against time, and Fig. 3 geo-visualizes Fig. 2. These figures show that 
mobility changes over time have different patterns in Wave 1 (i.e., V- 
shaped lines) and Wave 2 (i.e., weak growth lines). Second, COVID-19 
severity and the level of state-wide mobility restriction policies are 
substantially different between Waves 1 and 2. For example, Fig. 4 
shows new confirmed daily COVID-19 cases in the U.S. and indicates 

two peaks (April and July). Also, the levels of state-wide mobility re
striction policies are different between Waves 1 and 2: more state-wide 
“reopening” policies (i.e., fewer restrictions) were implemented in Wave 
2 than Wave 1. Thus, adopting different longitudinal models for each 
wave would be desirable. Table 1 presents the descriptive statistics of 
the variables used in the models. 

2.2.2. Modeling mobility changes over time in Wave 1 (March–June) 
Recall that Fig. 1 shows that overall mobility levels in the U.S. 

decreased between March and April but then increased between April 
and June (i.e., V-shaped lines). This suggests that a nonlinear spline 
growth model with one knot point and time-invariant covariates would be 
suitable to model people’s mobility levels over time for this period 
(Grimm et al., 2016). In other words, the purpose of estimating this 
model is to examine (1) whether people’s mobility levels have changed 
in a nonlinear (spline type) relationship over time and (2) whether the 
changes are associated with other covariates (Table 1) that are assumed 
not to be changed over time. A knot point indicates where the trend 
substantially changed (e.g., from a decreasing trend to an increasing 
trend). In our study, April is selected as the knot point based on the 
trends in the data. The time-invariant covariates include the indepen
dent variables that are assumed to remain unchanged over time. 

To choose the best-fit model, we need to compare the explanatory 
power (i.e., model-fit indices) of the proposed model with other simpler 
models (Grimm et al., 2016). Thus, in addition to the proposed model, 
we also estimated two simpler models for the purpose: a no-growth model 
(Model 1) and a nonlinear spline growth model with one knot point without 
time-invariant covariates (Model 2). In other words, Model 1 investigates 
whether mobility levels do not significantly change over time. Model 2 is 
similar to Model 3 except that we do not estimate the association be
tween mobility levels and other covariates. We then compare the model- 
fit indices of our proposed model (Model 3) with these two simpler 
models. Specifically, we compare the Akaike information criterion 
(AIC), Bayesian information criterion (BIC), and the log-likelihood to 
choose the best-fit model. Low AIC and BIC scores and a high log- 
likelihood value indicate a good-fit model. 

In mathematical form, Model 1 (no-growth model) is represented as 
follows (Grimm et al., 2016, p. 47): 
{

mti = b1i + uti…(1)
b1i = β1 + d1i…(2)

where mti is the monthly mobility level for county i (i = 1,2,3,…,2639) 
at time t (t = 1 : March,2 : April,3 : May,4 : June), b1i is the random 
intercept for county i, and uti denotes the time-specific residual that is 

Fig. 2. (A) A longitudinal plot of mobility levels against time. (B) Probability density functions of mobility levels against time (Notes: These figures represent counties 
that are randomly selected for visualization purposes.) 
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assumed to follow a normal distribution of N(0,σμ
2). β1 denotes the 

sample mean for the intercept, and d1i is county i’s deviation from the 
sample mean that is assumed to follow a normal distribution of N(0,σ1

2). 
Namely, Eq. (1) indicates a Level-1 equation (within counties), and Eq. 
(2) indicates a level-2 equation (between counties). 

Model 2 (nonlinear spline growth model with one knot point and without 
time-invariant covariates) is represented as follows (Grimm et al., 2016, p. 
210): 
⎧
⎪⎪⎨

⎪⎪⎩

mti = b1i + b2i⋅min(t − 2, 0) + b3i⋅max(t − 2, 0) + uti…(3)
b1i = β1 + d1i…(4)
b2i = β2 + d2i…(5)
b3i = β3 + d3i…(6)

where b1i is a random-effects intercept at a knot point (t = 2), b2i denotes 
a pre-knot random-effects linear slope for county i, and b3i denotes a 
post-knot random-effects linear slope for county i. β1 is a fixed-effects 
parameter for the intercept, β2 is a fixed-effects parameter for the pre- 
knot linear slope, and β3 is a fixed-effects parameter for the post-knot 

linear slope. d1i, d2i, and d3i are individual county i’s deviations from 
the fixed effects and are assumed to follow a multivariate normal dis
tribution (Grimm et al., 2016, p. 211): 

d1i, d2i, d3i ∼ MVN

⎛

⎜
⎜
⎝

⎡

⎣
0
0
0

⎤

⎦,

⎡

⎢
⎢
⎣

σ2
11

σ21 σ2
22

σ31 σ32 σ2
33

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠…(7)

Lastly, the overall structure of Model 3 (nonlinear spline growth model 
with one knot point and time-invariant covariates) is similar to that of 
Model 2 except that five time-invariant covariates are included in the 
Level-2 equations. These time-invariant covariates, which may be 
significantly associated with changes in mobility levels, were described 
in Table 1. 

We assume that COVID-19 severity and state-wide policies are static 
within each wave to estimate parsimonious models. In reality, COVID- 
19 severity, restriction policy strictness level, and people’s mobility 
level may simultaneously affect each other. Although it would be ideal 

Fig. 3. Monthly average mobility level of 2639 counties (selected months).  
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to consider the relationships among these variables, it may involve more 
complex models and thus require more detailed data and computing 
resources. Note that this is one of the methodological limitations of this 
study that should be addressed by future studies with more complex 
models when more detailed data are available. 

Moreover, COVID-19 severity and population density variables are 
log-transformed because the distribution of these variables is highly 
skewed. For a small number of counties that have 0 confirmed COVID-19 
cases, a very small number (ε) is added to the COVID-19 severity vari
able so that the log-transformation can be applied. 

2.2.3. Modeling mobility changes over time in Wave 2 (June–September) 
For modeling mobility changes over time in Wave 2, we adopt a 

similar approach as that of Wave 1. However, a longitudinal plot in 
Fig. 1 suggests a weak linear growth model instead of a nonlinear spline 
growth model. Thus, we estimate a linear growth model with time-invariant 
covariates (Model 6). In other words, Model 6 examines whether peo
ple’s mobility levels have changed based on a linear relationship over 
time, and the changes are associated with other covariates (Table 1) that 
are assumed not to change over time. Next, we compare Model 6 with 
two simpler models: a no-growth model (Model 4) and a linear growth 
model without time-invariant covariates (Model 5). 

3. Results 

3.1. Model estimation results of Wave 1 (March–June) 

Table 2 presents the estimation results of Models 1–3 focusing on 
Wave 1. We first compare the model-fit indices of Models 1–3. The 
values of the AIC, BIC, and the negative log-likelihood (− 2LL) of Model 
2 are smaller than those of Model 1, which indicates that there is an 
overall V-shaped line trend in mobility levels during Wave 1. Further, 
the model-fit indices of Model 3 are better than those of Model 2, and the 
chi-square difference test reveals that Model 3 is significantly better than 
Model 2 (p < 0.001). This indicates that the time-invariant covariates in 
the model help explain changes in people’s mobility levels over time. 
Thus, we adopt Model 3, which is a nonlinear spline growth model with one 
knot point and time-invariant covariates, to explain the longitudinal 
changes in people’s mobility levels during Wave 1. 

In Model 3, with other things being equal, the pre-knot slope 
(− 5.229, p < 0.001) is significant and negative, and the post-knot slope 

Fig. 4. New confirmed COVID-19 cases by day during the study timeline. (Source: The COVID-19 Tracking Project, 2020).  

Table 1 
Descriptive statistics of the county-level variables used in this research.   

Mean Standard 
Deviation 

Min Max 

Monthly mobility level (km) 
March 7.281 4.420 0.353 33.940 
April 3.955 3.236 0.017 28.939 
May 6.794 4.124 0.025 30.328 
June 8.920 4.713 0.157 42.625 
July 8.889 4.565 0.300 43.226 
August 8.487 4.526 0.525 40.376 
September 8.741 4.567 0.622 41.501  

Covariates 
Democrats (2020 

Presidential Election) 
0.182a 0.386 0.000 1.000 

% Below-Poverty 15.750 6.142 2.300 48.600 
Population Density 

(people/km2) 
119.350 743.497 0.098 27,750.761 

COVID-19 severity (Wave 
1) 

0.006 0.008 0.000 0.132 

COVID-19 severity (Wave 
2) 

0.017 0.012 0.000 0.146 

State Restriction (Wave 1)b 53.730 7.161 33.662 69.845 
State Restriction (Wave 2)b 48.008 9.794 19.058 78.535 

Notes: n = 2639; Wave 1: March to June; Wave 2: June to September. 
a Note that although the Democratic candidate won the 2020 Presidential 

Election, this number is lower than one’s expectation because the number of 
counties (e.g., low-dense rural counties) that voted for the Republican candidate 
is higher than the number of counties (e.g., high-dense urban counties) that 
voted for the Democratic candidate. 

b A higher score indicates that the state in questions implemented stricter 
mobility restriction policies. 
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(+4.299, p < 0.001) is significant and positive, which corroborates our 
earlier observations based on Fig. 1. These results indicate that people’s 
mobility levels decreased at the early stage of the COVID-19 pandemic 
(March–April) but started to recover to the typical mobility levels from 
April to June. These results may reflect the “social distancing inertia” or 
“quarantine fatigue,” which is the phenomenon that people felt tired of 
staying at their home for several months and tried to travel as usual like 
they did before the pandemic despite the ongoing crisis of the COVID-19 
pandemic (Beck et al., 2020; Ghader et al., 2020; Gauvin et al., 2020; 
Hamidi and Zandiatashbar, 2021; Marques and Waldinger, 2020; Zhao 
et al., 2020). We further examine the results of Model 3 in terms of the 
key variables, including political partisanship, poverty level, and state- 
wide COVID-19 mobility restriction policy level. Fig. 4 illustrates the 
estimated mobility levels over time for different key variables while 
holding other covariates constant. 

First, we focus on the role of political partisanship on the mobility 
changes over time (Fig. 5A). With other things being equal, the pre-knot 
slope is not significant (p > 0.05), but the post-knot slope is significant 
(− 0.147, p < 0.05). This indicates that, after April (when overall 
mobility levels were recovering), the average rate of change in mobility 
levels of Democratic counties is significantly slower than that of 
Republican counties. This means that people who live in Democratic 

counties tend to minimize travel while people who live in Republican 
counties tend to travel as usual. The result not only corroborates the 
findings from similar studies but also reflects that how people in the U.S. 
respond to the COVID-19 pandemic has been highly politicized (e.g., 
Allcott et al., 2020; Fan et al., 2020; Grossman et al., 2020; Hart et al., 
2020). 

Second, we investigate the role of poverty level on the mobility 
changes over time (Fig. 5B). With other things being equal, both the pre- 
knot slope (0.037, p < 0.001) and the post-knot slope (− 0.024, p <
0.001) are significant. This implies that, when all other things are the 
same, counties with a higher percentage of poor people are significantly 
associated with a slower decrease in mobility level during the pre-knot 
period and a slower increase in the mobility level during the post-knot 
period. This further means that poor people are more likely to travel 
as usual at the early stage of the COVID-19 pandemic. This result cor
roborates the findings from other studies as well as reflects the fact that 
poor people in the U.S. tend to keep traveling during the COVID-19 
pandemic (Campbell et al., 2021; Fan et al., 2020; Jay et al., 2020; 
Lee et al., 2020b; Lou et al., 2020). One possible explanation is that poor 
people largely consist of essential workers, such as workers of grocery 
stores and food processing plants. During the pandemic, essential 
workers still need to travel as usual to go to their workplaces (McNi
cholas and Poydock, 2020; Roberts et al., 2020; Rogers et al., 2020; Van 
Dorn et al., 2020). 

Lastly, we examine the role of state-wide COVID-19 mobility re
striction policies on people’s mobility changes over time (Fig. 5C). With 
other things being equal, the pre-knot slope is significant (− 0.020, p <
0.001), but the post-knot slope is not significant (p > 0.05). This implies 
that counties implementing stricter mobility restriction policies are 
significantly associated with a faster decrease in their mobility levels 
during the pre-knot period, which is in line with the findings from 
similar studies and the general expectation (e.g., Gao et al., 2020b; 
Gauvin et al., 2020; Pullano et al., 2020). Interestingly, the level of 
mobility restriction policies is not associated with the post-knot slope. If 
these policies had worked effectively, a stricter policy would have been 
associated with a lower rate of increase in mobility levels during the 
post-knot period. However, our model result indicates that it is not the 
case. Thus, the result implies that mobility restriction policies might not 
be effective in decreasing U.S. people’s mobility for a long period during 
the COVID-19 pandemic. 

3.2. Model estimation results of Wave 2 (June–September) 

Table 3 shows the model estimation results of Models 4–6 focusing 
on Wave 2. First, we compare the model-fit indices of Models 4–6. The 
values of AIC, BIC, and the negative log-likelihood (− 2LL) of Model 6 are 
smaller than those of Models 4 and 5. Also, the chi-square difference 
tests reveal that Model 6 performs significantly better than Models 4 and 
5 (p < 0.001). The results imply that a linear growth model with time- 
invariant covariates adequately estimates the longitudinal mobility 
changes during Wave 2. Therefore, we focus on Model 6 for analyzing 
the changes in people’s mobility levels during Wave 2. 

The results of Model 6 indicate that, although the slope (change in 
mobility levels per month) is significant (p < 0.001), the magnitude of 
the slope is less meaningful in practice than Wave 1. In Wave 1 (Model 
3), for Republican counties (i.e., Democrats = 0), the pre-knot slope is 
about − 3.1 km per month and the post-knot slope is about +2.1 km per 
month when holding all covariates constant. In Wave 2 (Model 6), 
however, the slope is about − 0.004 km per month. This means that the 
average mobility level of September is only 12 m (0.012km = 0.004 × 3) 
lower than that of June, indicating that the decrease in mobility levels 
over time in Wave 2 is minimal in practice. Thus, although the results of 
Model 6 reveal that the rate of change in mobility levels is (statistically) 
significant, we conclude that there was very little change in mobility 
levels during Wave 2, which corroborates our earlier observations of the 
longitudinal plot (Fig. 1). 

Table 2 
Estimation results of the models on mobility changes over time and the associ
ation between the changes and time-invariant covariates (Wave 1: March–June).   

Model 1 Model 2 Model 3 

Intercept 
Intercept 6.737*** 

(0.078) 
4.074*** 
(0.064) 

11.522*** 
(0.546) 

Democrats – – − 2.076*** 
(0.158) 

% Below-Poverty – – 0.115*** 
(0.009) 

Ln COVID-19 Severity – – 0.470*** 
(0.055) 

Restriction Policy Level – – − 0.085*** 
(0.008) 

Ln Population Density – – − 0.487*** 
(0.046)  

Pre-knot 
Pre-knot slope – − 3.207*** 

(0.036) 
− 5.229*** 
(0.352) 

Democrats – – 0.022 
(0.102) 

% Below-Poverty – – 0.037*** 
(0.006) 

Ln COVID-19 Severity – – − 0.299*** 
(0.035) 

Restriction Policy Level – – − 0.020*** 
(0.005) 

Ln Population Density – – 0.230*** 
(0.029)  

Post-knot 
Post-knot slope – 2.482*** 

(0.024) 
4.299*** 
(0.224) 

Democrats – – − 0.147* 
(0.065) 

% Below-Poverty – – − 0.024*** (0.004) 
Ln COVID-19 Severity – – 0.054* 

(0.022) 
Restriction Policy Level – – − 0.002 

(0.003) 
Ln Population Density – – − 0.309*** (0.019)  

Model fit indices 
AIC 55,168.08 42,171.04 40,722.09 
BIC 55,189.88 42,243.68 40,903.70 
-2LL 55,162.08 42,151.04 40,672.08 

Notes: * denotes p < 0.05; *** denotes p < 0.001. Standard errors in parenthesis. 
Model 1: no-growth model; Model 2: nonlinear spline growth model; Model 3: 
nonlinear spline growth model with one-knot point and time-invariant covariates. 
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These results are interesting given the fact that the COVID-19 
pandemic was still severe in the U.S. during Wave 2 (June–Sep
tember). Recall that Fig. 3 shows that the number of new confirmed 
COVID-19 cases was much higher in Wave 2 than in Wave 1. In this light, 
one might expect that mobility levels would have decreased at the early 

stage of Wave 2 as similar to what we observed for Wave 1. However, 
our longitudinal model results indicate that people’s mobility levels 
were much less affected during Wave 2 even though the COVID-19 
pandemic situation has become more severe. One possible explanation 
is that many people may be tired of continuously staying at home for 
several months despite the COVID-19 pandemic still being rampant. This 
is in line with observations of “social distancing inertia” or “quarantine 
fatigue” from other studies and our model results of Wave 1 (Ghader 
et al., 2020; Gauvin et al., 2020; Hamidi and Zandiatashbar, 2021; 
Marques and Waldinger, 2020; Zhao et al., 2020). 

Another possible explanation is that people’s perceived risk of 
COVID-19 had decreased as they gained more knowledge about COVID- 
19 and thus became more familiar with it. For example, although some 
studies have concluded that U.S. people’s COVID-19 risk perception had 
drastically increased at the early stage of the pandemic (e.g., Niepel 
et al., 2020; Wise et al., 2020), a later study has found that people’s risk 
perception had decreased between April and July (Li et al., 2020). 
Further, the results may reflect that people thought traveling would be 
safe if they follow the safety measures, such as wearing a mask and 
washing hands often. 

4. Conclusion and discussion 

This research examined changes in people’s mobility over a 7-month 
period (from March 1st to September 30th, 2020) during the COVID-19 
pandemic in the U.S. using longitudinal models for two waves (Wave 1: 
March–June; Wave 2: June–September). It also analyzed how these 
mobility changes are associated with various social, policy, spatial, and 
political factors (e.g., political partisanship, poverty level, mobility re
striction policies, and COVID-19 severity). 

The results revealed that mobility changes in Wave 1 have a V-sha
ped trend: people’s mobility first declined at the early stage of the 
COVID-19 pandemic (March–April) but started to recover to the typical 
mobility levels from April to June. The results further showed that the 
rates of change are significantly associated with most of the key vari
ables, such as political partisanship, poverty level, and the strictness of 
mobility restriction policies. In Wave 2, there was very little mobility 
decline in practice despite the existence of mobility restriction policies 
and the COVID-19 pandemic becoming more severe. 

Fig. 5. Estimated mobility levels over time in different scenarios that focus on (A) political partisanship, (B) poverty level, and (C) COVID-19 mobility restriction 
policies. (Notes: Other covariates are held at their average levels. In Fig. 5 [B] and [C], the political partisanship is assumed to be Democratic.) 

Table 3 
Model estimation results of Wave 2 (June–September).   

Model 4 Model 5 Model 6 

Intercept 
Intercept 8.759*** 

(0.089) 
8.900*** 
(0.091) 

17.883*** 
(0.648) 

Democrats – – − 1.745*** 
(0.229) 

% Below-Poverty – – 0.017 
(0.015) 

Ln COVID-19 Severity – – 0.986*** 
(0.114) 

Restriction Policy Level – – − 0.023* 
(0.009) 

Ln Population Density – – − 1.074*** 
(0.063)  

Slope 
Slope – − 0.094*** 

(0.007) 
− 0.345*** 
(0.054) 

Democrats – – 0.069*** 
(0.019) 

% Below-Poverty – – − 0.002 
(0.001) 

Ln COVID-19 Severity – – − 0.034*** 
(0.010) 

Restriction Policy Level – – 0.001 
(0.001) 

Ln Population Density – – 0.028*** 
(0.005)  

Model fit indices 
AIC 35,446.48 34,902.44 34,199.51 
BIC 35,468.27 34,946.02 34,315.74 
-2LL 35,440.48 34,890.44 34,167.52 

Notes: * denotes p < 0.05; *** denotes p < 0.001. Standard errors in parenthesis. 
Model 4: no-growth model; Model 5: linear growth model; Model 6: linear growth 
model with time-invariant covariates. 
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Our research is important because it significantly contributes to the 
literature on the impact of the COVID-19 pandemic on people’s mobility 
patterns and travel behaviors in the following aspects. First, it is among 
the first studies that examined mobility changes using longitudinal 
models, up-to-date data such as the 2020 Presidential Election results, 
and data on people’s mobility levels spanning 7 months. Most previous 
studies largely focused only on the early stage of the COVID-19 
pandemic (e.g., March–April) and used cross-sectional data and 
methods. These previous studies provide insights into people’s mobility 
changes only over 2–3 months during the pandemic. However, our re
sults based on 7-month data revealed that people’s mobility levels first 
decreased but soon recovered to the pre-pandemic levels in Wave 1 and 
then tended to remain at similar levels during Wave 2 even though there 
was a more severe second surge of new confirmed COVID-19 cases. 

Further, our study has important implications for COVID-19 control 
policies that aim at restricting people’s mobility. Our results revealed 
that people’s mobility levels quickly recovered after April despite the 
severe COVID-19 situation and state-wide mobility restriction policies in 
the U.S. Our findings thus suggest that restricting people’s mobility to 
control the pandemic may be effective only for a short period, after 
which mobility restrictions may become ineffective in curtailing peo
ple’s travel and mitigating the spread of the virus. Considering that 
people’s mobility is one of the critical components of their daily life in 
modern liberal democratic societies, such as the U.S. (e.g., Cresswell, 
2006; Kwan and Schwanen, 2016; Urry, 2007), policymakers should 
carefully design and implement pandemic control policies that constrain 
people’s mobility. 

Also, our results indicated that poor people kept traveling during the 
pandemic because they are mostly essential workers who are required to 
be physically present at their workplaces (e.g., Jay et al., 2020; McNi
cholas and Poydock, 2020; Roberts et al., 2020; Rogers et al., 2020; Van 
Dorn et al., 2020). Considering also that poor people are more likely to 
use public transit (e.g., Federal Highway Administration, 2019; Kim and 
Lee, 2019), certain built-environment features or venues where poor 
people frequently visit (e.g., public transit facilities and workplaces) 
may be risky for COVID-19 exposure (e.g., Kan et al., 2021; Hu et al., 
2020; Huang et al., 2020a). Therefore, policymakers should pay special 
attention to these people by implementing policies to mitigate their high 
COVID-19 exposure risk. This would be critical because essential 
workers play an important role in maintaining our society’s functioning 
even during the pandemic. 

However, our study has several limitations that should be addressed 
in future studies. First, we assumed a simple one-directional causal 
relationship between COVID-19 severity, mobility restriction policies, 
and mobility levels. Moreover, we assumed that policy strictness levels 
and COVID-19 severity levels are static within each wave. In reality, 
these three factors may vary over time and simultaneously affect each 
other, which leads to highly complex interactions. Future studies may 
consider utilizing complex structural equation models or time-varying 
covariates (TVC) growth models to address this issue (Grimm et al., 
2016). Also, we did not consider differences in policy strictness levels 
across counties by only considering state-wide policies. Since the 
counties in a certain state may have different levels of policy strictness, 
future studies would benefit from considering more fine-scale policy 
differences when these data are available. Next, we did not consider 
spatial dependency in our models, which should be addressed by future 
studies by utilizing non-linear growth models that address spatial de
pendency. Lastly, due to data limitations, we chose the county as the 
spatial unit and the month as the temporal unit of the analysis. This 
approach may involve several methodological problems (Helbich et al., 
2020), such as the modifiable areal unit problem (MAUP; Fotheringham 
and Wong, 1991), the modifiable temporal unit problem (MTUP; Cheng 
and Adepeju, 2014), and the uncertain geographic context problem 
(UGCoP; Kwan, 2012, 2018). Future studies should thus try to use 
individual-level detailed mobility data (e.g., GPS trajectories) to miti
gate these methodological issues to shed more light on people’s mobility 

changes over time during the pandemic. 

Author contributions 

Junghwan Kim: Conceptualization, Data curation, Formal analysis, 
Writing - original draft, Writing - review & editing; Mei-Po Kwan: 
Conceptualization, Writing - original draft, Writing - review & editing. 

Acknowledgements 

Junghwan Kim was supported by a Block Grant Fellowship from the 
University of Illinois at Urbana-Champaign. Mei-Po Kwan was supported 
by a grant from the Research Committee on Research Sustainability of 
Major RGC Funding Schemes of the Chinese University of Hong Kong. 
The authors thank the anonymous reviewers for their thoughtful com
ments, which helped improve the paper considerably. The authors are 
particularly grateful for the editor’s and the reviewers’ efforts during the 
COVID-19 pandemic. 

References 

Allcott, H., Boxell, L., Conway, J., Gentzkow, M., Thaler, M., Yang, D., 2020. Polarization 
and public health: partisan differences in social distancing during the coronavirus 
pandemic. J. Public Econ. 191, 104254. 

Beck, M.J., Hensher, D.A., Wei, E., 2020. Slowly coming out of COVID-19 restrictions in 
Australia: implications for working from home and commuting trips by car and 
public transport. J. Transp. Geogr. 88, 102846. 

Buckee, C.O., Balsari, S., Chan, J., Crosas, M., Dominici, F., Gasser, U., Lipsitch, M., 2020. 
Aggregated mobility data could help fight COVID-19. Science 368 (6487), 145. 

Campbell, M., Marek, L., Wiki, J., Hobbs, M., Sabel, C.E., McCarthy, J., Kingham, S., 
2021. National movement patterns during the COVID-19 pandemic in New Zealand: 
the unexplored role of neighbourhood deprivation. J. Epidemiol. Community Health 
1–3. In press.  

Cartenì, A., Di Francesco, L., Martino, M., 2020. How mobility habits influenced the 
spread of the COVID-19 pandemic: results from the Italian case study. Sci. Total 
Environ. 741, 140489. 

Chakraborty, I., Maity, P., 2020. COVID-19 outbreak: migration, effects on society, 
global environment and prevention. Sci. Total Environ. 138882. 

Cheng, T., Adepeju, M., 2014. Modifiable temporal unit problem (MTUP) and its effect 
on space-time cluster detection. PLoS One 9 (6), e100465. 

Cresswell, T., 2006. On the Move: Mobility in the Modern Western World. Taylor & 
Francis. 

De Vos, J., 2020. The effect of COVID-19 and subsequent social distancing on travel 
behavior. Transport. Res. Interdisc. Perspect. 100121. 

Fan, Y., Orhun, A.Y., Turjeman, D., 2020. Heterogeneous actions, beliefs, constraints and 
risk tolerance during the COVID-19 pandemic. In: NBER Working Paper, w27211. 
https://www.nber.org/papers/w27211. 

Federal Highway Administration, 2019. Transit Trend Analysis. Retrieved December 8, 
2020, from. https://nhts.ornl.gov/assets/FHWA_NHTS_Report_3A_Final_021119.pdf. 

Fotheringham, A.S., Wong, D.W., 1991. The modifiable areal unit problem in 
multivariate statistical analysis. Environ. Plan. A 23 (7), 1025–1044. 

Gao, S., Rao, J., Kang, Y., Liang, Y., Kruse, J., 2020a. Mapping county-level mobility 
pattern changes in the United States in response to COVID-19. SIGSPATIAL Special 
12 (1), 16–26. 

Gao, S., Rao, J., Kang, Y., Liang, Y., Kruse, J., Dopfer, D., Patz, J.A., 2020b. Association of 
mobile phone location data indications of travel and stay-at-home mandates with 
covid-19 infection rates in the U.S. JAMA Netw. Open 3 (9) (e2020485-e2020485).  

Gauvin, L., Bajardi, P., Pepe, E., Lake, B., Privitera, F., Tizzoni, M., 2020. Socioeconomic 
determinants of mobility responses during the first wave of COVID-19 in Italy: from 
provinces to neighbourhoods. medRxiv 2020, 1–26. 

Ghader, S., Zhao, J., Lee, M., Zhou, W., Zhao, G., Zhang, L., 2020. Observed mobility 
behavior data reveal social distancing inertia. arXiv Preprint 2004, 1–12. 

Grimm, K.J., Ram, N., Estabrook, R., 2016. Growth Modeling: Structural Equation and 
Multilevel Modeling Approaches. Guilford Publications. 

Grossman, G., Kim, S., Rexer, J., Thirumurthy, H., 2020. Political partisanship influences 
behavioral responses to governors’ recommendations for COVID-19 prevention in 
the United States. Proc. Natl. Acad. Sci. 117 (39), 24144–24153. 

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Tatlow, H., 2021. 
A global panel database of pandemic policies (Oxford COVID-19 government 
response tracker). Nat. Hum. Behav. 1–10. 

Hamidi, S., Zandiatashbar, A., 2021. Compact development and adherence to stay-at- 
home order during the COVID-19 pandemic: a longitudinal investigation in the 
United States. Landsc. Urban Plan. 205, 103952. 

Hart, P.S., Chinn, S., Soroka, S., 2020. Politicization and polarization in COVID-19 news 
coverage. Sci. Commun. 42 (5), 679–697. 

Helbich, M., Browning, M.H.M., Kwan, M.-P., 2020. Time to address the spatiotemporal 
uncertainties in COVID-19 research: concerns and challenges. Sci. Total Environ. 
764, 142866. 

J. Kim and M.-P. Kwan                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0005
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0005
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0005
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0010
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0010
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0010
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0015
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0015
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0020
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0020
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0020
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0020
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0025
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0025
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0025
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0030
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0030
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0035
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0035
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0040
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0040
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0045
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0045
https://www.nber.org/papers/w27211
https://nhts.ornl.gov/assets/FHWA_NHTS_Report_3A_Final_021119.pdf
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0060
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0060
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0065
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0065
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0065
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0070
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0070
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0070
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0075
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0075
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0075
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0080
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0080
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0085
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0085
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0090
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0090
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0090
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0095
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0095
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0095
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0100
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0100
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0100
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0105
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0105
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0110
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0110
http://refhub.elsevier.com/S0966-6923(21)00092-2/rf0110


Journal of Transport Geography 93 (2021) 103039

9

Hu, M., Lin, H., Wang, J., Xu, C., Tatem, A.J., Meng, B., Xie, H., 2020. The risk of COVID- 
19 transmission in train passengers: an epidemiological and modelling study. Clin. 
Infect. Dis. 72, 604–610. 

Huang, J., Kwan, M.-P., Kan, Z., Wong, M.S., Kwok, C.Y.T., Yu, X., 2020a. Investigating 
the relationship between the built environment and relative risk of COVID-19 in 
Hong Kong. ISPRS Int. J. Geo Inf. 9 (11), 624. 

Huang, X., Li, Z., Jiang, Y., Li, X., Porter, D., 2020b. Twitter reveals human mobility 
dynamics during the COVID-19 pandemic. PLoS One 15 (11), e0241957. 

Irawan, M.Z., Belgiawan, P.F., Joewono, T.B., Bastarianto, F.F., Rizki, M., Ilahi, A., 2021. 
Exploring activity-travel behavior changes during the beginning of COVID-19 
pandemic in Indonesia. Transportation 1–25. 

Jay, J., Bor, J., Nsoesie, E.O., Lipson, S.K., Jones, D.K., Galea, S., Raifman, J., 2020. 
Neighbourhood income and physical distancing during the COVID-19 pandemic in 
the United States. Nat. Hum. Behav. 4, 1294–1302. 

Kan, Z., Kwan, M.P., Wong, M.S., Huang, J., Liu, D., 2021. Identifying the space-time 
patterns of COVID-19 risk and their associations with different built environment 
features in Hong Kong. Sci. Total Environ. 772, 145379. 

Kim, J., Kwan, M.-P., 2021. An examination of people’s privacy concerns, perceptions of 
social benefits, and acceptance of COVID-19 mitigation measures that harness 
location information: a comparative study of the US and South Korea. ISPRS Int. J. 
Geo Inf. 10 (1), 25. 

Kim, J., Lee, B., 2019. More than travel time: new accessibility index capturing the 
connectivity of transit services. J. Transp. Geogr. 78, 8–18. 

Kim, J., Kwan, M.-P., Levenstein, M.C., Richardson, D.B., 2021. How do people perceive 
the disclosure risk of maps? Examining the perceived disclosure risk of maps and its 
implications for geoprivacy protection. Cartogr. Geogr. Inf. Sci. 48 (1), 1–19. 

Kwan, M.-P., 2012. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 
102 (5), 958–968. 

Kwan, M.-P., 2018. The limits of the neighborhood effect: contextual uncertainties in 
geographic, environmental health, and social science research. Ann. Am. Assoc. 
Geogr. 108 (6), 1482–1490. 

Kwan, M.-P., Schwanen, T., 2016. Geographies of mobility. Ann. Am. Assoc. Geogr. 106 
(2), 243–256. 

Lee, J., Porr, A., Miller, H., 2020a. Evidence of Increased Vehicle Speeding in Ohio’s 
Major Cities during the COVID-19 Pandemic. Transport Findings. June, pp. 1–6. 

Lee, M., Zhao, J., Sun, Q., Pan, Y., Zhou, W., Xiong, C., Zhang, L., 2020b. Human 
mobility trends during the COVID-19 pandemic in the United States. PLoS One 15 
(11), e0241468. 

Li, Y., Luan, S., Hertwig, R., 2020. Changing Emotions in the COVID-19 Pandemic: A 
Three-Wave Longitudinal Study in the United States and China. OSF Preprints. htt 
ps://osf.io/9dfep/. 

Liu, L., Miller, H.J., Scheff, J., 2020. The impacts of COVID-19 pandemic on public 
transit demand in the United States. PLoS One 15 (11), e0242476. 

Lou, J., Shen, X., Niemeier, D., 2020. Are stay-at-home orders more difficult to follow for 
low-income groups? J. Transp. Geogr. 89, 102894. 

Marques, L., Waldinger, R., 2020. Overcoming Quarantine Fatigue. Retrieved December 
7, 2020, from. https://www.massgeneral.org/news/coronavirus/quarantine-fatigue. 

Matson, G., McElroy, S., Lee, Y., Circella, G., 2021. Longitudinal analysis of COVID-19 
impacts on mobility: an early snapshot of the emerging changes in travel behavior. 

In: UC Davis: 3 Revolutions Future Mobility Program. Retrieved from. https://escho 
larship.org/uc/item/2pg7k2gt. 

McGovern, T., 2020. U.S. County Level Election Results. Retrieved November 9, 2020, 
from. https://github.com/tonmcg. 

McNicholas, C., Poydock, M., 2020. Who are essential workers? A comprehensive look at 
their wages, demographics, and unionization rates. Econ. Policy Inst. Retrieved 
December 7, 2020, from https://www.epi.org/blog/who-are-essential-workers-a- 
comprehensive-look-at-their-wagesdemographics-and-unionization-rates. 

Niepel, C., Kranz, D., Borgonovi, F., Emslander, V., Greiff, S., 2020. The coronavirus 
(COVID-19) fatality risk perception of US adult residents in march and April 2020. 
Br. J. Health Psychol. 25, 883–888. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Core Team, R., 2020. Nlme: linear and 
nonlinear mixed effects models. R Package Version 3, 1–149. Retrieved December 7, 
2020, from. https://CRAN.R-project.org/package=nlme. 

Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S., Colizza, V., 2020. Evaluating the effect 
of demographic factors, socioeconomic factors, and risk aversion on mobility during 
the COVID-19 epidemic in France under lockdown: a population-based study. Lancet 
Digit. Health 2 (12), e638–e649. 

Roberts, J.D., Dickinson, K.L., Koebele, E., Neuberger, L., Banacos, N., Blanch- 
Hartigan, D., Birkland, T.A., 2020. Clinicians, cooks, and cashiers: examining health 
equity and the COVID-19 risks to essential workers. Toxicol. Ind. Health 36 (9), 
689–702. 

Rogers, T.N., Rogers, C.R., VanSant-Webb, E., Gu, L.Y., Yan, B., Qeadan, F., 2020. Racial 
disparities in COVID-19 mortality among essential Workers in the United States. 
World Med. Health Policy 12 (3), 311–327. 

Shamshiripour, A., Rahimi, E., Shabanpour, R., Mohammadian, A.K., 2020. How is 
COVID-19 reshaping activity-travel behavior? Evidence from a comprehensive 
survey in Chicago. Transport. Res. Interdisc. Perspect. 7, 100216. 

The COVID Tracking Project, 2020. The COVID Tracking Project at The Atlantic. 
Retrieved December 7, 2020, from. https://covidtracking.com/. 

U.S.A. Facts, 2020. US Coronavirus Cases and Deaths. Retrieved December 7, 2020, from. 
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/. 

Urry, J., 2007. Mobilities. Polity (335 p).  
Van Dorn, A., Cooney, R.E., Sabin, M.L., 2020. COVID-19 exacerbating inequalities in the 

US. Lancet 395 (10232), 1243. 
Warren, M.S., Skillman, S.W., 2020. Mobility changes in response to COVID-19. arXiv 

Preprint 2003, 1–6. 
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